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Abstract. For graphs F and H, we say F is Ramsey for H if every 2-coloring of the edges of F contains
a monochromatic copy of H. The graph F is Ramsey H-minimal if there is no proper subgraph F ′ of F so

that F ′ is Ramsey for H. Burr, Erdős, and Lovász defined s(H) to be the minimum degree of F over all
Ramsey H-minimal graphs F . Define Ht,d to be a graph on t+ 1 vertices consisting of a complete graph on

t vertices and one additional vertex of degree d. We show that s(Ht,d) = d2 for all values 1 < d ≤ t; it was

previously known that s(Ht,1) = t− 1, so it is surprising that s(Ht,2) = 4 is much smaller.
We also make some further progress on some sparser graphs. Fox and Lin observed that s(H) ≥ 2δ(H)−1

for all graphs H, where δ(H) is the minimum degree of H; a graph H with s(H) = 2δ(H)−1 is called Ramsey
simple. Szabó, Zumstein, and Zürcher were the first to ask which graphs are Ramsey simple, and conjectured

that all bipartite graphs without isolated vertices are. Fox, Grinshpun, Liebenau, Person, and Szabó further

conjectured that all triangle-free graphs without isolated vertices are Ramsey simple. We show that d-regular
3-connected triangle-free graphs, with one extra technical constraint, are Ramsey simple.

1. Introduction

If F and H are finite graphs we write F → H to mean that every 2-coloring of the edges of F with the
colors red and blue contains a monochromatic copy of H. If F → H we say that F is Ramsey for H. For
any fixed graph H, the collection of graphs that are Ramsey for it is upwards closed; that is, if F ′ is a
subgraph of F and F ′ is Ramsey for H, then F is also Ramsey for H. Therefore, in order to understand the
collection of graphs that are Ramsey for H, it is sufficient to understand the graphs that are minimal with
this property; we call these graphs Ramsey H-minimal, or H-minimal for short, and denote the collection
of these Ramsey H-minimal graphs by M(H). One of the foundational results in Ramsey theory, Ramsey’s
theorem, states that for all graphs H, the set M(H) is nonempty [10].

The fundamental goal of graph Ramsey theory is to understand the properties of the graphs in the family
M(H), given the graph H. Several questions about the extremal properties of graphs in M(H) have been
asked throughout the years. One of the most famous such questions is the Ramsey number of H, denoted by
r(H), which asks for the minimum number of vertices of any graph in M(H). This number is only known
for very few classes of graphs H. Of particular interest is r(Kt) (Kt is the complete graph on t vertices),
which is known to be at least 2t/2 [3] and at most 22t [4]. Despite these bounds being over 60 years old, the
constants in the exponents have not been improved, making this one of the oldest and most difficult open
problems in combinatorics. The study ofM(H) has also extended in various other directions. In this paper,
we are interested in the following value, first studied by Burr, Erdős, and Lovász [1]:

s(H) := min
F∈M(H)

δ(F )

where δ(F ) is the minimum degree of F . Because of the H-minimality condition imposed on F , one cannot
arbitrarily add vertices of small degree to F .

Define Ht,d to be the graph on t + 1 vertices which consists of a clique on t vertices and an additional
vertex of degree d. In [1] it is shown that s(Ht,t) = t2, in [12] it is shown that s(Ht,0) = (t− 1)2, and in [6]
it is shown that s(Ht,1) = t− 1. We find s(Ht,d) for all 1 < d < t, showing that

s(Ht,d) =


d2 if 1 < d <≤ t
t− 1 if d = 1

(t− 1)2 if d = 0.

The jump between the values of s(Ht,0) and s(Ht,1) was already known, but the jump between s(Ht,1) and
s(Ht,2) is perhaps more surprising, as both graphs are connected. It is also interesting to note that, if we
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take d large enough compared to t, then the resulting graphs are the first time s(H) has been determined for
very well-connected graphs which are not vertex-transitive; much work has been focused around computing
s(H) where H is either a sparse graph or is vertex transitive , which are somewhat easier cases to handle.

A graph H is called Ramsey simple if s(H) = 2δ(H)− 1. In [12] it is shown that many bipartite graphs
are Ramsey simple, including forests, even cycles, and connected, balanced bipartite graphs (a bipartite
graph is balanced if both parts have the same size). It was further conjectured that all bipartite graphs
without isolated vertices are Ramsey simple. In [5], the authors show that all 3-connected bipartite graphs
are Ramsey simple. They also show that in any 3-connected graph H, if there is a minimum-degree vertex
v so that its neighborhood is contained in an independent set of size 2δ(H) − 1, then s(H) = 2δ(H) − 1.
They further conjectured that all triangle-free graphs without isolated vertices are Ramsey simple. In this
paper, we prove that any d-regular 3-connected triangle-free graph, with one additional technical constraint,
is Ramsey simple. These constraints are not severely restrictive, since a random d-regular triangle-free graph
(for a fixed constant d ≥ 3) satisfies all of these constraints with high probability.

