
Vector Parking Functions and Tree Inversions

Petar Gaydarov

under the direction of
Mr. Samuel Hopkins,

Dr. Pavel Etingof
Math Department, MIT

Research Science Institute

Abstract

We find a depth-first search version of Dhar’s burning algorithm that gives

a bijection between the parking functions of a multigraph and its spanning

trees. Thus we extend a result by Perkinson, Yang and Yu in response to

a problem posed by Stanley. We also find another variant of this algorithm

which gives a bijection between vector parking functions and labeled spanning

trees closely related to the rooted planar trees. Both bijections have the goal

of establishing a relation between the degree of a parking function, the κ-

statistic for inversions, and the edge labelling of a tree. In addition, we find

intriguing formulas for the number of vector parking functions in a special

case of particular interest.

1

Summary

Parking functions were first introduced in this way: There are n parking

spots ordered in a one-way street and n cars which want to park. Each car

prefers a spot and drives until reaching it and parks there if it is empty. If it

is already taken, the car parks in the next available parking spot down the

street. If all the cars can park we have parking function.

Imagine now a garage with a different number of parking spots on each of

its n levels and n cars which want to park. Again, each car has a preference. A

car drives up the levels until the level of its spot and parks there. If a parking

spot is already taken on that level, the car parks in the next empty level.

Cars cannot go down. If all cars can park the sequence of their preferences

is a generalized parking function.

Parking functions and generalized parking functions are related to a math-

ematical object called spanning trees. So far, only for parking functions, this

connection gives a certain relation between the statistics of the two objects.

In this paper we find a way to establish a similar relation for the generalized

parking functions.

2

1 Introduction

Parking functions were first defined in terms of a problem related to parking

cars by Konheim and Weiss [1]. Imagine that n parking spots labeled 0

through n − 1 are arranged in order on a linear street. Cars C1, . . . , Cn

approach the spaces in ascending order starting at spot 0. Car Ci prefers

spot ai, which means that the car Ci will drive until reaching the spot ai

and park there if it is unoccupied. If the spot ai is occupied Ci will continue

driving until reaching an unoccupied spot and park in this unoccupied spot.

If the spot ai and all the spots after it are occupied, then the car Ci cannot

park. A parking function of length n is a sequence (a1, . . . , an) of parking

preferences so that all the cars can park.

Despite the easy way of defining them parking functions have numerous

applications in several areas of mathematics including the theory of diagonal

harmonics [2], the study of hyperplane arrangements [3, 4, 5, 6] and graph

theory.

An important result connecting graph theory objects and parking func-

tions is derived from Cayley’s formula. It states that the number of labeled

spanning trees on n+1 vertices is (n+1)n−1, which is the same as the number

of parking functions of length n. Another connection between labeled span-

ning trees and parking functions was established by Kreweras [7]. He proved

that there is a relation between the degree of parking functions, which is the

sum of its entries, and the number of inversions in a labeled spanning tree.

3

Since Kreweras’ method was not bijective Stanley [3] posed the problem of

finding a bijective proof. Recently a bijective proof was found by Perkin-

son, Yang and Yu [8] and they generalized it for the setting of graph parking

functions.

Graph parking function were first given that name by Postnikov and

Shapiro [5] but have existed for longer under the names superstable config-

urations in the abelian sandpile model [9] and q-reduced divisors in discrete

Riemann-Roch theory [10]. The bijection of Perkinson, Yang and Yu gives a

relation between the degree of graph parking functions and the κ-inversions

(a generalized inversion number defined by Gessel [11]) in the spanning trees

for simple graphs. Their proof uses a depth-first search (DFS) variant of

Dhar’s burning algorithm.

Another generalization of parking functions goes under the names gen-

eralized parking functions or vector parking functions. The latter reflect the

fact that vector parking functions depend on the choice of a nonnegative

vector. In terms of parking, we can imagine vector parking functions as the

preferences of cars parking in a leveled garage. Each level has a number of

parking spots equal to the entries in the vector. Vector parking functions can

also be defined in terms of horizontal strips [12, 13] and series of inequalities

[14]. An important special case of vector parking functions is the rational

parking functions [15, 16].

This paper deals with finding a bijection between vector parking functions

and spanning trees. We aim to find a similar to Kreweras’ connection between

4

the degree of a vector parking function and the number of inversions for

spanning trees. To find such a bijection, it turns out that we first need to

generalize the result of Perkinson, Yang and Yu to multigraphs.

To do so we extend the DFS-burning algorithm to multigraphs, thus

providing a bijection between the set of G-parking functions for a given

multigraph G and the set of its spanning trees. This bijection gives the

following relation between the degree of a G-parking function degP , the κ-

statistic (a generalization we introduce of the κ-inversions for multigraphs)

and a labelling of the edges ω(e) of a spanning tree T

degP + κ(G, T) +
∑
e∈T

ω(e) = g, (1)

where the genus is g = |E| − |V |+ 1.

We aim to find a similar relation for vector parking functions. We con-

struct the DFS-vector burning algorithm which gives a bijection between the

set of x-parking functions, where x is a vector, and a set of spanning trees

closely related to the rooted planar trees. In Lemma 4.3 we prove that the re-

sults we obtain using this algorithm can also be interpreted as graph parking

functions, thus, our first result still holds for vector parking functions.

