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Abstract

We investigate the existence of a group action τ that is homomesic with respect to

alignments, a type of statistic in perfect matchings. Homomesy is defined as the consistency

of an average, and perfect matchings are defined as the set of all partitions of 1 to 2n into

pairs. We take advantage of the bijection between labeled Dyck paths and perfect matchings

to investigate to investigate the possibility of defining τ inductively. We also relate perfect

matchings to the oscillating tableaux and discover relationships that support the possibility

of the existence of τ but do not prove it. We find some surprisingly clean formulae for

statistical averages of the analogue to the number of alignments for oscillating tableaux of

arbitrary shape, which suggests that τ may exist for more general contexts than just perfect

matchings.

Summary

We investigate the existence of a function that preserves a certain characteristic of a

set of combinatorial objects. After failing at proving its existence inductively, we relate the

function to a different set of objects that have similar properties. We discover new connections

that support the possibility of the function’s existence. The existence of such a function is

applicable in algebra and group theory, and may potentially reveal a hidden symmetry in

perfect matchings, which investigate the relationships of groups of pairings in certain sets of

objects.



1 Introduction

Combinatorics, the study of discrete mathematical structures, is useful in every branch of

mathematics. One particularly interesting subfield of combinatorics, homomesy, deals with

symmetries in statistics of combinatorial arguments and specifically. Specifically, in this

paper, we find homomesy of alignments in perfect matchings. As their names suggest, homo-

mesy is the consistency of the average and perfect matchings are partitions into pairs. James

Propp and Tom Roby coined the term homomesy in 2013 [1]. Since then, research on homo-

mesy has been discovered in a variety of combinatorial structures. For example, rowmotion

in order ideals of posets [1] and promotion of Young tableaux have a beautiful homomesic

structure. Perfect matchings are used in Kekulé structures of aromatic compounds in order

to show the carbon skeleton.

Our main goal is to find a group action that exhibits homomesy with respect to the align-

ment statistic of perfect matchings. In Section 2, we introduce some preliminary definitions

and give a more rigorous formulation of the problem. In Section 3, we outline a different

representation of perfect matchings. In Section 4, we describe our inductive approach to

finding the solution and prove some lemmata relating Dyck paths to statistics on perfect

matchings. However, we show that there are some serious obstructions to obtaining any re-

cursive construction, and switch to a more algebraic approach. In Section 5, we describe

the limitations of the approach in Section 4 towards finding homomesic maps. In Section

6, we derive numerous results on the relationship between oscillating tableaux and perfect

matchings.

2 Preliminaries

Definition 1. A statistic f : S → N on a set of combinatorial objects S is homomesic with

respect to the action of a group G on S if there is some constant c ∈ R such that the average
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of f along each G-orbit is c. The G-orbit of an element s ∈ S is the set of all elements that

s can map to after the action of a group element g ∈ G is applied on S.

Definition 2. A perfect matching of order n is the set of all partitions of {1, 2, . . . , 2n} into

pairs. We denote this by PM(n).

Past research on homomesy has been restricted to the case where the group G is cyclic,

i.e., G = 〈ϕ〉 for an invertible map ϕ : S → S where S is an arbitrary set. Generally,

the ϕ investigated have been well-studied procedures such as rowmotion in order ideals of

posets [1, 2] or promotion of Young tableaux [3]. The goal in such cases is to understand

which natural statistics on S are homomesic with respect to ϕ.

Homomesy can be very useful in understanding the behavior of a statistic f on a set S. If

the triple (S, f,G) exhibits homomesy, where G is some group, then the denominator in the

average of f across a G-orbit can be at most be the size of the orbit. By the Orbit Stabilizer

Theorem, the size of the orbit must divide the size of G. If the average values of f across

all G-orbits are equal, then they are equal to the average of f across all elements of S. As

a result, the denominator in this average is bounded by the size of G, and in particular, G

can bound the denominator in the average of the statistic f over all elements of S.

The set of combinatorial objects we focus on here is the set of perfect matchings.

A matching can be graphically represented by arranging the numbers 1, 2, . . . , 2n in order

on a line and connecting the pairs in the matching by arcs. An example of a matching on

six elements can be seen in Figure 1 [4].