This paper is arranged as follows. In Section 2 we introduce the notation necessary for the paper and
some known simple bounds on s(H). In Section 3 we compute the exact value of s(H) for the graphs Ht,d

for all 0 ≤ d ≤ t, expanding on the results of [1] and [6]. In Section 4 we find a new class of Ramsey simple
graphs. Finally in Section 5 we wrap up with some open questions and directions of further research. This
work builds on the findings and techniques of [7], [12], [6], and [5].

2. Preliminaries and background

2.1. Standard Definitions. Given a graph H, the neighborhood of a vertex v ∈ V (H), denoted by N(v),
is the set of all vertices in H that are adjacent to v and the degree of v, denoted by deg (v), is the size of its
neighborhood. A graph is regular if all vertices have the same degree and it is d-regular if all vertices have
degree d. The independence number of a graph α(H) is defined as the size of the largest set of vertices in
H that induces an independent set in H (a set that contains no edges), and the clique number of a graph
ω(H) is the size of the largest clique in H.

Define G�H to be the graph obtained by taking disjoint copies of G and H and adding the edge relation
(u, v) for all u ∈ V (G) and v ∈ V (H). When we write G1 �G2 �G3, we mean there is a complete bipartite
graph between every pair of the graphs G1, G2, and G3, not just between the pairs (G1, G2) and (G2, G3).

2.2. Simple bounds. The following are simple bounds on s(H).

Theorem 2.1 ([7] and [1]). For all graphs H, we have

2δ(H)− 1 ≤ s(H) ≤ r(H)− 1.

Proof. For the lower bound, suppose s(H) < 2δ(H) − 1. Consider a graph F ∈ M(H) with a vertex v of
degree s(H) < 2δ(H) − 1. By minimality, there must be some coloring of F − v without a monochromatic
copy of H. We extend this to a coloring of F . To do this, partition N(v) into two sets, R(v) and B(v),
so that |R(v)| ≤ δ(H) − 1 and |B(v)| ≤ δ(H) − 1. For any x ∈ R(v) color the edge {v, x} red and for any
y ∈ B(v) color the edge {v, y} blue. In such a coloring, v can never be a part of a monochromatic copy of
H, since its degree in that copy would be less than δ(H), a contradiction.

For the upper bound, simply note that by definition there is a graph on r(H) vertices that is Ramsey
minimal for H. Any vertex in this graph has degree at most r(H)− 1, yielding the desired bound. �

The lower bound has been shown to be exact for all 3-connected bipartite graphs [5] and some other
classes of bipartite graphs [12]. However, for many graphs H, the upper bound is much larger than s(H);
r(H) may be exponentially large in the number of vertices of H [3], while all known values of s(H) are
bounded by a polynomial in the number of vertices of H.

2.3. BEL gadgets. The following theorem is used for all of the results in the paper, so we state it here. It
roughly states that, for any 3-connected graph H, we can find a graph F that, if its edges are 2-colored in
such a way that there is no monochromatic copy of H, we can force whatever color pattern we want in a
certain region of F .

Theorem 2.2 ([2]). Given any 3-connected graph H, any graph G, and any 2-coloring ψ of G without a
monochromatic copy of H, there is a graph F with the following properties:
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(1) F 6→ H,
(2) F contains G as an induced subgraph, and
(3) for any 2-coloring of F without a monochromatic copy of H, the coloring G agrees with ψ, up to

permutation of the two colors.

We call a graph F with coloring ψ and induced subgraph G constructed in this manner a BEL gadget,
and if H satisfies the conclusions of the above theorem for all G and ψ, we say H has BEL gadgets. In
particular, it is shown in [2] that all 3-connected graphs have BEL gadgets. Note that the acronym BEL
stands for Burr, Erdős, and Lovász, who first proved the existence of such gadgets for H = Kt [1].

3. The complete graph with an added vertex

Recall that Ht,d is the graph on t+ 1 vertices that contains a Kt and in which the remaining vertex (not
in the Kt) has degree d, with its neighbors being any d vertices of the Kt.

Note Hd,d is isomorphic to Kd+1, for which s(Kd+1) is known to be d2 [1]. For d = 1, it was recently
shown that s(Ht,1) = t− 1 [6]. For d = 0, it was found s(Ht,0) = s(Kt) = (t− 1)2 [12]. A natural question
that arises is how s(Ht,d) behaves when d is between 1 and t. We now state the main result of this section.

Theorem 3.1. For all 1 < d < t we have
s(Ht,d) = d2.