In the Section 2 we provide the definitions for vector and graph parking

functions. In Section 3 we examine the relations between G-parking functions

and spanning trees of a multigraph G. We present the DFS-multiburning al-

gorithm and prove that it establishes a bijection with a relation between the

5

degree and the κ-statistic. In section 4 we consider the x-parking function

and their relation to rooted planar trees. We first present a vertex labelling

of the vertices of the rooted planar trees and the DFS-vector burning algo-

rithm. Then, we prove Lemma 4.3 which is crucial for our further results

as it links vector parking functions and graph parking functions. After that,

we prove a relation between the degree of a vector parking function and

the κ-inversions of a tree. We proceed by finding a formula for the num-

ber of vector parking functions in terms of rooted planar trees. Using this

result we prove a formula by Pitman and Stanley [14] in terms of classi-

cal parking functions. In Appendix A we present basic facts about parking

functions and graph theory. In Appendix B we list the DFS-burning algo-

rithm of Perkinson, Yang and Yu [8]. The vectors x = (a, b, b, . . . , b) and

x = (a, 0, . . . , 0︸ ︷︷ ︸
k

, a, 0, . . . , 0︸ ︷︷ ︸
k

, a, . . . , a, 0, . . . , 0︸ ︷︷ ︸
k−1

) are two special cases of particu-

lar interest and we examine them in the Appendix C and D.

6

2 Preliminaries

In this section we introduce definitions used throughout the paper.

Definition 2.1. An x-parking function for a vector of nonnegative integers

x = (x1, . . . , xn) is a sequence of nonnegative integers (a1, . . . , an) ∈ Nn

such that its weakly increasing rearrangement ai1 ≤ ai2 ≤ · · · ≤ ain satisfies

aij ≤
∑j

k=1 xk − 1.

We denote the set of x-parking functions of length n by PF(x). The

degree of an x-parking function α = (a1, . . . , an) is the sum of its elements

deg(α) =
∑n

i=1 ai.

Perkinson, Perlman and Wilmes [9] use the theory of sandpiles to define

a G-parking function for a connected sandpile graph G = (V,E, v0), where

V = {v0, v1, . . . , vn} is the set of vertices, E is the set of edges, and v0

is a vertex called sink. Each edge has a weight denoted by wt(e). For

simplicity we use these notations for every graph G unless it is specially

stated otherwise. The graph G can be a multigraph with directed edges, but

we only consider the case for undirected edges. For simplicity, when dealing

with multigraphs, we will think of the weight wt(e) of an edge as wt(e) edges

going between its endvertices.

Graph parking functions are closely related to sandpile configurations.

Definition 2.2. A sandpile configuration c =
∑
civi on G is an element of

ZṼ , the free Abelian group on Ṽ , where Ṽ = V/{v0}.

7

We can think of c as a pile of sand on nonsink vertices of G having ci

grains at vertex vi for each i = 1, . . . , n. Furthermore, we define an operation

on the configurations.

We can see an example of a sandpile configuration in Figure 1. The vertex

v0 is the sink. Vertices v1, v2, and v4 have 0 sand grains on them. The vertex

v3 has 4 sandgrains on it.

Figure 1: A sandpile configuration

Definition 2.3. Vertex-firing from a vertex vi is an operation on a config-

uration c of nonnegative integers which results in a new configuration c̃ of

nonnegative integers. It is given by c̃i = ci−deg vi and c̃j = cj + wt(vivj) for

each positive j 6= i.

When vi fires, we imagine wt(e) grains of sand traveling along each edge

e emanating from vi and being deposited at its other end vertex. If that

vertex is v0, then sand sent along e disappears down the sink.

An equivalent definition is listed in the Appendix.

We also define a similar operation on c. Instead of firing a specific vertex,

we can now fire a set of vertices.

8

Definition 2.4. Set-firing is an operation on a configuration c such that we

simultaneously perform vertex firing for a set of vertices as long as we obtain

a configuration c̃ of nonnegative integers.

As one can see vertex firing is actually a special case of set-firing for

sets of only one vertex. We call configurations on which set-firing cannot be

performed superstable. The idea of a G-parking function is essentially the

same as that of a superstable configuration.

Definition 2.5. A G-parking function is a function P : Ṽ → Z such that

the configuration given by ci = P(vi) for each i = 1, . . . , n is superstable.

In Figure 2 we see an example for a sandpile and set-firing. The vertex

with the star is the sink v0 and the numbers inside each nonsink vertex are

the numbers of sand grains. The hatched vertices are the ones that are being

fired. The last configuration is superstable because there is no set of vertices

that can be fired.

Figure 2: Set-firing and superstable configurations

9

3 DFS-Multiburning Algorithm

In this section we extend the DFS-burning algorithm (defined in the Ap-

pendix) to multigraphs and call it the DFS-multiburning algorithm.

We introduce a notation for the edge-labelling. Multiple edges between

the same vertices are labeled from 0 to wt(e)− 1 so that we can distinguish

between them. The edge with number l between vi and vj is denoted by

(vivj)l. We also introduce the edge number function.

Definition 3.1. The edge number function ω : E → Z is defined the follow-

ing way: for a given edge el the value of the function is ω(el) = l.

Given a G-parking function P on a finite multigraph G we obtain a span-

ning tree T of G by running the DFS-multiburning algorithm. At each step

of the algorithm a vertex is either deleted or added to the tree. If the vertex

is added to the tree then we say that the vertex is burnt.

DFS-multiburning algorithm

1: We start burning vertices from the sink v0.

2: We are currently at vertex vi.

3: If vi is connected to an unburnt vertex we choose the unburnt vertex

with the highest index connected to vi and the edge with the highest

number connecting the two vertices. Let these be vj and (vivj)l.

4: If vj has a positive number of grains we delete the edge (vivj)l

10

from the graph and remove 1 grain of sand from vj. We go back

to step 2 for vi.

5: If vj has no grains of sand we burn the edge (vivj)l and the vertex

vj. Then, we go to step 2 for vertex vj.