Figure 1: Example of a matching of order 6
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Between each pair of arcs in a matching, there are three possible relationships: crossing,

nesting, or alignment, as shown in Figure 2 [5]. The numbers of crossings, nestings, and

alignments of a matching M are denoted by cr(M), ne(M), and al(M) respectively. Many

authors in the past have studied the statistics cr, ne, al on perfect matchings [6, 7, 8, 5].

We can make a couple of simple observations about these functions. For any matching M ∈

PM(n) we have cr(M) + ne(M) + al(M) =
(
n
2

)
, because each pair of arcs must either cross,

nest, or align, and there are
(
n
2

)
such pairs. Two randomly chosen arcs in a randomly chosen

M ∈ PM(n) are equally likely to cross, nest, or align. Thus, the average number of crossings,

0, and alignments across all matchings in PM(n) is
(
n
2

)
/3. It is this small denominator 3

that we aim to explain via homomesy.
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Figure 2: Crossing, nesting and alignments of two edges

Definition 3. Given a finite set S of combinatorial objects and statistics f1, . . . , fk : S → N,

we say that f1, . . . , fk are symmetrically distributed if

∑
s∈S

x
f1(s)
1 x

f2(s)
2 · · ·xfk(s)k =

∑
s∈S

x
f1(s)
π(1) x

f2(s)
π(2) · · ·x

fk(s)
π(k)

for all permutations π ∈ Sk, where Sk is the group of all permutations of {1, 2, . . . , k}.

The statistics cr and ne are symmetrically distributed over PM(n). This follows from

the existence of a certain invertible map σ : PM(n) → PM(n) defined by de Médicis-

Viennot [6] (see [5] for a description of σ in English). The map σ is an involution σ2 =

id, and it interchanges crossings and nestings in the sense that cr(M) = ne(σ(M)) and

ne(M) = cr(σ(M)) for all M ∈ PM(n).
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Figure 3: Dyck path shape and corresponding arc diagrams

Note that the three statistics cr, ne, and al are not symmetrically distributed. Neverthe-

less, there is the possibility that there exists some small group G acting on PM(n) such

that all three of these statistics are homomesic with respect to the action. In fact, it is highly

likely that there exists such a G with G ' S3. If so, homomesy would reveal a S3-symmetry

relating cr, ne, and al that is more nuanced than symmetric distribution. This would also be

the first example of homomesy involving a nonabelian group that we are aware of.

Our goal is to establish an S3 homomesy on matchings. This reduces to finding some

invertible map τ : PM(n) → PM(n) with τ 3 = id such that al is homomesic with respect

to τ . If (στ)2 = id, then G = 〈τ, σ〉 is isomorphic to S3 as desired.

3 Dyck path Representation

Definition 4. A Dyck path is a walk from (0, 0) to (n, n) that lies strictly below, but may

touch the diagonal y = x.

Dyck paths are one of the many representations of Catalan numbers. Catalan numbers

will play an important role in the proof of Lemma 1.

Definition 5. Catalan numbers are given by the sequence Cn = 1
n+1

(
2n
n

)
for n ≥ 1.

A matching can also be represented by a labeled Dyck path. The beginning of an arc in

an arc diagram is represented by an up-step in the Dyck path, and the end of an arc is
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represented by a down-step. Some Dyck path shapes correspond to multiple arc diagrams,

depending on which down-step corresponds to which up-step. For example, the Dyck path

in Figure 3 can correspond to any of the six arc diagrams. Thus, a dot of a certain height

is placed at each down-step, indicating which up-step the down-step is connected to. If the

down-step is connected to the first available up-step, then the dot is placed on the axis. If

the down-step is connected to the second available up-step, the dot is placed one unit above

the axis. In general, if the down-step is connected to the nth available up-step, the dot is

placed n − 1 units above the axis. A clearer explanation can be given by using Figure 4 as

an example.

Figure 4: labeled Dyck path and the corresponding arc diagram

We see in Figure 4 that the first node to contain a down-step is node 4, so the first dot on

the Dyck path has x-coordinate 4. The corresponding up-step begins at node 2 and so the

first dot on the Dyck path is at (4, 1). The next down-step ends at node 5 and corresponds

to the up-step at node 1, so the second dot on the Dyck path is placed at (5, 0). The final

down-step ends at node 6 and begins at node 3, the first node available. Because 3 is the

first node available, the y-coordinate of the dot is 1− 1 = 0. Thus the third dot on the Dyck

path is placed at (6, 0).