The proof of this theorem is presented in two parts. In the first part, we prove that s(Ht,d) ≥ d2 for
all values of d. The second part expands on the ideas in [1] and [6] and deals with the upper bound on
s(Ht,d) for d ≥ 2: we construct a graph G with a vertex v of degree d2 that is Ramsey for Ht,d such that
G − v 6→ Ht,d. It follows from this that s(Ht,d) ≤ d2, and so we obtain s(Ht,d) = d2 for all 1 < d < t. We
now begin with the first part of our proof, which closely follows the ideas of [1].

Lemma 3.2. Let H be a graph such that for all v ∈ V (H) the neighborhood of v contains a copy of Kd.
Then s(H) ≥ d2.

Proof. Suppose there exists F ∈ M(H) and some v ∈ V (F ) with deg (v) < d2. Since F is minimal, we can
2-color the edges of F−v so that there is no monochromatic copy of H. Consider any such 2-coloring of F−v.
In this coloring, let S denote the neighborhood of v and let T1, . . . , Tk be a maximal set of vertex-disjoint red
copies of Kd in S. Since deg (v) < d2, we must have |S| < d2, and so k ≤ d− 1. Now we color all the edges
connecting v to T1, . . . , Tk blue, and all other edges incident to v red. We claim that no monochromatic copy
of H arises in such a coloring. Note that such a copy would need to use v. We will now show that there is
no red d-clique in the red neighborhood of v and that there is no blue d-clique in the blue neighborhood of
v, thus showing that v cannot be contained in any monochromatic copy of H.

Any red d-clique in S must intersect one of T1, . . . , Tk and therefore would have a blue edge from v.
On the other hand, suppose there exists a blue d-clique in the blue neighborhood of v, which is precisely
T1 ∪ · · · ∪ Tk. Since k ≤ d − 1, by the pigeonhole principle, at least two vertices of this blue d-clique must
be contained in the same Ti. These two vertices, however, are connected by a red edge, a contradiction. It
follows that such an F ∈M(H) cannot exist, and hence s(H) ≥ d2. �

Since the neighborhood of each vertex in Ht,d contains a copy of Kd, we have the following corollary.

Corollary 3.3. For all values of d we have s(Ht,d) ≥ d2.

This completes the first part of our proof, establishing a lower bound on the value of s(Ht,d).
For the upper bound, we wish to construct an H-minimal graph with vertex of degree exactly d2 for d ≥ 2.

To that end, we wish to show that Ht,d has BEL gadgets. Theorem 2.2 implies this in the case d ≥ 3, but
not when d = 2; the majority of the work in this section is proving that Ht,2 has BEL gadgets.

Theorem 3.4. For all 2 ≤ d ≤ t, the graph Ht,d has BEL gadgets.

We postpone the proof of this theorem to the end of the section; let us first see why it implies the desired
upper bound on s(Ht,d).

Lemma 3.5. For all 2 ≤ d ≤ t there exists a graph F ′ with vertex v of degree d2 so that F ′ → Ht,d but
F ′ − v 6→ Ht,d.
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Proof. If d = t then s(Ht,d) = d2 by [1], which immediately implies the lemma; we will henceforth assume
d < t.

The graph Ht,d has BEL gadgets by Theorem 3.4. This means that for any graph G and 2-coloring ψ
of G without a monochromatic copy of H, there exists a graph F 6→ Ht,d with an induced copy of G such
that every 2-coloring of F without a monochromatic copy of Ht,d agrees with ψ on the copy of G, up to
permutation of colors. We describe our graph G together with its coloring ψ for our BEL gadget as follows:

(1) G contains d disjoint red copies T1, . . . , Td of Kt,
(2) For each distinct pair i and j, there is a complete blue bipartite graph between Ti and Tj , and
(3) For each way there is to choose a d-tuple T = (t1, . . . , td) ∈ T1 × · · · × Td by taking one vertex from

each Ti, we add a set of t − d vertices ST = {vT1 , . . . , vTt−d}; we add blue edges between all pairs of
vertices in ST so that ST becomes a blue clique, and add more blue edges so that there is a complete
blue bipartite graph between ST and T . For distinct d-tuples T and T ′, ST and ST ′ are disjoint.

An example of this G with coloring ψ is shown in Figure 1. We first claim that this coloring ψ contains no
monochromatic copy of Ht,d. The connected components in red are all copies of Kt, so there is no red copy
of Ht,d. We also claim there is no blue copy of Ht,d. If we omit the vertices that are contained in any of the
ST , the blue graph is d-partite and so contains no Kt, as d < t. Therefore, any blue copy of Ht,d must use
some vertex w in some ST as part of a blue Kt. Note that the blue degree of w is t− 1, and therefore this
blue Kt must consist precisely of w and its neighborhood. However, any vertex that is not w or contained
in the blue neighborhood of w has degree at most d − 1 to the neighborhood of w by construction, and so
cannot be the vertex of degree d in Ht,d. Therefore, there is no blue copy of Ht,d.

