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Abstract

We study the lower central series of an associative algebra, defined as follows: L1 = A,

Li+1 = [Li, A], where [ , ] is the bilinear Lie bracket operation. We look at the successive

quotients Bi = Li/Li+1 and Ni = Mi/Mi+1, where Mi is the two-sided ideal generated

by Li. We aim to study the decomposition of Ni and Bi into free and torsion components

using the structure theorem of finitely generated abelian groups. Using the computational

algebra system Magma we gather lots of data and observe and prove various interesting

patterns about these ranks and torsion. We mainly concentrate on the algebra Z〈x, y〉/(qxy−

ryx) where (q, r) = 1, also known as the q, r–polynomial algebra. We completely describe

and prove the pattern of Ni and Bi for this algebra. We give some conjectures for algebra

Z〈x, y〉/((f1), (f2)) where f1 and f2 are two homogeneous polynomials of degree two and

three.

Summary

We study the lower central series {Li} of some algebras over the integers. Furthermore we

look into the successive quotients of the lower central series {Bi} and the successive quotients

of the ideals generated by {Li}, called {Ni}. We study the ranks and torsion of the {Ni}

and {Bi} for various different algebras. We consider specifically the r, q-polynomial algebras

and prove that there are closed forms both for the ranks and torsion of {Bi} and {Ni}. We

give some conjectures about some algebras moded by two homogeneous relations of degree

two and three.



1 Introduction

The algebraic approach to geometry is based on replacing geometric spaces by algebras

of “nice” functions on them. These algebras are commutative. However, in the noncommu-

tative geometry, we replace these commutative algebras with similar noncommutative ones,

pretending that they correspond to imaginary “noncommutative spaces”. It is more compli-

cated to study these noncommutative algebras compared to their commutative analogs. This

is one of the main reasons why we define and study the so called lower central series of an

associative algebra used as a measurement of how “far” from commutative an algebra is.

Recall that the lower central series (Li(A)) are the successive subspaces of an asso-

ciative algebra A formed from the commutators of A. We consider the successive quotients

of the lower central series Bi = Li/Li+1. Furthermore, we look into the successive quotients

of the two-sided ideal Mi generated by Li, and we call these quotients Ni. Studying the

structure and the properties of Ni helps us understand the structure of our algebra.

The study of the LCS (Lower Central Series) began in 2007, when Feigin and Shoikhet

[1] found out that there exists an isomorphism between the space B2(An) (where A = An

is the free algebra over C with n generators) and the space of closed differential forms of

positive even degree on the space Cn, i.e.

B2(An) ∼= Ωeven>0
closed (Cn).

Later on Dobrovoska, Kim and Ma [2] described the quotient A/Mi(A) for i = 4. Next,

Balagovic and Balasubramanian [3] continued the study of Bi. One of their main results is

the complete description of B2(A2/(xd + yd)). After that, Kerchev [4] studied Ni for free

algebras and computed Ni(An) for several values of i and n.

Zhou [5] studied the behavior of Ni for an associative algebra Z〈x, y〉 with various

relations. She computed the ranks and torsion of various Ni using the computer program
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Magma. Cordwell, Fei and Zhou [6] studied Bk and Nk for A = An(Z)/(f), which is an

algebra with a single homogeneous relation over Z.

In this paper, we study the behaviour and the properties of the Bi and Ni for various

algebras. We give some proposition for the behaviour of this series for A = Z〈x, y〉/((f1), (f2))

where f1 and f2 are two homogeneous polynomial of degree two and three. The process

of collecting data is explained in the paper. The main goal of the project was to give a

complete description of the ranks and torsions of the Ni and Bi for the associative algebra

A = Z〈x, y〉/(rxy − qyx) where (r, q) = 1, also known as the r, q-polynomial algebra.

In section 2, we give the needed preliminaries for the project. In section 3, we outline

how we collect and how we interpret data. In the following section 4, we give some conjec-

tures about the patterns for the rank and torsion of various algebras. Section 5 is the most

important section, because there we show the proof of our main task.

2 Preliminaries

We begin with preliminary background.