Recall that the map σ is an involution, meaning σ2 = id. The map σ can also be graphi-

cally represented; it is equivalent to taking the height of the down-step, subtracting the height

of the label, and placing the new dot at that height. This action successfully interchanges

crossings and nestings and does not affect the number of alignments.

5



However, because we are only concerned about alignments, and as such the shape of the

Dyck path, we disregard the labels. To keep track of the number of labeled Dyck paths that

correspond to a given Dyck path, we can simply multiply the heights of the down-steps.

Figure 5: Area under Dyck path

We define the area of a Dyck path to be the number of whole squares that can be drawn

under the path. An example of a Dyck path with area 6 is shown Figure 5. The number of

alignments in a matching is proportional to the area of the Dyck path. We denote the area

under a Dyck path of a matching with AM.

Lemma 1. For all matchings M, we have al(M) =
(
n
2

)
− 1

2
AM.

Proof. In Dyck paths, every down-step has an up-step of corresponding height. This comes

from the representation of Catalan numbers, because no initial segment of the sequence

of up-steps and down-steps has more up-steps than down-steps. Thus, the heights of the

down-steps equal half of the area. We also know that

1

2
AM =

∑
heights of down steps

= cr(M) + ne(M)

from [6]. Recall that cr(M) + ne(M) + al(M) =
(
n
2

)
, where M ∈ PM(n), as shown in [5].

Thus, 1
2
AM =

(
n
2

)
− al(M). Rearranging, we obtain al(M) =

(
n
2

)
− 1

2
AM.
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4 Inductive Approach to Finding τ

We begin by enumerating PM(n). Note that |PM(n)| = (2n − 1) · (2n − 3) · · · 3 · 1. This

product formula for the number of perfect matchings follows easily by observing how match-

ings can be built up inductively by adding in arcs; see [8] for the resulting tree of perfect

matchings. We attempt to define the partition of PM(n) into triples that we desire by in-

ductively adding in arcs in this manner one at a time. We do this by adding an arc that

starts at the beginning of a matching and ends anywhere within the matching, thus turning

a matching of order n to one of order n+ 1. If we do this to all matchings of order n, we are

able to create to all matchings of order n+ 1.

Definition 6. Given a matching M ∈ PM(n), we associate to M the string of alignment

numbers (a1, a2, a3, ..., a2n+1), where ai is the number of additional alignments that we obtain

if we end the arc between the i− 1th point and the ith point.

An example of alignment numbers for a Dyck path of order 3 is shown in Figure 6.

Lemma 2. The series of alignment numbers for any matching is always decreasing.

Proof. Every time the end of the arc crosses the beginning of a new arc, or an up-step on

a Dyck path, we lose one alignment. If we represent the Dyck path as a series of −1’s and

0’s, with an up-step being a −1 and a down-step being a 0, we can quickly calculate the

alignment numbers for a specific Dyck path. We have a1 = n and ai+1 = ai + δi, where

δi = −1 if the ith step is up, and δi = 0 if the ith step is down for all sequences of alignment

numbers.

There is also a relationship between the sum of alignment numbers, which we denote by

SM, and al(M).

Lemma 3. For all matchings of order n, SM = al(M) +
(
n
2

)
.
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Figure 6: Alignment Numbers for a Dyck path of Order 3

Figure 7: Depressing a Peak

Proof. If we take any sequence of up-down from a matching’s Dyck path and switch it to a

sequence of down-up, we subsequently decrease the area of the Dyck path by 2, increase the

number of alignments by 1, and increase the sum of the alignment numbers by 1. Looking at

this switch graphically, the switch inverts a peak of the Dyck path. An inversion is illustrated

in Figure 7.

For a Dyck path of order n that resembles the one in Figure 6, the sum of the alignment

numbers is equal to n+ (n− 1) + (n− 2) + · · ·+ 1 + 0 + 0 + · · ·+ 0 =
(
n+1
2

)
, where there are

n+ 1 0’s. Note that there are 0 alignments in the matching that corresponds to a Dyck path

with only one peak. Since the number alignments and the sum of the alignment numbers

increase at the same rate when we do the switch, SM =
(
n+1
2

)
+ al(M).