Consider a graph F 6→ Ht,d with an induced copy of G such that any 2-coloring of F without a monochro-
matic copy of Ht,d restricts to the coloring ψ on the induced copy of G, up to permutation of the colors;
this exists by Theorem 3.4. We now modify F to F ′ by adding a vertex v, and adding d edges from v to
each Ti in the induced copy of G. The vertex v clearly has degree d2. We claim that this modified graph
F ′ is Ramsey for Ht,d. Consider any 2-coloring of F ′. In this 2-coloring, if there is a monochromatic copy
of Ht,d in the subgraph F = F ′ − v, then we are done. Otherwise suppose the 2-coloring does not yield a
monochromatic copy of Ht,d in F . Then the induced graph G must have coloring ψ, up to permutation of
colors. Let us assume without loss of generality that each Ti forms a red clique and the remaining edges are
blue.

If v had red degree d to some Ti, then v together with Ti would be a red copy of Ht,d. Thus, at least one
edge from v to each copy of Ti must be colored blue. Choose one vertex ti from each Ti so that v has a blue
edge to ti and take T = (t1, . . . , td). Then these vertices ti together with ST forms a blue Kt, and adding v
creates a blue Ht,d. �

This immediately gives the desired upper bound on s(Ht,d).

Corollary 3.6. For every 2 ≤ d ≤ t, we have s(Ht,d) ≤ d2.

Proof. By the previous lemma, there is a graph F ′ with a vertex v of degree d2 which is Ramsey for Ht,d

so that F ′ − v is not Ramsey for Ht,d. Take F ′′ to be a subgraph of F ′ which is minimal subject to the
constraint that F ′′ is Ramsey for F . F ′′ must contain v, and so s(Ht,d) ≤ δ(F ′′) ≤ d2, as desired. �

We now prove that Ht,2 has BEL gadgets. Note that, for t = 2, the graph H2,2 is isomorphic to K3, for
which it is known that BEL gadgets exist [1]. Henceforth, we will assume that t ≥ 3. The ideas behind the
proof of BEL gadgets for Ht,2 stems from a strategy in [6]. We now introduce the main tool that we will
need.

Definition 3.7. Write F
ε→ H to mean that, for every S ⊆ V (F ) such that |S| ≥ ε|V (F )|, the subgraph of

F induced by S is Ramsey for H (i.e. F [S]→ H).

The following lemma, which is a strengthening of a theorem in [9], is proven in [6].

Lemma 3.8. For any graph H and every ε > 0 and t > 2, if ω(H) < t then there exists a graph F that is

Kt-free such that F
ε→ H.
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vy

vx

vz

ST

Figure 1. Example of G with the coloring ψ for t = 5 and d = 3. Here, only one set
ST is shown, corresponding to the triple T = (vx, vy, vz). The dashed blue edges represent
complete blue bipartite graphs. When we add the external vertex v, we will connect it to
three vertices from each copy of K5, making its degree d2 = 9.

Using F , we are now ready to construct a graph G0 so that for every coloring of G0 without a monochro-
matic copy of Ht,2, a particular copy of some (arbitrary) graph R0 is forced to be monochromatic. Further-
more, there is a coloring of G0 where R0 is red, all of the edges leaving R0 are blue, there is no red Ht,2,
and there is no blue Kt. The proof of this lemma closely follows the arguments in [6].

Lemma 3.9. Let R0 be a fixed graph that has no copy of Ht,2. Then there exists a graph G0 with an induced
copy of R0 and the following properties:

(1) There is a 2-coloring of G0 without a red copy of Ht,2 and without a blue copy of Kt in which the
edges of R0 are red, and all of the edges incident to, but not contained in, R0 are blue, and

(2) Every 2-coloring of G0 without a monochromatic copy of Ht,2 results in R0 being monochromatic.

Proof. Take ε = 2−n−t
2

, where n is the number of vertices in R0. Let F1, F2, . . . , Ft−2 be copies of the graph
as defined in Lemma 3.8 when applied to H = Ht−1,1. We claim that the graph G0 := F1�F2�· · ·�Ft−2�R0

satisfies both desired conditions (see Figure 2).
To see the first property, color all the edges internal to any of F1, F2, . . . , Ft−2, R0 red and the remaining

edges blue. There can be no monochromatic red copy of Ht,2, since each Fi is Kt-free and R0 was defined to
be Ht,2-free. Furthermore, there is no blue Kt, since the graph induced by the blue edges is (t−1)-chromatic.