6: If vi is not connected to an unburnt vertex, then we go to step 2 for

the parent of vi.

7: We stop when we cannot burn any more vertices.

The main difference between the DFS-burning algorithm and the DFS-multiburning

algorithm is that we consider multiple edges and give priority to the edge as-

signed the highest index.

Figure 3: DFS-multiburning algorithm

We can see the DFS-multiburning algorithm working in Figure 3. At each

step we either burn or delete one of the edges of the graph. The vertex with

the star is the sink v0 and the numbers inside each nonsink vertex are the

11

numbers of sand grains. The orange vertices and edges are already burnt.

The dashed edges are already deleted.

We also present the inverse DFS-multiburning algorithm, which is a mod-

ified version of the inverse of the normal DFS-burning algorithm [8]. We start

with a spanning tree T of G and obtain a G-parking function P .

Inverse DFS-multiburning algorithm

1: We start burning vertices from the sink v0 with P(vi) = (0) for i = 1, . . . , n.

2: We are currently at vertex vi.

3: If vi is connected in G to an unburnt vertex we check the vertex with

the highest index vj and the edge (vivj)l with the highest number

between vi and vj.

4: If (vivj)l is not in T we add 1 to P(vj), delete the edge (vivj)l from

G and go to step 2 for vi.

5: If (vivj)l is in T we burn vj and the edge (vivj)l and go to step 2

for vj.

6: If vi is not connected in G to an unburnt vertex we go to step 2 for

the parent of vi.

7: We stop when we cannot burn any more vertices.

It is straightforward to see that this algorithm is inverse to the DFS-multiburning

algorithm.

12

We prove that the DFS-multiburning algorithm describes a bijection be-

tween the set of G-parking functions PF(G) and the set of spanning trees

SPT(G) of G.

Theorem 3.2. The DFS-multiburning algorithm induces a bijection φmulti :

PF(G) → SPT(G) between the set of G-parking functions and the set of

spanning trees of G.

Proof. We need to prove that φmulti is injective, surjective and well-

defined.

When we run the algorithm it only burns edges between a burnt and an

unburnt vertex, hence, there cannot be a cycle of burnt vertices — so we

obtain a tree.

Suppose that the result of the algorithm is not a spanning tree, which

means that not all of the vertices are burnt. Let S be the set of all l

vertices which are not burnt. Without loss of generality, let those vertices

be v1, . . . , vl. The edges from the vertices in S to the vertices in G/S are

not burnt. However, all the vertices in G/S are burnt, so these edges are

deleted. This means that each vertex has at least as many sand grains, so

ai ≥ degG/S(vi) for each i = 1, . . . , l, where degG(vi) denotes the number of

edges between a vertex vi and the vertices in the graph G. But this means the

set S can be fired, so the configuration is not superstable — a contradiction.

Suppose that φmulti is not surjective. This means that when we use the

inverse of the DFS-multiburning algorithm we do not obtain a superstable

configuration. This means that there is a set S that can be fired. Let vs be the

13

first burnt vertex from S. Then its degree for G/S is equal to as+1, because

we have deleted as edges and burnt one more. But then degG/S vs > as, so

S cannot be fired — a contradiction.

Suppose φmulti is not injective. Then there are two G-parking functions

P1 and P2 that correspond to the same spanning tree. First, assume that

the DFS-multiburning algorithm follows the same steps for both G-parking

functions. We prove by induction on the number of burnt vertices that then

P1(vi) = P2(vi) for each i = 1, . . . , n.

Base case. Perkinson, Wilmes and Perlman define the sink to have −1

sand grains [9]. We always start from the sink v0, so P1(v0) = P2(v0) = −1.

Assumption. By wi we denote the ith burnt vertex. We assume that

P1(wi) = P2(wi) for each i = 1, . . . , t.

Indunctive step. We now prove that P1(wt+1) = P2(wt+1). We have

deleted the same number of edges between burnt vertices and wt+1 for both

P1 and P2. Since we choose the same edge, the edges we delete on this step

are also the same. But this means that the number of sand grains on wt+1 is

the same for P1 and P2. This completes the last induction step.

So if P1 and P2 are different, then the order in which we burn the edges

and vertices is different. Suppose that with different order of burning we still

have the same spanning trees. Let the edge e be the first edge in which the

DFS-multiburning algorithm differs for P1 and P2. Since e is the first such

edge, all previous actions are the same. Therefore the algorithms for both

G-parking functions will perform an action with e. However, there are only

14

two options — it can be burnt or deleted. Without loss of generality let e be

burnt for P1 and deleted for P2. But then the edge can no longer be burnt

for P2 so it cannot be the same spanning tree — a contradiction.

The DFS-multiburning algorithm induces a relation between inversions,

edge weights and degree of a parking function. We extend the definition of

a κ-inversions to a multigraph.

Definition 3.3. The κ-statistic is equal to

κ(G, T) =
∑
(vi,vj)

wt(vivl),

where (vi, vj) is an inversion and vl is vj’s parent.

The DFS-multiburning algorithm induces a relation between the degree

of a G-parking function and the κ-statistic. It is closely related to Kreweras’

results [7].

Theorem 3.4. Let P be a G-parking function and T = φmulti(P) the corre-

sponding tree. Then

degP + κ(G, T) +
∑
e∈T

ω(e) = g, (2)

where g = |E| − |V |+ 1 is the genus of the graph G.

Proof. To prove Theorem 3.4 we count the number of edges. The genus

15

g is equal to |E| − |V |+ 1, so we can rewrite (2) in the following way

degP +
∑

(vi,vj)vl

wt(vivl) +
∑
e∈T

ω(e) + |V | − 1 = |E|.