Definition 2.1. Let R be a fixed commutative ring. An associative R-algebra is an

abelian group A that has the structure of both a ring and an R-module in such a way that

ring multiplication is R-bilinear:

r · (xy) = (r · x)y = x(r · y)

for all r ∈ R and x, y ∈ A. We say that A is unital if it contains a multiplicative identity

element.

In this paper, unless otherwise stated, we work with algebras over Z. Since by definition

A as a Z-module, is an abelian group.
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Given an associative algebra A, we define a bilinear Lie bracket operation [ , ] : A×A→ A

by [a, b] = ab−ba. One can see that this operation satisfies [a, a] = 0 and the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

An algebra for which such a bracket operation is defined is called a Lie Algebra.

Definition 2.2. Given a Lie algebra A, we construct the lower central series for A as

follows.

L1 = A

Li+1 = [A,Li]

where the space [A,Li] is spanned by all the elements of A and Li. These series of Lie

ideals is known as the lower central series of A. We abbreviate Li(A) by Li.

For the purpose of our project, however, we are more interested in the successive quotients

of Li and the successive quotients of the two-sided ideal generated by it. That is why we

define the next three series.

Notation 2.3. We define Bi = Li/Li+1.

Notation 2.4. Denote the two-sided ideals generated by each Li by Mi, i.e. Mi = A.Li.A.

One can prove that Mi = A.Li.

Notation 2.5. We define Ni = Mi/Mi+1.

We continue with more basic definitions that are used trough the paper.

Definition 2.6. A module R over a commutative ring K is graded if it has a direct sum

decomposition into submodules
⊕

i≥0Ri. If A is an algebra such that AiAj ⊂ Ai+j, then A

is a graded algebra.

Example 1. A polynomial ring k[x1, ..., xn] is an example of graded algebra, where the

grading is given by the degree of the polynomials. We observe that Ni inherits its grading

from A. The part of Ni at degree d will be denoted as Ni[d], which is a finitely generated k
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- module.

Definition 2.7. The torsion subgroup or just torsion of an abelian group G is the group

of elements of finite order.

The idea of torsion becomes especially important due to the Structure Theorem of Finitely

Generated Abelian Groups, which states that groups can be separated into their free and

torsion components, which we use in Section 5. We will use this theorem because we will

look at the two components separately.

Theorem 1. (Structure Theorem of Finitely Generated Abelian Groups) Every finitely gen-

erated abelian group G is isomorphic to a finite direct sum of infinite cyclic groups and

cyclic groups of order pn, for various primes p. This decomposition is unique up to order of

summands.

!!!cite!!!

This theorem can be restated as

G ∼= F ⊕ T,

where F is the free component, which is isomorphic to Zr for some r ∈ Z, and T is the

torsion component, consisting of a finite sum of cyclic groups of order pn for various primes

p. In this case, the r is called the rank of the free component, or just as the “rank”.

3 Data collection

The conjectures and theorems in the paper come from the data obtained at the first stage

of the project. In this section we explain how the data is collected and how we read it. We

use the computer algebra system Magma, designed mainly to solve problems in algebra and

number theory. We wrote a specific program in Magma which gives us the rank and torsion
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of Ni and Bi for various algebras. Given an algebra, the input of the program consists of the

relations we mod by, and their degrees. The output of the program consists of several lines,

each of which represents the rank and the torsion of Ni[d] for some i and d. We interpret

the information and we put it in tables. This process is illustrated in the following example,

together wit an explanation how to read the resulting table.

Example 3. Input:

K = 2 (degree of the relation we mod by)

F1 = 5xy − 3yx (the relation we mod by)

Output:

N 3 3 2 (Abelian Group of order 1)

N 4 3 0 (Abelian Group of order 1)

N 3 4 0 (Abelian Group isomorphic to Z/2 + Z/2 + Z/16)

N 4 4 3 (Abelian Group of order 1)

The first number stands for the index of N, while the second is for the d-part of N, or

i.e. N 1 5 = N1[5]. The last number shows the rank we are searching for, and the last terms

represents the torsion group. We present this information clearer in a table.

d = 3 d = 4
N3 2 0(2216)
N4 3

Table 1: Z〈x, y〉/(5xy − 3yx)

The i, d− th cell in the table shows the tank and the torsion of Ni[d]. In this particular

example the rank of N3[4] is equal to zero, and the torsion subgroup is isomorphic to Z2 ⊕

Z2 ⊕ Z16.
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4 Conjectures

In this section make conjectures about the ranks of Ni[d] and Bi[d], based on the patterns

in the data, obtained from Magma.

