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Abstract

In this paper we look at the crossing number, pair crossing number, and odd crossing

number of graphs on a disk with multiple holes. We provide an upper bound
⌊
(n−1)2

4

⌋
for

the odd crossing number of graphs on the annulus with n edges. For graphs on a disk

with multiple holes, we develop polynomial time algorithms to find the number of crossings

between two edges, given their homotopy classes. We describe each edge as a word referring

to its homotopy class. The algorithms also proved the crossing number, pair crossing number,

and odd crossing number for graphs on a disk with multiple holes.

Summary

In this paper, we look at the number of crossings on graphs on disks with holes. Edges

on this graph do not go through holes, but around holes. A disk with one hole is an annulus,

for which we find the upper bound for the odd crossing number of a graph with n edges. For

the graphs on a disk with multiple holes, we describe each edge as a word and using these

words, find out whether two edges cross and how many times they cross.



1 Introduction

First, we define a drawing D of a graph G as a mapping of the vertices and edges of the graph

to the Euclidean plane. The edges are continuous curves, and they can intersect each other

several times. In this paper, we use Pelsmajer, Schaefer, and Stefankovic’s [1] restriction on

edges:

• An edge does not contain any endpoints of other edges in its interior

• No edges touch (i.e. intersect without crossing)

• At most two edges go through any given point

• Any two edges intersect at finitely many points.

Now we define the crossing number, pair crossing number, and odd crossing number of

a graph G. First the crossing number of a drawing D, denoted as cr(D), is the number of

crossings in the drawing. The pair crossing number pcr(D) is the number of pairs of edges

that cross each other at least once. Finally, the odd crossing number of a drawing ocr(D)

is the number of pairs of edges that cross an odd number of times. The crossing number

of a graph cr(G) is then defined to be the minimum of the cr(D) for all drawings D of G.

Likewise, the pair crossing number pcr(G) of G, and odd crossing number ocr(G) of G are

defined to be the minimum of the pcr(D) for all drawings D of G and the minimum of the

ocr(D) for all drawings D of G, respectively.

Crossing numbers were first introduced during World War II when Turan posed the

question: what is the minimum possible number of crossings in a drawing of a complete

bipartite graph? Turan was working in a brick factory where wagons were taking bricks from

kilns to storage sites. However, where the wagon paths intersected, wagons had a difficult

time getting across the crossing. More recently, Tóth [2] analyzed different ways of counting

the crossing number of a graph.
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In Section 2, we introduce the definitions and set up of graphs on the annulus and on a

disk with multiple holes. In Section 3, we prove an upper bound for the odd crossing number

of graphs with n edges on the annulus. In Section 4, we consider different ways of counting

odd crossing number, pair crossing number, and crossing number for graphs on the disk with

multiple holes. In Section 5, the we look at possible extensions of our results.

2 Background and Definitions

In this section, we give a brief overview of known inequalities relating cr(G), pcr(G), and

ocr(G). We also look at the definitions and set ups of graph on the annulus and the disk

with multiple holes. The following inequality,

ocr(G) ≤ pcr(G) ≤ cr(G),

follows directly from the definition because each pair of edges that cross an odd number of

times in the ocr(G) is counted in the pcr(G), and that pair of edges cross at least once.

Pelsmajer, Schaefer, and Stefankovic [3] proved that for any ε greater than 0 there exists

infinitely many graphs satisfying the following inequality

ocr(G) <

(√
3

2
+ ε

)
· cr(G).

Tóth [2] proved a stronger inequality that for any ε greater than 0, there exists infinitely

many graphs satisfying

ocr(G) <

(
3
√

5− 5

2
+ ε

)
· pcr(G).

Pelsmajer, Schaefer, and Stefankovic [3] conjectured that there is a constant c > 0 such
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that

cr(G) < c · ocr(G).

Pach and Tóth [4] formulated a weaker version of this conjecture

cr(G) ≤ 2ocr(G)2.

For finding the crossing number of a graph, Schaefer, Sedgwick, and Stevankovic [5]

provide an O(m(11)) time algorithm, where m is the number of edges in the graph. We

improve the algorithm time for graphs on the disk with multiple holes.