The number of burnt edges equals |V | − 1 since the spanning tree is on

|V | vertices.

The number of deleted edges equals degP since we delete one edge for

each sand grain.

The sum over all the labellings of the edges in the spanning tree is the

number of edges which were not deleted, because another edge between the

same two end vertices was burnt. This is true since the DFS-multiburning

algorithm always goes to the edge with the highest index.

The κ-statistic is the sum over all the inversions. This represents the

number of edges which were not deleted because the DFS-multiburning al-

gorithm always goes to the vertex with the highest index. Let (vi, vj) be

an inversion and vl be vj’s parent. Then, when we burnt the vertex vj, we

did not burn the edges between vi and vl because j > i. In case we come

back to vl at one point to run the DFS-multiburning algorithm, we no longer

consider the edges between vl and vi because vi is already burnt. So we do

not delete or burn these edges. Thus, each such inversion corresponds to

wt(vivl) edges. We use the same reasoning to see that for every undeleted

weighted edge, there is an inversion in the tree.

These are the four types of edges — burnt, deleted, undeleted with a burnt

16

edge between its end vertices and undeleted without a burnt edge between

its end vertices. Therefore, when we sum them, we obtain the total number

of edges.

Hence, for a parking function P of any graph G the DFS-multiburning

algorithm gives a corresponding spanning tree φmulti(P) of G. Given the

graph G and the corresponding spanning tree, we can also find the degree of

a parking function P using equation (2).

We can also express Theorem 3.4 in terms of polynomials. To do so, we

need to define a few notations. The codegree of a G-parking function P is

codeg(P) = g−deg(P). We also use the notation [a]q = 1+q+q2+· · ·+qa−1.

Corollary 3.5. For a given multigraph G the following equality holds true

∑
P∈PF(G)

qcodeg(P) =
∑

T∈SPT(G∗)

(
qκ(G,T)

∑
e∈T

[wtG(e)]q

)
,

where G∗ has the same vertex and edge set as G but the weight of all its edges

equals 1.

Proof. The sum over the spanning trees of G∗ is simply an easier way to

write down the spanning trees of G. By definition the codegree is the degree

subtracted from the genus. The rest follows directly from Theorem 3.4.

17

4 DFS-Vector Burning Algorithm

After finding a connection between G-parking functions and spanning trees

our goal is to examine the x-parking functions. Here we present a bijection

between the set of x-parking functions for a given nonnegative vector x and

the set of specific type of spanning trees related to the rooted planar trees.

Figure 4: Rooted planar trees on 4 vertices

Definition 4.1. Rooted planar trees are trees on the vertex set {w0, w1, . . . , wn}

with root w0 such that there do not exist vertices wh, wi, wj and wk with

h < i < j < k such that both whwk and wiwj are edges, and such that

vertices in every path from the root are in an increasing order.

One can think about the rooted planar trees as trees embedded in the

plane. The method of labelling the vertices may seem strange at first but

it represents the way we choose the vertices for the DFS-burning algorithm.

Let denote the set of rooted planar trees on n vertices by RTP(n). In Figure

4 we present the rooted planar trees on 4 vertices with w-labelling.

We introduce a labelling of the vertices of the rooted planar trees. The

vertex w0 is now labeled (w0, v0). Each vertex wi is now labeled (wi, vπ(i)) for

18

any permutation π of the first n integers obeying Rule 1 : If wi and wj have

the same parent and i < j, then π(i) > π(j). An example of this labelling is

given in Figure 5.

Figure 5: Rooted planar trees with (w, v)-labelling

When we consider only the first part of the pair (wi, vπ(i)) for all vertices

of a graph, we will refer to it as w-labelling of the graph and a w-labeled

graph. When we only consider the second part of the pair (wi, vπ(i)) for all

the vertices of a graph, we will refer to it as v-labelling of the graph and a

v-labeled graph. We can see an example of w-labelling in Figure 4 and an

example of v-labelling in Figure 6.

After labelling the vertices we make multiple edges between the already

19

Figure 6: v-labeled rooted planar trees on 4 vertices

connected vertices. Let wiwj be an edge in the tree T . Then, the weight of

the edge equals xmin(i,j)+1. The edges are labeled from 0 to xmin(i,j)+1 − 1.

We choose one edge of each set of multiple edges between the same vertices

and thus we obtain trees with labeled edges.

Definition 4.2. The x-graph Gx = (Vx, Ex) has the vertex set Vx = {w0, w1, . . . , wn}

and edges wiwj with weight xmin(i,j)+1.

The spanning trees of the graph Gx which are labeled according to the

rules for the w and v labellings and the trees with labeled edges are essentially

the same concepts. We denote the set of such labeled spanning trees of Gx

20

by LST(Gx).

We prove that there is a bijection between LST(Gx), the set of labeled

spanning trees of Gx and the set of x-parking functions.

But first we need to introduce our algorithm for x-parking functions —

the DFS-vector burning algorithm.

DFS-vector burning algorithm

for an x-parking function α = (a1, a2, . . . , an), where x = (x1, . . . , xn)

1: We start with a set of vertices V = {v0, v1, . . . , vn} and no edges between

them.

2: We assign ai grains of sand to the vertex vi. The vertex v0 is the sink.

3: We start burning vertices from the sink v0. We label it w0.

4: We are currently at vertex vi.

5: If vi is the sth burnt vertex we label this vertex ws.

6: We construct edges towards each unburnt vertex with weight xs+1.

7: If vi is connected to an unburnt vertex we choose the unburnt vertex

with the highest index connected to vi and the edge with the highest

number connecting the two vertices. Let these be vj and (vivj)l.