To see the second property, we consider some 2-coloring ψ of G0 so that G0 does not have a monochromatic
copy of Ht,2. We show that this forces R0 to be monochromatic. For a subset S of the vertices and some
vertex v 6∈ S, define the color pattern cv with respect to S to be the function with domain S that maps a
vertex w ∈ S to the color of the edge (v, w). This method was utilized in [6].

For a vertex v ∈ F1, consider its color pattern cv with respect to V (R0). There are 2n possible color
patterns, so at least a 2−n fraction of the vertices in F1 have the same color pattern with respect to V (R0).
Call the set of these vertices S1. Then |S1| ≥ 2−n · |V (F1)| ≥ ε · |V (F1)|, so there must exist a monochromatic
copy H1 isomorphic to Ht−1,1 in S1. Without loss of generality, suppose H1 is monochromatic in red. We
claim that all the edges going from S1 to R0 (and in particular from H1 to R0) are blue. Indeed, since all
vertices v ∈ S1 have the same color pattern with respect to R0, then for a fixed vertex i ∈ R0 the edges (i, v)
have the same color for all v ∈ S1. If that color is red, then i along with all the vertices of H1 would form a
monochromatic red copy of Ht,2, which contradicts our definition of ψ. We now proceed inductively. Suppose
we have identified red copies of Ht−1,1 labeled H1, . . . ,Hk−1 in F1, . . . , Fk−1 with vertex sets V1, . . . , Vk−1
respectively, and that all edges between these copies as well as to R0 are blue. In Fk, at least 2−n−t(k−1) > ε
of the vertices Sk have the same color pattern with respect to V (R0) ∪ V (H1) ∪ · · · ∪ V (Hk−1). Since
|Sk| > ε · |V (Fk)|, we have F [Sk]→ Ht−1,1. Find a monochromatic copy of Ht−1,1 and call it Hk. Suppose
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Hk is blue. Then, as in the case before, all the edges between Hk and R0, as well as to H1, . . . ,Hk−1, would
have to be red, otherwise there would be a monochromatic blue copy of Ht,2. But if all these edges are red,
then any vertex of Hk along with H1 forms a monochromatic copy of Ht,2, a contradiction. Thus, Hk must
be red, and consequently all edges between Hk and H1, . . . ,Hk−1, R0 must be blue, completing the inductive
step. After applying this argument t− 2 times, we have a collection (H1, . . . ,Ht−2) of red copies of Ht−1,1
with complete bipartite blue graphs between any two of them. Now, suppose some edge in R0 was blue.
Then this edge, along with one vertex in each of H1, . . . ,Ht−2 and one other arbitrary vertex in H1 forms a
monochromatic blue copy of Ht,2. Thus, all the edges in R0 must be colored red, as required. �

F1 F2 F3

R0

Figure 2. Construction of the gadget graph G0 for t = 5 and d = 2. The dashed lines
represent complete bipartite graphs.

We now introduce a lemma which is a stronger version of an idea first introduced in [1] known as a positive
signal sender.

Lemma 3.10. There is a graph G with two independent edges e and f so that, in any 2-coloring of G
without a monochromatic copy of Ht,2, both edges e and f must have the same color. Furthermore, there is
a 2-coloring of G with no red Ht,2 and no blue Kt in which both edges e and f are red, and in which all of
the edges incident to either of e or f are blue. Furthermore, there are no edges incident to both e and f .

Proof. This follows by taking R0 in the previous lemma to be two disjoint edges, e and f . �

We now take the above lemma and use it to prove a slight strengthening of itself.

Lemma 3.11. There is a graph G with two independent edges e and f so that in any 2-coloring of G
without a monochromatic copy of Ht,2 both edges e and f must have the same color. Furthermore, there is
a 2-coloring of G with no red Ht,2 and no blue Kt in which both edges e and f are red, and in which all of
the edges incident to either of e or f are blue. Furthermore, any path between a vertex of e and a vertex of
f has length at least 3.

Proof. Lemma 3.10 gave us a graph that satisfied all of these constraints except for the last one. Take
two copies G′, G′′ of this graph from Lemma 3.10, with distinguished pairs of edges (e′, f ′) and (e′′, f ′′),
respectively. Identify f ′ with e′′ and take e = e′ and f = f ′′, and call the resulting (combined) graph G. By
construction, any path between a vertex of e and a vertex of f has length at least 3. Also by construction,
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in any 2-coloring of G without a monochromatic copy of Ht,2, we must have that e = e′ and f ′ have the
same color, and f ′ = e′′ and f ′′ = f ′ have the same color, and so e and f have the same color. Finally, if
we color e, f ′, and f all red, then we may extend this to colorings of G′ and G′′ so that neither G′ nor G′′

contains a red Ht,2 or a blue Kt so that all edges incident to either of e or f are blue. This coloring contains
no red Ht,2, as every connected component in red is contained entirely within at least one of G′ and G′′,
and neither one of these graphs has a red copy of Ht,2. There is no blue copy of Kt, as every blue triangle
is contained either entirely within G′ or entirely within G′′, and neither one contains a blue copy of Kt. �

The next lemma uses these so-called strong positive signal senders to construct a weaker version of BEL
gadgets for Ht,2. It is weaker because it does not guarantee that we can agree with a given coloring ψ of
a graph up to permutation of colors; it only guarantees that in a monochromatic Ht,2-free coloring of the
graph, the edges that are red in ψ all end up with one color α1 and the edges that are blue in ψ all end
up with one color α2. The two colors α1 and α2 may be the same. After proving this lemma, we will then
show that the existence of this weaker version of BEL gadgets implies the full strength of the BEL theorem,
completing the proof.

Lemma 3.12. Given edge-disjoint graphs G0 and G1 on the same vertex set that are both Ht,2-free, there is
a graph G with an induced copy of G0 ∪G1 so that there is a 2-coloring of G without a monochromatic copy
of Ht,2 in which G0 is red and G1 is blue. Furthermore, in any 2-coloring of G without a monochromatic
Ht,2, all the edges in G0 have the same color and all the edges in G1 have the same color.

Proof. Take F to be a copy of the graph given by Lemma 3.11 (named G in the proof of Lemma 3.11).
Form a graph G as follows. Start with G0 ∪ G1 on the same vertex set. Add two edges e0 and e1

independent from both G0 and G1. Henceforth, we will assume G0 refers to the graph G0 ∪ e0 and G1 refers
to the graph G1 ∪ e1. For any edge f0 (distinct from e0) in the graph G0, we add a copy of F with e0 and f0
as the distinguished edges. For any edge f1 (distinct from e1) in the graph G1, we add a copy of F with e1
and f1 as the distinguished edges. By construction, in any 2-coloring of G without a monochromatic Ht,2,
all of the edges in G0 have the same color and all of the edges in G1 have the same color.

Consider coloring all edges of G0 red and all edges of G1 blue. By construction of F , we may extend this
coloring to a coloring of G in which every copy of F attached to two edges in G0 contains no blue Kt and
no red Ht,2 and in which all of the edges of F that are incident to the two edges are blue. Symmetrically, in
this coloring every copy of F attached to two edges in G1 contains no red Kt and no blue Ht,2 and satisfies
that all of the edges of F that are incident to the two edges are red.

We claim there is no blue Ht,2. By symmetry it will follow that there is also no red Ht,2. First observe
that if we pick any two edges (e, f) to which a copy of F is attached, the vertices of any triangle in G are
either contained entirely in F or entirely in the graph G′ obtained by removing the vertices of F except e
and f ; this follows immediately from the construction. Note further that any triangle that is not contained
entirely in G′ must use some vertex w that belongs to F but not to G′; since there is no vertex in F that
has as a neighbor both a vertex of e and a vertex of f , such a triangle may not use both a vertex of e and a
vertex of f ; in particular, this means that all of the edges used by the triangle are contained in F (note that
there are no edges between e and f that are not contained in F , by the way we constructed G0 and G1).
Therefore, any copy of Kt must be contained entirely in the edges of F or in entirely in G′. Since there is
no blue Kt in the copies of F attached to edges from G0, any blue copy of Ht,2 must have its copy of Kt

contained entirely in G1 or entirely in some copy of F attached to two edges of G1. If we take a blue Kt

contained in some copy of F attached to two edges (e, f) of G1, then, since all of the edges incident to both e
and f are red, if we take the connected component corresponding to the blue subgraph of G containing this
copy of Kt, we see that it is contained entirely in this copy of F . But by assumption this copy of F has no
Ht,2, and so this blue Kt is not contained in any copy of Ht,2. Therefore, any blue copy of Ht,2 must have
its Kt contained in G1. By assumption, G1 contains no copy of Ht,2, so this copy must have some vertex
outside of G1 that has blue degree at least 2 to this copy of Kt. Such a vertex cannot be contained in the
copies of F attached to two edges of G1, as these are completely red to G1. Therefore, this vertex must be
contained in some copy of F attached to two edges (e, f) of G0. But neither e nor f may be edges of the
blue clique, since they are both red, and so this vertex must have a blue neighbor in e and a blue neighbor
in f , but this contradicts our assumptions on F , concluding the proof. �
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If a graph H satisfies the conclusions of the above lemma, we say it has weak BEL gadgets. We now prove
that this is enough to get strong BEL gadgets for Ht,2, thus completing the proof of the upper bound.

Lemma 3.13. If H is connected and has weak BEL gadgets, then H has BEL gadgets.

Proof. Consider a graph G with a given 2-coloring ψ. Let G be composed of the graphs G′0 and G′1, where
G′0 is the graph induced by the blue edges of G and G′1 is the graph induced by the red edges of G. Take t
to be the number of vertices in H.