2.1 Dehn Twist on a Graph

A Dehn twist is a twist in a graph such that we create a ring around a certain area and

cause all the edges that pass through the ring to have additional curves. To be more specific,

the ring has an outside boundary and an inside boundary. Any parts of edges inside the

inside boundary are not affected by the Dehn twist, but any parts of edges between the two

boundaries are affected by the Dehn twist. The Dehn twist can be used in either direction

for multiple loops. For instance, for an edge that goes through the Dehn twist ring, a Dehn

twist that goes clockwise around the ring causes the edge to have 2 more loops overall, 1

clockwise where the edge enters the Dehn Twist ring and 1 counterclockwise where the edge

exits the Dehn twist ring, as seen in Figure 1. For edges that have incident vertices within

the inside boundary of the Dehn twist, the edge only gets 2 clockwise twists. Dehn twists do

not create any crossings. In fact, they preserve the number of crossings, because all of the

edges are distorted in the same manner. A Dehn twist is analogous to taking two straight

lines that intersect perpendicularly, and turning the 4 rays from the intersection point into

4 non-intersecting spirals that spiral out in the same direction and at the same rate.
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Figure 1: The straight solid line segment is the original edge. The dashed lines are the rings for
the Dehn twist. The dotted curvy edge is the edge after the Dehn twist is applied to the region.
Note that the edge does not intersect itself.

2.2 Crossing Numbers on the Annulus

A slightly different approach to crossing numbers on graphs starts by looking at graphs in

the annulus. The annulus is a disk on the plane with a hole. We start with n points on the

outside disk and n points on the hole, and we create n edges that start from the outside disk

of the annulus to the hole, such that each vertex is connected to exactly one edge.

We first label the vertices on the disk with a0, a1, a2, ..., an−1 starting from an arbitrary

vertex and going clockwise. Then, we label the edges by the index of the vertex on the outside

ring. Thus, edge 0 has the vertex a0. To label the vertices on the hole, we start with the

vertex that is incident to edge 0, and we label it as b0. We then go clockwise around the hole

to label the rest of the vertices as b1, b2, b3, ..., bn−1.

For the sake of a reference, we let edge 0 be a straight line segment. We can always achieve

this by twisting the hole until a0 and b0 align. While twisting the hole might make the edges

a bit more complicated, it will not create any more crossings. Another way of looking at this
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is a Dehn twist where the hole is in between the inside and outside boundaries of the Dehn

twist. We make the necessary number of twists to make edge 0 straight.

2.2.1 Permutation on the Annulus

Given a graph on the annulus, another way of defining the edges is as a permutation. In the

permutation π, we permute the bi mapped to ai. For example, a permutation with 6 vertices

could be b3 → a0, b5 → a1, b4 → a2, b2 → a3, b0 → a4, and b1 → a5. In this permutation,

π, we let πi be the index j of bj which is connected by edge i to vertex ai.

2.2.2 Adding Twists to the Permutation

The number of twists for each edge is the number of times the edge crosses edge 0 in a

clockwise manner minus the number of times the edge crosses edge 0 in a counterclockwise

manner. Since in our drawing we have edge 0 as a straight line segment, we define edge

0 to have no twists. For edge i, we define the homotopy class on the annulus, xi, to be

the number of twists. Homotopy classes are equivalence classes, such that two edges with

the same homotopy class are equivalent. Pelsmajer, Schaefer, and Stefankovic [1] proved the

formulas for the crossing numbers on the annulus for a permutation graph, given the number

of twists for each edge to be:

cr(G) = min

{∑
i<j

|xi − xj + [πi > πj] | : xi ∈ Z, i ∈ [n]

}
,

pcr(G) = min

{∑
i<j

[xi − xj + [πi > πj] 6= 0] : xi ∈ Z, i ∈ [n]

}
,

ocr(G) = min

{∑
i<j

[xi − xj + [πi > πj] 6≡ 0 (mod 2)] : xi ∈ Z, i ∈ [n]

}
.
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2.3 Disk with Multiple Holes

We start with an outside ring and n holes within the ring. We then draw reference lines from

the outside ring to the holes, one reference line per hole, such that the reference lines do

not intersect. In the following figure, the dotted lines are the reference lines. Each edge in

the disk with multiple holes has vertices on the holes or the boundary of the disk, such that

both vertices are not on the same hole or on the boundary.

Figure 2: This graph on a disk with multiple holes has 5 holes: A, B, C, D, and E. The reference
lines are the dotted lines. These reference lines are used for homotopy classes. Every edge drawn in
this graph has a homotopy class of 1.

2.3.1 Homotopy Class on the Annulus with Multiple Holes

First we define a homotopy class as an equivalence class of homotopy. We say that two edges

are homotopic if they can be continuously deformed to each other with their endpoints fixed.

Given a graph on the annulus with multiple holes and reference lines to each hole, we define

the edge connecting two vertices that does not cross any reference line to have a homotopy

class of [1]. Every homotopy class is uniquely described by a word [abc−1ba−1], and every

such word gives a unique homotopy class. Each letter in the homotopy class word refers

to the reference line that is crossed. If the reference line to hole I is crossed clockwise, the

homotopy class word has i−1 in it. If the reference line to hole I is crossed counterclockwise,
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the homotopy class word has i in it. The word is simply a list of such letters in order of the

reference lines crossed from one vertex to the other.