8: If vj has a positive number of grains we delete the edge (vivj)l

from the graph and remove 1 grain of sand from vj. We go back

to step 2 for vi.

9: If vj has no grains of sand we burn the edge (vivj)l and the vertex

21

vj. Then, we go to step 2 for vertex vj.

10: If vi is not connected to an unburnt vertex, then we go to step 2 for

the parent of vi.

11: We stop when we cannot burn any more vertices.

The main difference between the DFS-multiburning algorithm and the DFS-

vector burning algorithm is that we simultaneously construct the graph and

its spanning tree. We also have another type of labelling which corresponds

to the order in which vertices are burnt.

We can see the DFS-vector burning algorithm working in Figure 7. At

each step we create edges or burn or delete the already created edges of the

graph. The vertex with the star is the sink v0 and the numbers inside each

nonsink vertex are the numbers of sand grains. The orange vertices and edges

are already burnt. The dashed edges are already deleted.

Figure 7: DFS-vector burning algorithm for x = (1, 2, 1)

When we consider the w-labelling we have only one graph we examine

22

and a well-defined set of its spanning trees. However, we run the DFS-vector

burning algorithm with respect to the v-labelling and hence the results about

the degree and the κ-statistic are not true for the w-labelling. When we con-

sider the v-labelling we obtain a wide variety of multigraphs and only a part

of their spanning trees correspond to the x-parking functions. However, since

we run the DFS-vector burning algorithm with respect to the v-labelling, the

results proven for the G-parking functions still hold for the v-labeled graph

we obtain. Let Gα denote the v-labeled graph obtained by the algorithm for

an x-parking function α.

Lemma 4.3. For an x-parking function α = (a1, . . . , an) and the v-labeled

graph Gα the function P : Ṽ → Z given by P(vi) = ai for all nonsink vertices

vi of G is a G-parking function.

Proof. As in Theorem 3.2 it is easy to see that we obtain a tree.

Suppose that the last vertex the algorithm burns is wt (we still consider

only the v-labelling but use the w-labelling so that we can more easily refer

to the tth burn vertex). This means that all edges are either burnt or deleted.

The number of all edges connecting a burnt vertex to the unburnt vertices

is
∑t

i=0 xi+1. But if all these edges are deleted, this means that the values

of α which correspond to the unburnt vertices are all greater or equal to∑t
i=0 xi+1. However, the inequalities for the x-parking functions state that

there must be t + 1 values for which ai <
∑t

i=0 xi+1 — a contradiction.

Therefore, all the vertices are burnt.

23

Now suppose that we do not obtain a superstable configuration. This

means that there is a set S with l vertices that can be fired. Let vs be the

first vertex from S to be burnt using the DFS-vector burning algorithm. Then

the number of sandgrains on it is as = degG/S(vs) − 1 because we delete as

edges and burn 1. Therefore, the set S cannot be fired — a contradiction.

Lemma 4.3 gives us the chance to consider the x-parking functions as

G-parking functions. Therefore, the statement of Theorem 3.4 holds for the

x-parking functions as well.

We also present the inverse of the DFS-vector burning algorithm.

Inverse of the DFS-vector burning algorithm for an x-parking function

1: We start with a labeled spanning tree of Gx.

2: We run the inverse of the DFS-multiburning algorithm with respect to

the v-labelling.

Theorem 4.4. The DFS-vector burning algorithm induces a bijection Φ :

PF(x) → LST(Gx) between the set of x-parking functions and the set of

labeled spanning trees of Gx.

Proof. We need to prove that the function Φ is surjective, injective and

well-defined.

From Lemma 4.3 and the proof of Theorem 3.2 it follows that the codomain

of Φ includes only spanning trees of Gx.

24

Since the DFS-vector burning algorithm first goes to the vertex with

the highest index and the w-labelling corresponds to the order in which the

vertices are burnt, the condition is satisfied. Therefore, the function is well-

defined.

From Lemma 4.3 and the proof of Theorem 3.2 it follows that the function

is injective as well.

Suppose Φ is not surjective. Then, when we run the inverse of the DFS-

vector burning algorithm on a labeled spanning tree we obtain a sequence

of numbers which is not an x-parking function. The inequalities for the x-

parking functions imply that there are l numbers is the sequence we obtained,

which are greater or equal to
∑l

i=1 xi. Now we run the DFS-vector burning

algorithm for the sequence we obtained. The condition means that there is

a set S of l vertices having at least
∑l

i=1 xi sand grains on each of them.

The number of edges between the vertices in G/S and every vertex in S is

exaclty
∑l

i=1 xi, which means that these vertices will not be burnt. However

we started with a spanning tree — a contradiction.

Theorem 4.5. For a given nonnegative vector x the following equality holds

true

∑
α∈PF(x)

qcodeg(α) =
∑

T∈RPT(n+1)

(∑
e∈T

[wt(e)]q

)∑
l(G∗

x)

qκ(T,l(G
∗
x))

 , (3)

where the last sum is over all the v-labellings l(G∗x) of the graph Gx.

Proof. Lemma 4.3 allows us to use Corollary 3.5. According to it for a

25

given v-labelling l(G∗x) of a given rooted planar tree we have

∑
α

qcodeg(α) = qκ(T,l(G
∗
x))
∑
e∈T

[wt(e)]q

for all α which correspond to the given spanning tree of l(G∗x) with the given

v-labelling. We notice that in Corollary 3.5 the sum is over all of the parking

functions which correspond to all of the spanning trees of G∗. However, as

seen from the proof of Theorem 3.4 we have equality for the sum, because

we have equality for every element of the sum.