Define a graph G0 by taking G′0, adding to it some set S of t vertices, and add edges to S so it forms
a copy of H with one edge removed. Define G1 by taking G′1, adding to it S as well, and adding in to S
the edge that was removed from H so that now, S consists exactly of a copy of H. We will show that this
resulting graph can be made a strong BEL gadget for H. Note that neither G0 nor G1 contains a copy of
H; the connected components are either connected components of G0 or G1, or are in S. Note further that
in any 2-coloring of G0 ∪G1 in which all of the edges in G0 have the same color and all of the edges of G1

have the same color, if G0 and G1 have the same color then there is a monochromatic copy of H, namely on
vertex set S. Now, taking a weak BEL gadget for G0 and G1 yields the desired strong BEL gadget for G′0
and G′1. �

4. Ramsey simple graphs

The lower bound s(H) ≥ 2δ(H) − 1 is established in [7]. A natural question that arises is to classify all
graphs with s(H) exactly equal to 2δ(H)− 1.

Definition 4.1. A graph H that satisfies s(H) = 2δ(H)− 1 is called Ramsey simple.

In this section, we show a specific class of graphs to be Ramsey simple. We expand on the results of [7],
[12], and [5]. In particular, we prove the following theorem.

Theorem 4.2. Let H be a d-regular graph with BEL gadgets, where d ≥ 1. Suppose there exists a vertex
v ∈ H for which N(v) is an independent set and H − v −N(v) is connected. Then s(H) = 2d− 1.

It is worth remarking that the technical constraints in the assumptions of the theorem, about having BEL
gadgets and there being a vertex v for which H − v − N(v) is connected, are not very restrictive. In fact,
recall that all 3-connected graphs H have BEL gadgets and note that a d-regular triangle-free graph chosen
uniformly at random satisfies these constraints with high probability for fixed d ≥ 3 and large enough n.
That is, the theorem is applicable to almost all d-regular triangle-free graphs.

For the rest of the section, let H be a d-regular graph with BEL gadgets, where d ≥ 1 and let v be a vertex
of H with N(v) an independent set and H−v−N(v) connected. Our proof will be divided as follows. First,
we will show that there exists an H-free graph G with an independent set S of size 2d− 1 so that adding an
external vertex and connecting it to any d vertices of S creates a copy of H. Once we have constructed G,
we will create a BEL gadget and conclude that s(H) ≤ 2d − 1, from which it follows by Theorem 2.1 that
s(H) = 2d− 1. Our proof roughly follows the ideas of [5].

Lemma 4.3. There exists an H-free graph G with an independent set S of size 2d − 1 so that adding a
vertex to G and connecting it to any d vertices of S creates a copy of H.

Proof. Construct the graph G as follows. Take an independent set S of size 2d− 1. For any subset S′ ⊆ S
of size d, construct a copy of the graph H − v, and then identify N(v) and S′ (see Figure 3). Do this for all

size-d subsets S′ ⊆ S, and call the resulting graph G. Formally, G has vertex set S ∪
((
S
d

)
× [n− d− 1]

)
.

Enumerate the vertices of H as v1, . . . , vn so that v = vn and N(v) = {vn−d, . . . , vn−1}. For every set

S′ ∈
(
S
d

)
, fix an arbitrary ordering of the vertices of S′ labeled vS

′

n−d, v
S′

n−d+1, . . . , v
S′

n−1. The edges of G that
are not incident to S are pairs of the form {(S′, k1), (S′, k2)} where (vk1 , vk2) is an edge in H − v. The edges

of G that are incident to S are pairs of the form {vS′

k1
, (S′, k2)} where (vk1 , vk2) is an edge in H − v.

We claim that the graph G is H-free. If it is not, some vertex that is not in S, i.e. some vertex of the
form (S′, k), must be used in the copy of H in G. Let G′ be the induced copy of H − v corresponding to S′;
i.e. G′ = G [S′ ∪ {{S′} × [n− d− 1]}]. We claim that all vertices and edges of G′ must be contained in the
copy of H. To see this, note that if any vertex (S′, k) is used in the copy of H, then all of its neighbors must
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be as well, for it only has d neighbors and H is d-regular. By connectivity of H − v − N(v), this implies
that all of the vertices of the form (S′, k) must be used. This in turn implies that all of the edges incident
to any vertex of the form (S′, k) must be used, but this includes all edges and vertices of G′ since G′ has no
isolated vertices and S′ is an independent set.

Since G′ only consists of n − 1 vertices, there must be exactly one vertex v′ 6∈ V (G′) that is part of the
copy of H. But any vertex not in G′ can have at most d− 1 neighbors in G′. This is a contradiction, since
v′ must have degree d, as H is d-regular. Thus G can contain no copy of H. �

H − v H − v

Figure 3. Construction of G for d = 4. Here, only two copies of H − v are shown.