One important note about the homotopy class words is that any ii−1 can be removed as

long as they are consecutive in the homotopy class. This follows because crossing a reference

line clockwise and then counterclockwise immediately after is homotopic to not crossing the

reference line at all. We can simply pull the edge until it no longer crosses the reference line.

2.3.2 Minimal Edges for Homotopy Classes and Twists

A minimal edge for a homotopy class is an edge that has a word which cannot be simplified.

In other words, there are no ii−1 or i−1i for all i. Likewise, a minimal edge for the number

of twists is an edge that does not cross a reference line clockwise and then counterclockwise

in succession.

3 Upper Bound for Odd Crossing Number on the

Annulus

We can represent the number of odd crossings in a drawing by creating a new graph, permu-

tation graph, where the vertices of the new graph are the edges from the permutation. If two

edges, i and j, cross in the simple permutation drawing, then there is an edge connecting

vertices i and j in the new graph. In the permutation graph, color all of the vertices either

red or blue. We color a vertex i red if xi is odd and blue otherwise. If two red vertices are

connected by an edge, then the corresponding edges in the permutation graph cross an odd

number of times. Likewise, if two blue vertices are connected by an edge, the corresponding

edges in the permutation graph cross an odd number of times. If a red vertex and a blue

vertex have no edge between them in the colored graph, then they interect an odd number

of times in the permutation graph.
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Theorem 1. The odd crossing number of a graph on the annulus with n edges is at most:

ocr(G) =

⌊
(n− 1)2

4

⌋
.

Proof. We proceed by induction on n. Start with just 1 edge. In this case we do not have

any crossings because we have one edge only. Now, assume that for a graph on the annulus

with n− 1 edges there are at most
⌊
(n−2)2

4

⌋
crossings. If we add in an nth edge with vertices

an−1 and πn−1, such that an−1 is on the perimeter and πn−1 is on the hole, then there are

at most
⌊
n−1
2

⌋
crossings created. To show this, we look at the parity of the crossings. When

edge n has homotopy class 0, either
⌊
n−1
2

⌋
edges cross edge n an odd number of times or⌊

n−1
2

⌋
edges cross edge n an even number of times. In the first case, we are done. In the

second case, we then take edge n to have a homotopy class of 1, and we see that all the edges

that crossed an odd number of times cross an even number of times and vice versa. Then we

have what we desired, which is adding at most
⌊
n−1
2

⌋
to the odd crossing with the addition

of the nth edge. We see that there can be at most
⌊
n−1
2

⌋
edges that cross either edge n with

pseudo homotopy class a or edge n with pseudo homotopy class b. Then, for our graph with

n+ 1 edges, we see that it has at most
⌊
(n−2)2

4

⌋
+
⌊
n−1
2

⌋
edges. This equals

⌊
(n−1)2

4

⌋
because

we have:

⌊
(n− 2)2

4

⌋
+

⌊
n− 1

2

⌋
=

⌊
(n− 2)2

4

⌋
+

⌊
2n− 2

4

⌋
≤
⌊

(n− 1)2 + 1

4

⌋
=

⌊
(n− 1)2

4

⌋
.

We use casework to show equality. If n is odd, then (n−2)2

4
r has a fractional part of 1

4
and

n−1
2

has no fractional part, so
⌊
(n−2)2

4

⌋
+
⌊
n−1
2

⌋
necessarily equals

⌊
(n−1)2−1

4

⌋
, which has a

fractional part of 1
4
, so this also necessarily equals

⌊
n2

4

⌋
. If n is even, then (n−2)2

4
has no

fractional part and n−1
2

has a fractional part of 1
2
. Since the two fractional parts do not sum

to be more than 1, we also get that
⌊
(n−2)2

4

⌋
+
⌊
n−1
2

⌋
necessarily equals

⌊
(n−1)2+1

4

⌋
, which

equals (n−1)2

4
.
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4 Crossing Numbers for a Graph on a Disk with

Multiple Holes

There are multiple ways to draw a given graph on the plane. With each drawing, we can

associate a homotopy class word to each edge. Using these homotopy classes for edges, we

can take the edges pairwise and see if that pair of edges cross and if that pair crosses an

odd number of times. Though it is not important for edges to be non-self-intersecting for

odd crossing number, it is quite necessary for edges to be non-self-intersecting for the pair

crossing number. Undoing any self-intersections is simple, but it changes the homotopy class.