Now we sum over all the labellings of the graph Gx. We obtain

∑
α

qcodeg(α) =
∑
l(G∗

x)

(
qκ(T,l(G

∗
x))
∑
e∈T

[wt(e)]q

)
=

(∑
e∈T

[wt(e)]q

)∑
l(G∗

x)

qκ(T,l(G
∗
x))

for all α which correspond to the given spanning tree. Now we sum over all

the rooted planar trees and obtain the desired result.

Using (3) we also count the number of x-parking functions.

Corollary 4.6. The number of x-parking functions for x = (x1, . . . , xn)

expressed in terms of w-labeled rooted planar trees is

n!
∑

T∈RPT(n+1)

(
n−1∏
i=0

(
x
ddegT (wi)
i+1

ddegT (wi)!

))
,

where the downdegree function ddegT (wi) gives the number of edges not con-

necting wi to its parent in T .

26

Proof. We input q = 1 in Theorem 4.5 and obtain

#x-parking functions =
∑

T∈RPT(n+1)

(∏
e∈T

(
wt(e)

)(
v-labellings of Gx

))
.

For a given tree T the weight of its edges can be expressed in terms of

the elements of x. For a vertex wi the number of edges with weight xi+1 is

equal to the downdegree ddeg(wi). Therefore, we obtain the formula

#x-parking functions =
∑

T∈RPT(n+1)

(
n−1∏
i=0

(
x
ddegT (wi)
i+1

)(
v-labellings of Gx

))
.

(4)

If we do not consider Rule 1 the number of v-labellings for a given tree

T is the number of permutations which is n!. If wi has ddeg(wi) children,

they can only be labeled in one way due to Rule 1. This means the number

of ways is reduced ddeg(wi)! times for each wi. We substitute this in (4) and

obtain

#x-parking functions =
∑

T∈RPT(n+1)

(
n−1∏
i=0

(
x
ddegT (wi)
i+1

) n−1∏
i=0

(
ddegT (wi)!

))
,

which is the desired result.

Pitman and Stanley [14] derive a different formula for the number of x-

parking functions dependent on the classical parking functions and the values

of xi.

Theorem 4.7. (Pitman and Stanley [14]) The number of x-parking functions

27

for a nonnegative vector x = (x1, . . . , xn) is

∑
(a1,...,an)

xa1+1 . . . xan+1

summed over all classical parking functions (a1, . . . , an).

We prove that Corollary 4.6 and Theorem 4.7 give the same results. Be-

fore we present our proof of Theorem 4.7 we define two functions.

Definition 4.8. For a w-labelling of a tree the parent function pw : V → Z

for a nonroot vertex vi is the index of its parent in the w-labelling.

Definition 4.9. The function p : LST(G(1,...,1))→ Zn is given by the follow-

ing: when the parent function gives values pw(vi) = ai for i = 1, . . . , n, the

function p is given by p(T) = (a1, . . . , an).

The following Lemma is crucial for the proof of Theorem 4.7.

Lemma 4.10. The function p : LST(G(1,...,1))→ Zn gives a bijection between

the set of labeled rooted planar trees on n+ 1 vertices without weighted edges

and the set of parking functions of length n.

Proof. It is clear that p is injective. We first prove that p is well-defined.

The vertex w1 is connected to w0. Therefore, pw(vπ(1)) = 0. The vertex w2

is connected to either w0 or w1. Therefore, pw(vπ(2)) ≤ 1. The vertex w3 is

connected to one of w0, w1, or w2. Therefore, pw(vπ(3)) ≤ 2. We continue by

induction to show that pw(vπ(n)) ≤ n− 1. The function is well-defined.

28

It is clear that given a parking function, we can construct a tree corre-

sponding to it. We start from w0. We construct all the vertices for which

pw(vi) = 0. Since they have the same parent, there is only one possible

w-labelling due to Rule 1. Then we choose one of the vertices wk we ob-

tained and construct all the vertices for which pw(vi) = k. We continue by

induction. Hence, p is surjective as well.

Corollary 4.11. The bijection p : LST(G(1,...,1)) → Zn gives the relation

ddeg(wi−1) = m(ai) for all i = 1, . . . , n, where m(ai) denotes the number of

appearances of ai in the parking function α.

Proof of Theorem 4.7. We consider a nonnegative vector x = (x1, . . . , xn).

We take the labeled spanning trees of Gx. We put them at different classes

using the following rule: if two trees are the same labeled rooted planar trees

without considering the labelling of the edges we put them in the same class.

To count the number of x-parking functions we need to find the number

of labeled spanning trees in each class. Because different edges between

the same vertices give different trees, for each class the number of labeled

spanning trees increases wtGx(e) times for each edge. But as stated in the

proof of Corollary 4.6 this is exactly x
ddeg(wi)
i+1 . We need to express ddeg(wi)

in terms of the classical parking functions.

By Lemma 4.10 we know that each value of function p corresponds to a

classical parking function. We also know that the bijection p gives the relation

ddeg(wi−1) = m(ai) by Corollary 4.11. It is straightforward to see that an

alternative way to write the number of x-parking functions corresponding to

29

a classical parking function is

xa1+1 . . . xan+1,

by using the relation in Corollary 4.11. When we sum over all the classical

parking functions we obtain the desired result.

5 Conclusion

We have examined the connections between vector parking functions, graph

parking functions and spanning trees satisfying a certain relation between

the degree of a parking function and the κ-statistic of a tree, a generalized

inversion number. In the first part of the paper we extended the results of

Perkinson, Yang and Yu [8] to multigraphs as we found a bijection between

the set of graph parking functions and the set of spanning trees of this graph.

In the second part of the paper we found a bijection between the set of vector

parking functions and the set of labeled spanning trees of a specific graph.