We want a partition of PM(n) into orbits O1∪O2∪ · · · ∪Ok, such that |Oi = 3| and the

average number of alignments in perfect matchings in each Oi is the same. As mentioned in
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Section 2, the average number of alignments over every element in PM(n) is 1
3

(
n
2

)
. This is

equivalent to saying

1

|Oi|
∑
M∈Oi

al(M) =
1

|PM(n)|
∑

M∈PM(n)

al(M)

=
1

3

(
n

2

)
.

Therefore, the total number of alignments in each orbit for matchings of order n is
(
n
2

)
.

The existence of a homomesic triple (al,PM(n), τ) such that τ 3 = id is equivalent to the

existence of a partition of PM(n) into triples such that for each triple Oi, we have

∑
M∈O

al(M) =

(
n

2

)
.

The difference between the total number of alignments in an orbit of matchings of order

n + 1 and order n is then
(
n+1
2

)
−
(
n
2

)
= n. This shows us how to choose where to end the

arcs in the matchings of an orbit. We group triples of Dyck numbers together, one from each

matching, such that they sum to n. This guarantees that the orbits of the perfect matchings

of order n+ 1 are also homomesic.

Lemma 4. In the partition of PM(n) into orbits of size 3 such that it is homomesic, the

sum of all alignment numbers in an orbit must equal n(2n+ 1).

Proof. Since there are 3 sets of alignments numbers in each orbit–one per matching–and

2n+1 alignments numbers per element, there are 2n+1 triples of numbers. Since each triple

sums to n, the total sum of all alignment numbers is n(2n+ 1).

When we inductively add arcs, the sum of the alignment numbers is equal to

3

(
n+ 1

2

)
+
∑

al(M) = n(2n+ 1).
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Figure 8: Tripling in an orbit of Dyck path of order 3

Thus, we have the necessary conditions for the tripling to exist. We can perform a greedy

algorithm to find these triples, but it may not succeed, as Section 5 explains. An example of

the tripling can be seen in Figure 8.

5 Counterexample to Inductive Approach

Computations carried out with Sage mathematical software using integer programming verify

the existence of such a partition for all 2 ≤ n ≤ 14.

There are cases where the tripling approach does not work. In one case with an orbit of

the perfect matchings of order 4, the Dyck numbers can never be fully tripled. The orbit

is shown in Figure 9. The method of inductively showing that τ exists has failed, although

we must keep in mind that this is a näıve inductive approach. Despite the existence of a

counterexample, the success of the Sage program in finding partitions suggests a more refined
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Figure 9: Counterexample to Greedy Algorithm

argument network.

6 Oscillating Tableaux

Another set of combinatorial objects closely related to perfect matchings of order n is the

oscillating tableaux of length 2n. The oscillating tableaux of length 2n are the walks in the

Hasse diagram of Young’s lattice from the empty partition ∅ to itself taking 2n steps. Young’s

lattice is the partially ordered set, or poset, of partitions by inclusion, as shown in Figure

10.

We denote the set of oscillating tableaux of length 2n by OT (n). More generally, the set

of all walks of Young’s lattice of length l that start with ∅ and end with some tableau λ are

denoted by OT (λ, l). Perfect matchings of order n are in bijection with oscillating tableaux

of length 2n. An explicit bijection is given in [9], and this relationship is also illustrated in

Figure 11.

A matching’s corresponding oscillating tableaux is created in the following manner. Es-

sentially, we add a square to the tableau at the beginning of an arc, and we take away a

square at the end of an arc. We label the ends of the arcs from left to right with 1̄, 2̄, 3̄,...,n̄

and label the beginnings of the arcs with the corresponding number that they are connected
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Figure 10: Young’s Lattice

to, with 1, 2, 3, ..., n. When we add a square at the beginning of an arc, we can only place

numbers in order, from least to greatest from top to bottom and left to right. When we take

away a square at the end of an arc, we shuffle the rest of the squares such that they remain

in order from least to greatest from top to bottom and left to right. For example, an arc

diagram and its corresponding tableau is shown in Figure 12.