Also, the number of letters in the homotopy class of any edge on a graph with n vertices is

at most 2n [6].

Proposition 1. Self-intersections in an edge can be removed without changing any crossing

numbers

Proof. In order to do so, we follow the edge until we reach the point where it self intersects.

Following the given direction of the edge, we let the part of the edge before the intersection

be a and the part of the edge after the intersection be b for both edge segments in the inter-

section. Then we erase just the intersection and connect the two a parts of the intersection

and connect the two b parts of the intersection.

4.1 Odd Crossing Number for a Graph on a Disk with Multiple

Holes

Given two edges and their homotopy classes, we can determine if they intersect each other

an even or an odd number of times. First, we let i be a reference line and e be an edge.

Then, f(i, e) is the number of times i and i−1 appear in the homotopy class of e. Let our two

edges be ei and ej. Also, let the vertices incident to ei be on holes a and b. Let the vertices
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incident to ej be on holes c and d. The holes a, b, c, and d are not necessarily distinct, but a

and b are distinct and c and d are distinct from each other, respectively. Let g(ei, ej) equal 1

if ei and ej cross when both have homotopy class 1. Otherwise, g(ei, ej) equals 0. Then, we

get the following equation.

Theorem 2. The two edges ei and ej cross an odd number of times if

f(a, ej) + f(b, ej) + f(c, ei) + f(d, ei) + g(ei, ej) ≡ 1 (mod 2)

Proof. In the two homotopy classes for the edges, all of the reference lines to holes that do

not contain any of the vertices incident to the edges results in an even number of crossings.

This follows because we can always deform one of the edges to stay strictly outside of the

other edge if both edges cross the same reference line. Given two homotopy classes for the

two edges, any drawing of the edges will still result in the same number of crossings mod 2.

Thus, we can redraw our two edges by having two concentric circles in the middle of the disk.

Each letter of the homotopy class can be represented as a loop that starts from one of the

concentric circles and ends in the same concentric circle. We let ei always come from and go

to the inner concentric circle for each letter of the homotopy class and we let ej always come

from and go to the outer concentric circle for each letter of the homotopy class. This means

for any letter in the homotopy class of edge ei that isn’t a hole which contains the vertices

incident to edge ej, the letter will cause ei to cross ej an even number of times. However, for

any letter in the homotopy class of edge ei that is a hole which contains the vertices incident

to edge ej, ei will cross ej an odd number of times.
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4.2 Pair Crossing Number for Graphs on the Disk with Multiple

Holes

Given the drawing of the disk with multiple holes, we now flatten all the holes and the

reference lines. The way we do this is by splitting all the reference lines so that there are

now two reference lines to each hole, as seen in Figure 3 left.

Figure 3: Left : This image shows the splitting the reference lines into two reference lines. Here,
we split the reference lines such that there are no vertices in between the two split reference lines.
Right : Flattening the reference lines and the holes from figure on the left into one huge circle. The
reference lines are solid while the outside boundary and the holes are dotted lines. The upper case
letters refer to the holes while the lower case letters refer to the reference lines and the direction of
the reference lines. Note that in a homotopy class with letter e−1, the edge would first enter through
the reference line e−1 and then exit out of the reference line e in both figures. In the second figure,
the edge would briefly exit the circle, but in the actual drawing, it is still within the boundaries.

We then flatten out the reference lines and the holes until they all become one circle as

seen in Figure 3 right. The holes are denoted with capital letters and the reference lines now

have two parts, i and i−1. The reference lines still are used to denote the homotopy classes of

edges. For instance, an edge with homotopy class a will go into a and pop out of a−1, where

we have an imaginary dotted part from a to a−1 outside of the circle.
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Here, we want all of the edges to be self non-intersecting. We can always change the

homotopy class of a self-intersecting edge such that it no longer self-intersects, without

changing the crossing number of the graph and drawing. We can draw the edge as being

made up of only straight line segments because it does not self-intersect.

Theorem 3. The order for determining whether two edges with homotopy class word lengths

of m and n is O(m+ n).

Proof. Drawing the graph and keeping track of the sections and how they connect, both

through boundaries and through reference lines, for one of the edges with the split reference

lines is O(m). Then, we go through each letter of the second edge and check to see if the

edge is forced to cross a boundary in the graph. Since we check each letter of the homotopy

class of the second edge, this is O(n).