This bijection is crucial in finding a relation between the degree of a vector

parking function and the κ-statistic of the trees we examine. We also found

a formula in terms of rooted planar trees for the number of vector parking

functions. Using this formula we proved another result about the number

of vector parking functions by Pitman and Stanley [14]. In the Appendix

we focused on some special cases of vector parking functions which are of

30

particular interest. These were the vector parking functions for the vectors

x = (a, b, b, . . . , b) and x = (a, 0, . . . , 0︸ ︷︷ ︸
k

, a, 0, . . . , 0︸ ︷︷ ︸
k

, a, . . . , a, 0, . . . , 0︸ ︷︷ ︸
k−1

).

6 Acknowledgments

I would like to thank my mentors Mr. Sam Hopkins and Dr. Pavel Etingof

for guiding me during my work on this paper. I would like to express my

gratitude towards my tutor Dr. John Rickert. I am also thankful for the

direction Dr. Tanya Khovanova has given me. I would like to thank Dr.

David Jerison. I would like express my gratitude towards Jenny Sendova,

Adam Sealfon, Bennett Amodio, Kati Velcheva, Stanislav Atanasov, Kalina

Petrova, Antoni Rangachev and Konstantin Delchev for the helpful discus-

sions about the paper. I am also thankful to Sts Cyril and Methodius Foun-

dation whose sponsorship allowed me to participate in RSI. I would also like

to express my gratitude towards RSI, MIT and CEE.

31

References

[1] A. G. Konheim and B. Weiss. An occupancy discipline and applications.
SIAM Journal on Applied Mathematics, 14(6):1266–1274, 1966.

[2] J. Haglund. The q, t-catalan numbers and the space of diagonal har-
monics. University Lecture Series, 41, 2008.

[3] R. P. Stanley. An introduction to hyperplane arrangements. In Lecture
notes, IAS/Park City Mathematics Institute. Citeseer, 2004.

[4] S. Hopkins and D. Perkinson. Bigraphical arrangements. arXiv preprint
arXiv:1212.4398, 2012.

[5] S. Hopkins and D. Perkinson. Orientations, semiorders, arrangements,
and parking functions. arXiv preprint arXiv:1112.5421, 2011.

[6] M. Beck, A. Berrizbeitia, M. Dairyko, C. Rodriguez, A. Ruiz, and
S. Veeneman. Parking functions, shi arrangements, and mixed graphs.
arXiv preprint arXiv:1405.5587, 2014.

[7] R. P. Stanley. Parking functions. http://www-
math.mit.edu/ rstan/trans.html, 1999.

[8] D. Perkinson, Q. Yang, and K. Yu. G-parking functions and tree inver-
sions. arXiv preprint arXiv:1309.2201, 2013.

[9] D. Perkinson, J. Perlman, and J. Wilmes. Primer for the algebraic
geometry of sandpiles. Technical report, 2011.

[10] M. Baker and S. Norine. Riemann–roch and abel–jacobi theory on a
finite graph. Advances in Mathematics, 215(2):766–788, 2007.

[11] I. M. Gessel. Enumerative applications of a decomposition for graphs
and digraphs. Discrete mathematics, 139(1):257–271, 1995.

[12] D. Chebikin and A. Postnikov. Generalized parking functions, descent
numbers, and chain polytopes of ribbon posets. Advances in Applied
Mathematics, 44(2):145–154, 2010.

[13] D. Armstrong and S.-P. Eu. Nonhomogeneous parking functions
and noncrossing partitions. the electronic journal of combinatorics,
15(1):R146, 2008.

32

[14] R. P. Stanley and J. Pitman. A polytope related to empirical distribu-
tions, plane trees, parking functions, and the associahedron. Discrete &
Computational Geometry, 27(4):603–602, 2002.

[15] D. Armstrong, N. A. Loehr, and G. S. Warrington. Rational parking
functions and catalan numbers. arXiv preprint arXiv:1403.1845, 2014.

[16] E. Gorsky, M. Mazin, and M. Vazirani. Affine permutations and rational
slope parking functions. arXiv preprint arXiv:1403.0303, 2014.

[17] C. H. Yan. Generalized parking functions, tree inversions, and multicol-
ored graphs. Advances in Applied Mathematics, 27(2):641–670, 2001.

33

A Definitions

In this section we introduce definitions and basic facts used throughout the

paper.

A.1 Classical Parking Functions

Definition A.1. A classical parking function of length n is a sequence of

nonnegative integers (a1, . . . , an) ∈ Nn such that its weakly increasing rear-

rangement ai1 ≤ ai2 ≤ · · · ≤ ain satisfies aij ≤ j − 1.

We denote the set of classical parking functions of length n by PF(n).

When presented in this way, it seems natural to generalize parking func-

tion by changing some of the parameters in the inequalities.

A.2 Graph Parking functions

We use the definitions of Perkinson, Perlman and Wilmes [9] for the abelian

sandpile model.

Definition A.2. The Laplacian ∆ of G for undirected graphs, which are the

ones we examine, coincides with the standard Laplacian L = D−A where D

is the diagonal matrix diag(deg(v0), . . . , deg(vn)) and the adjacency matrix A

is given by Aij = wt(vivj). The reduced Laplacian ∆̃ is obtained by deleting

from the standard Laplacian the first row and column which correspond to

the sink v0.

34

Definition A.3. Vertex firing from a vertex vi is an operation on a config-

uration c with a nonnegative number of sand grains which results in a new

configuration c̃ = c− ∆̃vi with a nonnegative number number of sand grains.

A.3 Spanning Trees

We use some basic graph theory definitions, namely rooted spanning trees,

inversions, κ-inversion, genus and degree of a G-parking function.