Figure 11: Matching and Corresponding Tableau

Definition 7. The weight of a partition is the number of squares it contains. The weight of

a tableau T ∈ OT (n) is the sum of the weights of all its partitions. We denote it by wt(T ).

For example, the size of the partitions in Figure 11 are, from left to right, 0, 1, 2, 3, 2, 1, 0,

and wt(T ) = 9. We can then relate weights of oscillating tableaux to the Dyck path area of

their corresponding matching.

12



Figure 12: Positioning of squares in tableaux

Figure 13: Weights of a Dyck path

Theorem 1. For all T ∈ OT (n), wt(T ) = AM + n.

Proof. We approach this proof in a manner similar to that used in the proof of Lemma 2.

For Dyck paths of order n, similar to the one in Figure 13, the weights of the oscillating

tableaux are always alternating 0’s and 1’s, starting with 0, ending with 0, and summing to

n. Every time we take the opposite of an inversion or take a down-up sequence and change it

into an up-down sequence, we increase AM by 2. The total weight of the oscillating tableau

also increases by 2, because a down-step is replaced by an up-step. Since we are adding a

square instead of taking one away, wt(T ) increases by 2. The total weight is the least when

it resembles Figure 13 and slowly increases as we increase the peak. Because AM and wt(T )

increase at the same rate, wt(T ) = n+ AM
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Corollary 2. For all T ∈ OT (n) and matchings that correspond to the tableau, we have

MT , wt(T ) = n2 − 2al(MT ).

Proof. This corollary follows directly from Theorems 1 and 2.

Thus, the average weight of all T ∈ OT (n) is n2 − 2avgal(PM(n)) = n(2n+1)
3

, where

avgal(PM(n)) refers to the average number of alignments across perfect matchings. We can

also find the average weight of all T ∈ OT (λ, l). Table 1, which was computed using Sage,

suggests that a clean formula for this average may exist. We use the theory of differential

posets, developed by Richard P. Stanley. Accordingly, we use the linear operators, U and D,

defined in Stanley’s book [10].

Definition 8. We write µ l ν to mean that ν covers µ in Young’s lattice; in other words,

we write µlν when ν is obtained from µ by adding a box. Let V be the vector space of linear

combinations of partitions. Define two linear operators U,D : V → V by

U(µ) :=
∑
µlν

ν

and

D(µ) :=
∑
νlµ

ν

.

Let λ be a partition of size k, and let θ := OT (λ, k+ 2n). Additionally, let [λ] denote the

coefficient of λ of some expression. We find the number of ways to reach λ from ∅ by using

a method similar to generating functions by looking at [λ](U +D)l · ∅.

We define integers bij(l) by

(U +D)l =
∑
ij

bijU
iDj
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and

cij(l) :=
d

dy
(xi−jqij(l)),

where polynomials qij(l) are defined by

(yxd/dxxU + yxd/dxx−1D)l =
∑
ij

xi−jqij(l)U
iDj.

HHH
HHHk

n
0 1 2 3 4 5 n

0 0 1 10/3 7 12 55/3 n(2n+1)
3

1 1 10/3 7 12 55/3 (n+1)(2n+3)
3

2 3 20/3 35/3 18 77/3 (n+3)(2n+3)
3

3 6 11 52/3 25 (n+2)(2n+9)
3

4 10 49/3 24 33 (n+6)(2n+5)
3

5 15 68/3 95/3 (n+3)(2n+15)
3

6 21 30 121/3 (n+9)(2n+7)
3

k even
(n+ 3

2
k)(2n+k+1)

3

k odd
(n+ k+1

2
)(2n+3k)

3

Table 1: Average weight of T ∈ OT (λ, 2n+ k)

Ultimately, we find a closed-form formula for the average weight of all tableaux. Before

we can prove the formula, we must first prove the following three lemmas.

Lemma 5. For all T ∈ OT (n), avgwt(T ) = ck0(2n+k)
bk0(2n+k)

, where avgwt(T ) is the average weight

of all T ∈ OT (n).

Proof. We note that

avgwt(T ) =

∑
T∈θ wt(T )

|θ|
.

We already have |θ| = [λ](U +D)2n+k · ∅ from [10]. From (U +D)l =
∑
bij(l)U

iDj, we can
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simplify that expression to obtain

[λ](U +D)2n+k · ∅ =
∑
i,j

bij(2n+ k)[λ]U iDj · ∅

= bk0(2n+ k)[λ]Uk · ∅.