4.3 Crossing Number for Graphs on the Disk with Multiple Holes

We use the same construction for the crossing number as we did for the pair crossing num-

ber. We start with two non-self-intersecting edges, or if we have edges that are not self-

intersecting, we remove the self-intersections. The first edge is drawn with straight line seg-

ments, and these line segments partition the graph into different sections. We represent the

edge and the different sections it creates with a tree. The vertices of the tree are the different

sections. Then, we draw an edge between two vertices if the two sections are adjacent to

each other. We draw a dotted edge between two vertices if a reference line can take an edge

from one section to another without crossing the original edge.

Proposition 2. All the sections that can access a reference line i create a path. A path with

the same length is created by the sections that can access the reference line i−1, such that

corresponding vertices in the path have a dotted edge between them in the tree representation.
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Figure 4: Left : We have the edge from the boundary of the disk to hole B, with homotopy class
b−1d−1e−1d. Then, we number all of the sections created by partitioning the graph with the first
edge. Right : We make a tree with the solid edges such that the vertices of the tree are the numbered
sections from the graph on the left. The dashed edges refer to crossing a reference line from one
incident vertex to another in the tree or from one numbered section to another in the graph.

Proof. This follows since all of the sections that can access a reference line have a boundary

part of the initial edge that stems from the reference line, and each boundary represents an

edge in the tree. Figure 4 illustrates this property.

Using the proposition above, we note that if our second edge has b in its homotopy class,

going through reference line b at the first opportunity and then going along the edges of the

tree to a different section, i, that has access to reference line b−1 is the same as going to the

section that connects to i in b−1 and then going through reference line b. The path to the

vertex that first accesses the reference line minimizes the number of crossings.

Proposition 3. The minimal crossing for an edge through the edge already drawn in the

circle consists of straight line segments from reference lines to reference lines.

Proof. This is easy to see using the tree. In order to get from one part of the graph to another

part, as partitioned by the first edge, the edge needs to travel along the edges of the tree

from one part to another, and the shortest path on the tree corresponds to a straight line
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Figure 5: Left : Here we look at an edge that starts on the boundary of the disk and ends on hole C.
The homotopy class of this edge is b−1d−1bedba−1b−1. We then look at the sections partitioned by
the parts of the edge that go through reference lines b and b−1. Right : The two circled parts refer
to the two paths created by the sections that have access to reference line b−1, the upper circle,
and the sections that have access to reference line b, the lower circle. Note that the dashed edges
in the tree are all non-intersecting and follow the two paths.

between the two sections on the graph, because the boundaries of the sections are straight

lines and the original edge is non-self-intersecting.

With these two propositions, we now find the number of times two non-self-intersecting

edges with known homotopy classes cross. First, we create a graph and the tree using one of

the edges.

Theorem 4. There is an O(m · n) time algorithm for computing the number of crossings

given 2 edges and their homotopy classes.

Proof. Each time the second edge traverses an edge on the tree, it goes from one section

to another section, which means it crosses the first edge. Thus, counting all of the edges

traversed on the tree is the same as counting the number of crossings. For each letter in the
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2nd edge, we compute the minimal number of crossings to reach each reference line, as given

by Proposition 3.

This algorithm improves the n11 time algorithm for computing the number of crossings

between two edges with their homotopy classes, given by Schaefer, Sedgwick, and Stefankovic

[5]. However, our algorithm is restricted to graphs on disks with multiple holes, while their

algorithm works for any surface.

We use Schaefer and Stefankovic’s [6] lemma to find the crossing number of a graph:

Lemma 1. Suppose that a graph is drawn in the plane, and edge e is crossed by m other

edges. If there are at least 2m crossings on e, then the drawing can be modified such that

(i) the number of crossings between any two edges does not increase, and (ii) the number of

crossings on e decreases.

Using this lemma, we know that the homotopy class of each edge can be expressed as

a word with at most 2m+k letters, where m is the number of edges and k is the number

of holes. We then use Theorem 4 and find the minimum crossing number of all possible

words. Since the edges are drawn with straight line segments, they can be drawn minimally

simultaneously.

5 Conclusion

We have now developed algorithms for finding various types of crossing numbers on disks with

multiple holes. These algorithms could potentially lead to finding a smaller ratio between

pair crossing number and odd crossing number than the currently known ratio. Future work

could aim to create a faster, more efficient algorithm for the crossing number for graphs on

a disk with multiple holes, not just the number of crossings between two edges.

A possible extension of our algorithms involves expressing each vertex as a hole. This is

done by extending each vertex into a loop to form the hole. All of the edges that the vertex
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is incident to now stems from the hole, and these edges can be permuted in order around the

hole. Then we can draw reference lines from each hole to a boundary loop and run through

our algorithms. However, this is very inefficient, and it would be interesting to see a faster

algorithm to find crossing numbers for general graphs.
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