Observation 2. For the Z〈x, y〉/(ax2+bxy+cy2)(x3+y3) algebra, we can observe that when

the coefficients a,b and c are all different from each other and from ±1 and 0, the ranks of

Ni[d] are not dependant on this coefficients. Moreover, the table that corresponds to those

ranks is exactly Table 2.

2 3 4 5 6 7 8

N2 1

N3 2

N4 1

N5

N6

N7

N8

Table 2: Z〈x, y〉/((ax2 + bxy + cy2)(x3 + y3))

However, it is interesting that when some of the coefficients are equal to each other or

equal to ±1 or 0, the tables corresponding to this input are completely different. In the Tables

3 to 6???? in the appendix we give some examples showing this phenomenon.

Observation 3. For the Z〈x, y〉/(ax2 + bxy + cy2)(x3 + y3) algebra, we can observe that

when the coefficients a,b,c, and are all different from each other and from ±1 and 0, the

ranks of Ni[d] are not dependant on this coefficients. Moreover, the table that corresponds to

those ranks is exactly Table 3.
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2 3 4 5 6 7 8

N2 1

N3 2 1

N4 1

N5 2 1

N6 1

N7 2 1

N8 1

Table 3: Z〈x, y〉/((x2 + y2), (ax3 + bx2y + cy2x + dy3))

Observation 4. For the Z〈x, y〉/(rxy− qyx) where (r, q) = 1 we see that the ranks of Bi[d]

and Ni[d] are not dependant on q and r. Moreover we observe that for them we can form a

nice closed formula for their torsion. This is explained in Section 5.

5 Complete description of the Ni and Bi for the r, q −

polynomial algebra

In this section we consider the specific algebra Z〈x, y〉 with the relation qxy = rxy, also

known as the q, r-polynomial algebra. Tables smth to smth, located in Appendix A.1.show

that there are clear and interesting patterns in the rank and torsion of the Ni and Bi. We

found that below the diagonal i = d − 1 the torsion in Bi and Ni is Z(q−r)d−1 . However,

the torsion along this diagonal is more interesting. We will need to use a finer grading in

order to understand it. We define x to have degree (1, 0) and y to have degree (0, 1), i.e.

L1(1, 0) = 〈x〉 and L1(0, 1) = 〈y〉, where for degree (k, l), we know that d = k + l. For Bi we

still have the same torsion as below the diagonal, however for Ni this is not true. We have
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that

TorNi[d] =
⊕

u+v=d

Zq(u,v)−r(u,v)

.

Note: We should always keep in mind that TorNi[d] = 0 and TorBi[d] if i > d.

We want to show a closed formula for the torsion of Bi[d] and Ni[d]. We can use the

idea of finer grading, therefore if we prove a closed formula for Bi(k, l) and Ni(k, l) where

k + l = d, we will be just able to sum over all k and l with this sum and we will find the

desired formula. In addition since Bi[d] and Ni[d] are successive quotients of Li[d] and Mi[d]

respectively, we can just show a closed formula for Li[d] and Mi[d]. In Lemma 3, we will form

a formula for L2(k, l) and then in Lemma 4, we will prove by induction the form for Li(k, l).

In Lemma 6, we will prove the formula for Mi(k, l). After we have formulas for Li(k, l) and

Mi(k, l) we can sum over all k and l with sum d and then just divide by Li+1[d] and Mi+1[d]

and we will reach a closed formula for Bi[d] and Ni[d]. We start by proving the lemmas we

already talked about.