We finish off the proof of Theorem 4.2 now by constructing the graph F . We require that F → H with a
vertex v of degree 2d− 1; furthermore, we also require F − v 6→ H, which would complete the proof.

Proof of Theorem 4.2. There exist BEL gadgets for H by assumption. Take two copies of the graph G
obtained from Lemma 4.3, and identify the two independent sets S of size 2d − 1. Color one copy of G
red, and the other copy blue. Call this colored graph G′, with coloring ψ′. Construct a BEL gadget F ′ so
that F ′ has an induced copy of G′ and satisfies the following property: F ′ 6→ H and, in any coloring of
F ′ without a monochromatic copy of H, the induced copy of G′ has the coloring ψ′, up to permutation of
colors. Add one more vertex v to F ′ and add edges from v to all of S; call the resulting graph F . Clearly,
the degree of v is 2d− 1, and F − v is not Ramsey for H. It only remains to prove that F → H. Consider
any 2-coloring ψ of the edges of F . If, in this coloring, there is a monochromatic copy of H in F − v, we are
done. Otherwise, we know that the induced copy of G′ has coloring ψ. Observe that v has degree 2d − 1,
and so by the pigeonhole principle, at least d of the edges adjacent to v must have the same color, say red.
Then v, together with these d neighbors in S as well as the red copy of H − v corresponding to these d
vertices, defines a monochromatic (red) copy of H. So F → H, and so s(H) ≤ 2d − 1. Together with the
lower bound of Theorem 2.1, this implies that s(H) = 2d− 1, as required. �

5. Conclusion and open problems

We calculated the value of s(H) for several classes of graphs, expanding on previous results. However,
there remain several interesting related problems that remain unanswered.

Recall that a Ramsey simple graph is a graph H for which s(H) = 2δ(H) − 1; in such a graph, s(H) is
described in terms of a simple graph parameter. We are particularly interested in the following question.
Note that G(n, p) is the graph obtained from Kn by keeping every edge independently with probability p,
and discarding it with probability 1− p.

Question 5.1. Fix any 0 < p < 1. For sufficiently large n, can s(G(n, p)) be described with high probability
in terms of some well-known or efficiently-computable graph parameter?

In Section 4, we determined that the lower bound s(H) ≥ 2δ(H) − 1 is exact when H is a 3-connected
d-regular triangle-free graph subject to a minor technical constraint. The conjecture of [5] remains open.

Conjecture 5.2. For all triangle-free graphs H with no isolated vertices, we have s(H) = 2δ(H)− 1.

A question of [12] also remains open.

Question 5.3. Given a graph H as input, is there an efficient algorithm that computes s(H)?
9



It is easy to see that, for the class of graphs H that have BEL gadgets, s(H) is computable. This motivates
the question of which graphs have BEL gadgets. The work of [2] shows that all 3-connected graphs have
BEL gadgets. We showed here that Ht,2 has BEL gadgets. It is also known that cycles have BEL gadgets
from [8]. These observations motivate the following conjecture.

Conjecture 5.4. All 2-connected graphs have BEL gadgets.

The results of Section 3 and Section 4 suggest that s(H) is not determined by the global structure of H,
but rather is dependent on the local structure of a single vertex in H. This interesting point motivates the
following, perhaps overly bold, conjecture. Note that when we use BEL gadgets to get an upper bound on
s(H), we construct a 2-coloring of a graph G without a monochromatic copy of H which has the property that
any 2-coloring of the vertices contains a monochromatic (in both edges and vertices) copy of the neighborhood
of some vertex in H; the following conjecture is that we can remove the constraint that this original coloring
contains no monochromatic copy of H.

Conjecture 5.5. Let H be a graph that has BEL gadgets. Let k be the smallest integer so that there
exists a 2-coloring of the edges of Kk such that for every 2-coloring of the vertices of Kk, there exists a
monochromatic copy (in edges and vertices) of the neighborhood of some vertex v ∈ H. Then s(H) = k.

One can verify that this conjecture holds for Ht,d for d ≥ 2. This conjecture also immediately implies
Conjecture 5.2 for those triangle-free graphs that have BEL gadgets. It is straightforward to prove that, if
k is the integer from the conjecture, s(H) ≥ k; the upper bound, however, seems much more difficult to
approach. It is worth noting that the conjecture is false for some graphs that do not have BEL gadgets;
Ht−1,1 is a counterexample. The same conjecture was stated for H ∼= Kt in the case that there are more
than two colors in [] TODO: INSERT CITATION; we also conjecture that the generalization of the above
to more than two colors holds for H, as long as H has BEL gadgets.
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