The last line follows because any positive power of D applied to ∅ returns 0.

We claim that

∑
T∈∅

wt(T ) = [λ]
d

dy
(yxd/dxxU + yxd/dxx−1D)k+2n |x=1,y=1 ·∅,

where x keeps track of the size of the partition, and y keeps track of the weight of the path.

This expression can be simplified using (yxd/dxxU + yxd/dxx−1D)l =
∑

i,j x
i−jqij(l)U

iDj and

cij = d
dy

(xi−jqij(l)) |x=1,y=1:

∑
T∈∅

wt(T ) = [λ]
d

dy
(yxd/dxxU + yxd/dxx−1D)k+2n |x=1,y=1 ·∅

= [λ]
d

dy
(
∑
i,j

xi−jqij(l)U
iDj) |x=1,y=1 ·∅

=
∑
i,j

d

dy
(xi−jqij(l)) |x=1,y=1 U

iDj[λ] · ∅

=
∑
i,j

cij(2n+ k)[λ]U iDj · ∅

= ck0(2n+ k)[λ]Uk · ∅.

Again, the last line follows from the fact that any positive power of D applied to ∅ returns

0. Thus, avgwt(T ) =
∑
T∈θ wt(T )

θ
= ck0(2n+k)

bk0(2n+k)
.
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Lemma 6. For all polynomials qij(l),

qij(l + 1) = yi−j(qi−1j(l) + qij−1(l) + qi+1j(l)(i+ 1)).

Proof.

∑
i,j

xi−jqij(l + 1)U iDj = (yxd/dxxU + yxd/dxx−1D)l+1

= (yxd/dxxU + yxd/dxx−1D)(yxd/dxxU + yxd/dxx−1D)l

= (yxd/dxxU + yxd/dxx−1D)
∑
i,j

xi−jqij(l)U
iDj

=
∑
i,j

yxd/dxxi−j+1qij(l)U
i+1Dj + yxd/dxxi−j−1qij(l)DU

iDj.

Using yxd/dxxn = xnyn and the fact from [10] that DU i = U iD + iU i−1, we obtain

∑
i,j

yxd/dxxi−j+1qij(l)U
i+1Dj + yxd/dxxi−j−1qij(l)DU

iDj

=
∑
i,j

xi−j+1yi−j+1qij(l)U
i+1Dj +

∑
i,j

xi−j−1yi−j−1qij(l)U
iDj+1 +

∑
i,j

xi−j−1yi−j−1qij(l)iU
i−1Dj

=
∑
i′−1,j

xi
′−jyi

′−jqi−1j(l)U
i′Dj +

∑
i,j′−1

xi−j
′
yi−j

′
qij′−1(l)U

iDj′ +
∑
i′+1,j

xi
′−jyi

′−jqi′+1j(l)(i
′ + 1)U i′Dj.

Since the coefficients of U iDj must be equal on both sides, we have

qij(l + 1) = yi−j(qi−1j(l) + qij−1(l) + qi+1j(l)(i+ 1)).

Lemma 7. For all constants ci0(l) and bi0(l),

ci0(l + 1) = ibi−10(l) + ibi+10(l)(i+ 1) + ci−10(l) + ci+10(l)(i+ 1).
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Proof. From

qij(l + 1) = yi−j(qi−1j(l) + qij−1(l) + qi+1j(l)(i+ 1)),

we can set j = 0. The middle term cancels out because qi0 = 0 and we obtain

qi0(l + 1) = yi(qi−10(l) + qij−1(l) + qi+10(l)(i+ 1)).

Taking the derivative of both sides, the equation becomes

ci0(l + 1) = iyi−1qi−10(l) + iyi−1qi+10(l)(i+ 1) + yici−10(l) + yici+10(l)(i+ 1) |y=1

= ibi−10(l) + ibi+10(l)(i+ 1) + ci−10(l) + ci+10(l)(i+ 1)

as desired.

Now that we have the necessary equations, we can proceed to prove the closed-form

formula for the average weight of all tableaux.

Theorem 3. For all T ∈ OT (n), avgwt(T ) = 1
6
(3k2 + 8kn + 3k + 4n2 + 2n) over all

OT (λ, k + 2n).