Theorem 5. Let Li be the lower central series of the associative algebra Z/(qxy = ryx). Let

Bi be the successive quotients Bi = Li\Li+1. The torsion of Bi[d] when i ≤ d− 1 is equal to

Z(q−r)d−1.

Since we have the relation qxy = ryx, we can express the result of any bracket operation

as the sum of mxkyl+nylxk for some integers m and n. The following facts are easy to prove,

but are crucial for the proof of the thorem.

1. Ln(k, l) = [L1(1, 0), Ln−1(k − 1, l)] + [L1(0, 1), Ln−1(k, l − 1)];

2. L1(n, 0) = 〈xn〉, L1(0, n) = 〈yn〉;

3. For every k and l: qklxkyl = rklylxk;
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4. Since (q, r) = 1, then (qk, rl) = 1 where k, l ∈ N , therefore using the extended Eu-

clidean algorithm we can find such numbers Akl and Bkl such that Bklq
kl−Aklr

kl = 1.

Furthermore L1(k, l) = 〈−Aklx
kyl + Bkly

lxk〉.

Lemma 6. Let Li be the lower central series of the associative algebra Z/(qxy = ryx). Then

for k + l > 1, we have that L2(k, l) = (q(k,l) − r(k,l))L1(k, l).

Proof: From Fact 3 we know that q(k−1)lxk−1yl = r(k−1)lylxk−1. Let A and B, be such

that Bq(k−1)l − Ar(k−1)l = 1. Analogically, let Cqkl −Drkl = 1.

From Fact 4 we know that

L1(k − 1, l) = −Axk−1yl + Bylxk−1

L1(k, l) = −Cxkyl + Dylxk

.

From Fact 1 we know that

L2(k, l) = [L1(1, 0), L1(k − 1, l)] + [L1(0, 1), L1(k, l − 1)].

Let us focus our attention on K = [L1(1, 0), L1(k − 1, l)].

K = [L1(1, 0), L1(k − 1, l)] = [x,−Axk−1yl + Bylxk−1] =

= −Axkyl + Bxylxk−1 + Axk−1ylx−Bylxk.

Two of our terms are of the desired form. However, we should express the other two in
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the following form:

xylxk−1 = (Bq(k−1)l − Ar(k−1)l)xylxk−1 = Bq(k−2)lrlylxk − Aq(r−1)lxkyl,

xk−1ylx = (Bq(k−1)l − Ar(k−1)l)xk−1ylx = Br(k−1)lylxk − Aqlr(k−2)lxkyl.

Now, we see that

K = (−A− ABq(r−1)l − A2qlr(k−2)l)xkyl + (−B + ABr(k−1)l + B2rlq(k−2)l)ylxk.

We want to express K as a multiple of L1(k, l). In order to do so, we can use the fact that

K = a(−Cxkyl + Dylxk) + b(qklxkyl − rklylxk). We can form the following matrix equation:

 A2 qij

−B2 −rij


 a

b

 =

 −A− ABq(i−1)j − A2qjr(i−2)j

−B + ABr(i−1)j + B2rjq(i−2)j

 .

We should note that it was important that we constructed our matrix with determinant

equal to 1. Solving this matrix equation for one leads to:

a = −Arkl − ABq(k−1)lrkl − A2qlr2kl−2l −Bqkl + ABr(r−1)lqkl + B2rlq2kl−2l

= rl(−Ar(k−1)l + Bq(k−1)l(Bq(k−1)l − Ar(k−1)l))−

ql(Bq(k−1)l − Ar(k−1)l(Bq(k−1)l − Ark−1l)) = rl − ql.

Analogically for P = [L1(0, 1)L1(k, l − 1)] we get a′ = rk − qk. We are looking for the

greatest common divider of a and a′, which is the gcd of rl − ql and rk − qk. The last is

exactly (r(k,l) − q(k,l)). Therefore L2(k, l) = (q(k,l) − r(k,l))L1(k, l). �

We conclude that B1(k, l) = L1(k, l)\L2(k, l) = (q(k,l) − r(k,l)).
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Lemma 7. Let Li be the lower central series of the associative algebra Z/(qxy = ryx). Then

if i + j ≥ k Lk(i, j) = (q − r)k−2(q(i,j)−r
(i,j)

)L1(i, j).