Definition A.4. A rooted spanning tree T of a connected, undirected graph

G is a subgraph of G that includes all of the vertices and some or all of the

edges of G, does not contain any cycles and one of its vertices is chosen as

a root.

Definition A.5. An inversion of a rooted spanning tree T of the graph G is

a pair of vertices (vi, vj), such that vi is an ancestor of vj in T and i > j. It

is a κ-inversion if, in addition, vi is not the root and vi’s parent is adjacent

to vj in G.

We show the inversions and κ-inversions in a orange tree in Figure 8.

The blue line shows that the parent of one of the vertices is connected to the

other. The dashed blue line shows which two vertices should be connected

so that we can have a κ-inversion.

The number of κ-inversions of T is the tree’s κ-number, denoted κ(G, T).

35

Figure 8: Inversions: (v4, v2), (v2, v1), (v4, v1)
κ-inversions: (v4, v1)

Definition A.6. The degree of a G-parking function P is

deg(P) =
n∑
i=1

P(vi). (5)

Definition A.7. The genus of a graph G = (V,E) is defined as g = |E| −

|V |+ 1.

Perkinson, Yang and Yu [8] present an algorithm which induces a bijection

between the set of G-parking functions for a given simple graph G and the

set of the spanning trees of G. The bijection φ of Perkinson, Yang and Yu

induces the following relation for a G-parking function P :

κ(G, φ(P) = g − deg(P). (6)

B DFS-Burning Algorithm

The algorithm of Perkinson, Yang and Yu starts with a sandpile configuration

on a simple graph and gives a spanning tree. At each step of the algorithm

a vertex is either deleted or added to the tree. If the vertex is added to the

36

tree then we say that the vertex is burnt.

DFS-burning algorithm

1: We start burning vertices from the sink v0.

2: We are currently at vertex vi.

3: If vi is connected to an unburnt vertex we choose the unburnt vertex

with the highest index connected to vi. Let that be vj.

4: If vj has a positive number of grains we delete the edge vivj from

the graph and remove 1 grain of sand from vj. We go back

to step 2 for vi.

5: If vj has no grains of sand we burn the edge vivj and the vertex

vj. Then, we go to step 2 for vertex vj.

6: If vi is not connected to an unburnt vertex, then we go to step 2 for

the parent of vi.

7: We stop when we cannot burn any more vertices.

Perkinson, Yang and Yu [8] also present the inverse of this algorithm.

We can see the DFS-burning algorithm working in Figure 9. At each step

we either burn or delete one of the edges of the graph. The vertex with the

star is the sink v0 and the numbers inside each nonsink vertex are the number

of sand grains. The orange vertices and edges are already burnt. The dashed

edges are already deleted.

37

Figure 9: DFS-burning algorithm

C Special case: x = (a, b, b, . . . , b)

Here we present a bijection between the set of x-parking functions for x =

(a, b, b, . . . , b) and the set G-parking functions for a specific graph G. The

special case of x-parking functions for x = (a, b, b, . . . , b) have already been

examined by Yan [17]. Her bijection is between these x-parking functions and

a special type of trees. On the other hand our bijection is between x-parking

functions and G-parking functions for a specific graph G. Our results from

Section 2, allow us to expand this bijection for spanning trees of the graph

G as well. By n we denote the number of entries in x.

Let x = (a, b, b, . . . , b). Then the weakly increasing arrangement of an

x-parking function must satisfy the conditions a1 ≤ a − 1, a2 ≤ b + a −

1, . . . , an ≤ (n − 1)k + a − 1. The graph we consider is the complete graph

on n + 1 vertices with weighted edges. Every edge with end vertex v0 has a

weight a while all the other edges have weights b. We can also think about

it in terms of the DFS-vector burning algorithm. Since all of the vertices

38

except the sink v0 are identical, the w-labelling is irrelevant. Therefore, the

v-labeled graph Gx for x = (a, b, b, . . . , b) is the same graph. For simplicity

in this section to refer to the v-labeled graph as Gx.

Definition C.1. The function ψ1 : PF(x)→ PF(Gx) for the vector x = (a, b, b, . . . , b)

is given by the following: for an x-parking function α = (a1, a2, . . . , an) the

G-parking function P = ψ1(α) is given by P(vi) = ai for each i = 1, . . . , n.

Theorem C.2. The function ψ1 is a bijection.

Proof. It is clear that the function is injective so we need to prove that

the codomain of the function is the superstables of Gx, and that it is also

surjective.

We first prove that the function is well-defined. We assume the opposite,

that for x = (a, b, b, . . . , b) there exists an x-parking function α such that

ψ1(α) is not a superstable configuration in Gx, therefore not a G-parking

function. Then there is a set S of l nonroot vertices which can be fired.

Without loss of generality, let those vertices be v1, . . . , vl with number of sand

grains a1 ≥ a2 ≥ · · · ≥ al. The number of sand grains on v1, . . . , vl can be at

most (n−1)b+a−1, (n−2)b+a−1, . . . , (n− l)b+a−1 respectively, because

of the inequalities the x-parking functions satisfy. However, the number of

edges between the graph G/S and each vertex in S is degG/S vi = (n− l)b+a

for each i = 1, . . . , l. This is greater than the number of sand grains on vl,

therefore, the set S cannot be fired — a contradiction. This proves that the

codomain of ψ1 is the set of superstables of Gx.

39

The proof of surjectivity is analogous. The function ψ1 is well-defined

and is also surjective and injective. This means that it is a bijection.

Now it is sufficient to examine only the G-parking function of the graph

Gx when we consider the staircase x-parking function. We provide a formula

for the number of spanning trees of Gx which is a(a+ nb)n−1.

40