Proof. First, we substitute in i = k and l = 2n + k into Lemma 6, where |λ| = k and n is

some positive integer used to keep the parity of i and l the same. We rewrite this expression

in terms of bij(l) using avgwt(T ) = ck0(2n+k)
bk0(2n+k)

from Lemma 4. Note that 1
6
(3k2+8kn+4n2+2n)

is also equal to (n+ 3k
2

)(2n+ k + 1)3 and to (n+ k+1
2

)(2n+ 3k)3.

On the right side (RHS), we obtain

ck0(2n+ k) = bk0(2n+ k)
(n+ 3

2
k)(2n+ k + 1)

3

=
1

6
(3k2 + 8kn+ 3k + 4n2 + 2n)bk0(2n+ k).
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On the left side (LHS) obtain

kbk−10(2n+ k − 1) + kbk+10(2n+ k − 1)(k + 1) + bk−10(2n+ k − 1)
(n+ k

2
)(2n+ 3k − 3)

3

+ bk+10(2n+ k − 1)(k + 1)
(n− 1 + k+2

2
)(2n+ 3k + 1)

3
.

We group like terms and obtain

bk−10(2n− k − 1)(k +
(n+ k

2
)(2n+ 3k − 3)

3

+ bk+10(2n+ k − 1)(k + 1)(k +
(n− 1 + k+2

2
)(2n+ 3k + 1)

3

=
1

6
(3k2 + 8kn+ 3k + 4n2 − 6n)bk−10(2n+ k − 1)

+
1

6
(3k2 + 8kn+ 7k + 4n2 + 2n)(k + 1)bk+10(2n+ k − 1)

= (
1

6
(3k2 + 8kn+ 3k + 4n2 + 2n)− 8

6
n)bk−10(2n+ k − 1)

+ (
1

6
(3k2 + 8kn+ 3k + 4n2 + 2n) +

2

3
k)(k + 1)bk+10(2n+ k − 1)

=
1

6
(3k2 + 8kn+ 3k + 4n2 + 2n)(bk−10(2n− k − 1)

+ (k + 1)bk+10(2n+ k − 1))− (
4

3
nbk−10(2n− k − 1)

− 2

3
k(k + 1)bk+10(2n+ k − 1)).

We also know that bk−10(2n− k − 1) + (k + 1)bk+10(2n+ k − 1) = bk0(2n+ k) from [10],

so the equation simplifies even further to

1

6
(3k2 + 8kn+ 3k + 4n2 + 2n)(bk0(2n+ k))

− (
4

3
nbk−10(2n− k − 1)− 2

3
k(k + 1)bk+10(2n+ k − 1))

= ck0(2n+ k)− (
4

3
nbk−10(2n− k − 1)

− 2

3
k(k + 1)bk+10(2n+ k − 1)).
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Moreover, from [10], bi0(l) =
(
l
i

)
(l − i − 1)!!. Applying that to the last term of our

expression, we get

4

3
nbk−10(2n− k − 1)− 2

3
k(k + 1)bk+10(2n+ k − 1)

=
2

3
(k(k + 1)

(
2n+ k − 1

k + 1

)
(2n− 3)!!− 2n

(
2n+ k − 1

k − 1

)
(2n− 1)!!)

=
2

3
(2n− 3)!!(k(k + 1)

(
2n+ k − 1

k + 1

)
− 2n

(
2n+ k − 1

k − 1

)
(2n− 1)).

After some computer-assisted calculation, we find that it indeed equals 0. Since c00(0) = 0,

which agrees with our formula for the average, we are done by induction

The existence of this theorem suggests that homomesy may exist for oscillating tableaux

of arbitrary shape, because of the small denominator of 3.

7 Conclusion and Open Problem

We have shown the possibility of the existence of a function that exhibits homomesy in

perfect matchings and oscillating tableaux. In addition, we introduced an inductive approach

to constructing a homomesic group action. Despite the existence of counterexamples, this

approach shows potential for further refinement. For oscillating tableaux, we obtained the

average that will be conserved if the function exists.

In the future, we hope to find a more detailed algorithm to find triples of alignment num-

bers. We conjecture that the homomesic group action can be found for oscillating tableaux.
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