Proof: We will prove the statement of the lemma by induction.

The base case of the infuction L2(i, j) = (q(i,j) − r(i,j))(q − r)2−2L1(i, j) = (q(i,j) −

r(i,j))L1(i, j) is given in Lemma 3.

Let us assume that for every i, j

Ln(i, j) = (q − r)n−2(q(i,j) − r(i,j))L1(i, j).

This also means that Ln(i− 1, j) = (q((i−1),j) − r((i−1),j))(q − r)n−2.

Therefore we have that

Ln+1(i, j) = [L(1, 0), Ln(i− 1, j)] + [L(0, 1), Ln(i, j − 1)].

Lets focus on

[L(1, 0), Ln(i− 1, j)] = (q((i−1),j) − r((i−1),j))(q − r)n−2[L(1, 0), L(i− 1, j)].

We already saw in Lemma 3 that the last term is (qj − rj)L1(i, j), so

[L(1, 0)Ln(i− 1, j)] = (q((i−1),j) − r((i−1),j))(q − r)n−2(qj − rj)L1(i, j).

Analogically, for L(0, 1)Ln(i, j − 1), we have that

[L(1, 0), Ln(i− 1, j)] = (qi,(j−1) − r(i,(j−1)))(q − r)n−2(qj − rj)L1(i, j).

Since the greatest common divisor of ((qi,(j−1)−r(i,(j−1))), (q((i−1),j)−r((i−1),j))) = 1, we can
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see that the gcd of L(1, 0)Ln(i−1, j) and L(0, 1)Ln(i, j−1) is (q−r)n−1(q(i,j)−r(i,j))L1(i, j),

which was exactly what we wanted to prove. �

The proof of Theorem 2 follows directly from the proof of Lemma 3 and Lemma 4.

So far we looked into the Bi, in the rest of the section we concentrate on the Ni.

Theorem 8. Let Li be the lower central series of the associative algebra Z/(qxy = ryx).

With Mn we will denote the two-sided ideal generated by Li. Then

Mn(i + k, j + l) =
∑

L1(i, j)Ln(k, l) = (q(k,l) − r(k,l))(q − r)n−2L1(i, j)L1(k, l).

Proof:

We are searching for the greatest common divisor of all the products that we are summing.

We observe that (q−r)n−2 divides this gcd. In fact, we will prove that it is equal to (q−r)n−2

by finding it for two terms. is the gcd of all of the terms.

We see that L1(1, 0)Ln(k, l) and L1(0, 1)Ln(k+1, l−1) participate in the sum Mn(k+1, l).

There exist numbers A and B, such that Bqkl−Arkl = 1 and L1(k, l) = −Axkyl +Bylxk.

Therefore:

L1(1, 0)Ln(k, l) = x(−Axkyl+Bylxk)−Axk+1yl+Bxylxk = (−A−ABqkl)xk+1yl+B2rlq(k−1)l
ylxk+1.

We know that L1(1, 0)Ln(k, l) = a(−A2x
k+1yl+B2y

lxk+1)+b(q(k+1)lxk+1yl−r(k+1)l)ylxk+1,

where A2 and B2 are such that L1(k + 1, l) = −A2x
k+1yl + B2y

lxk+2. To find a we need to

solve analogical matrix equation to the one in Lemma 3. It yields to:

a = −Arklrl + Bqklrl(−Arkl + Bqkl) = −Arklrl + Bqklrl = rl.

Analogically for L1(0, 1)L1(k + 1, l − 1) we get that a′ = qk+1.

Moreover, L1(0, 1)Ln(k, l) = (q(k,l) − r(k,l))(q − r)n−2L1(1, 0)L1(k, l) = (q(k,l) − r(k,l))(q −

r)n−2rlL1(k+1, l). Similarly L1(0, 1)L1(k+1, l−1) = (q(k+1,l−1)−r(k+1,l−1))(q−r)n−2qk+1L1k + 1, l.

We see that the gcd of this two terms is exactly (q−r)n−2, therefore it is exactly the greatest
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common divisor of all terms.

Corollary 1. When i < d − 1 we know that TorNi(k, l) = (q − r) and when i = d − 1,

TorNi(k, l) = (q(k,l) − r(k,l)).

The difference occurs because when i = d− 1,to calculate Ni[d] we have to look both at

Mi[d] and Mi+1[d]. However in this case Mi[d] = Li[d].

6 Conclusion

Using a program in Magma we collected a large amount of data in the form of tables, about

the rank and torsion of Ni and Bi for several specific algebras. We provided description of

the r, q-polynomial algebra. We also gave some conjectures about the rank and torsion of Ni

for Z (f1, f2) where f1 and f2 are two homogeneous polynomials of degree two and three.

There are many different ways to continue this project. One of them is to try generalizing

the problem for Z〈x, y〉/(qxy − ryx) for n variables and n(n−1)
2

relations of the form a1xy =

b1xy. Another path would be to prove the conjectures that were outlined in Section 4. We

can also study different families of algebra using the same ideas..
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A Observation 4.1

2 3 4 5 6 7 8

N2 1

N3 2 1

N4 1

N5 2 1

N6 1

N7 2 1

N8 1

Table 4: Z < x, y > /((x2 + y2)(x3 + y3))

2 3 4 5 6 7 8

N2 1 1

N3 2 2

N4 1 1

N5 2 2

N6 1 1

N7 2 2

N8 1

Table 5: Z < x, y > /((x2 + xy + yx + y2)(x3 + y3))
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2 3 4 5 6 7 8 9

N2 1

N3 2

N4 3

N5 3 1

N6 2

N7 3

N8 3 1

N9 2

Table 6: Z < x, y > /((x2 + xy + y2)(x3 + y3))

2 3 4 5 6 7 8

N2 1 1

N3 1

N4 1

N5

N6

N7

N8

Table 7: Z < x, y > /((x2 + 2xy + y2)(x3 + y3))
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B Observation 2.

2 3 4 5 6 7 8

N2 1

N3 2 1

N4 1

N5 4 2

N6 3

N7 6 3

N8 4

Table 8: Z < x, y > /((x3 + x2y + y2x + y3)(x2 + y2))

2 3 4 5 6 7 8

N2 1

N3 1

N4

N5

N6

N7

N8

Table 9: Z < x, y > /((x3 + xyx + yxy + y3)(x2 + y2))
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2 3 4 5 6 7 8

N2 1 1

N3 2 2

N4 2

N5 3

N6 1

N7

N8

Table 10: Z < x, y > /((x3 + x2y + y3)(x2 + y2))

C Observation 3.

2 3 4 5 6 7 8 9

N2 1 (22) (23) (24) (25) (26) (27) (28)

N3 2 (22.16) (24) (25) (26) (27) (28)

N4 3 (24) (25) (26) (27) (28)

N5 4 (23.16.784) (26) (27) (28)

N6 5 (26) (27) (28)

N7 6 (24.162.544) (28)

N8 7 (26.982)

N9 8

Table 11: Z < x, y > /(5xy − 3yx)
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2 3 4 5 6 7 8 9

N2 1 (22) (23) (24) (25) (26) (27) (28)

N3 2 (22.40) (24) (25) (26) (27) (28)

N4 3 (24) (25) (26) (27) (28)

N5 4 (23.16.12640) (26) (27) (28)

N6 5 (26) (27) (28)

N7 6 (24.162.2320) (28)

N8 7 (26.3162)

N9 8

Table 12: Z < x, y > /(7xy − 3yx)

2 3 4 5 6 7 8 9

N2 1 (22) (23) (24) (25) (26) (27) (28)

N3 2 (22.24) (24) (25) (26) (27) (28)

N4 3 (24) (25) (26) (27) (28)

N5 4 (23.24.5232) (26) (27) (28)

N6 5 (26) (27) (28)

N7 6 (24.242.1776) (28)

N8 7 (26.2182)

N9 8

Table 13: Z < x, y > /(7xy − 5yx)
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