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Abstract

We calculate the formation width for a large class of sequences. In some

cases, we use the formation width to improve bounds on Ex(u, n) for these

sequences. We introduce a new algorithm for calculating the formation width,

determine its approximate runtime and use it to find classes of sequences with

tight bounds on Ex(u, n). We also prove a Ramsey-type result on sparse

sequences.
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1 Introduction

In 1965, Harold Davenport and Andrzej Schinzel [3] introduced a type of sequence

known as a Davenport-Schinzel sequence. The definition of these sequences is moti-

vated by examining the lower envelope of a set of polynomial functions.

In general, the lower envelope of a set of real-valued functions {f1, f2 . . . fn} is

simply the function L(x) = mini(fi(x)), which assigns to a real x the index i of the

function fi(x) taking the minimum value out of all the functions in the set at that

point.

These lower envelopes can be better understood pictorially. A simple example

for a set of three linear functions shown above, with the values of L(x) at each point

shown on the x-axis. The lower envelope can be viewed as a partition of the real line

into discrete intervals, each with a natural number associated to it. In addition, the

boundaries between each of these intervals corresponds to an intersection of two of

the underlying functions. Therefore, the values of these intervals form a sequence of

natural numbers that can give us information about the underlying set of functions

(intersections) without any knowledge of the actual set.

It is easy to analyse the lower envelope of a set of polynomial functions that

all have the same degree s. Any two of these polynomials can intersect at most

s times. As was noted earlier, the sequence that can be derived from the lower

envelope encodes an intersection between function fi and fj as the subsequence ij

or ji. Therefore, if we are considering the lower envelope of polynomial functions,

the associated sequence cannot contain ij or ji repeated s+1 times as a subsequence.
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Thus, the geometric problem of studying lower envelopes can be approached

combinatorially by analysis of these associated Davenport-Schinzel sequences.

Formally, a Davenport-Schinzel sequence is a sequence S on a finite alphabet of

letters satisfying the following two conditions:

1. S does not contain the alternation abab . . . of length s + 2 as a subsequence,

where a and b are any two distinct letters of its alphabet.

2. No two adjacent letters in S are the same.

Astonishingly, results on Davenport-Schinzel sequences have a variety of applica-

tions in computational geometry besides lower envelope analysis. Several are detailed

in a book written by Agarwal and Sharir [2].

Then, in 1992, Adamec, Klazar, and Valtr [11] considered a generalized version

of Davenport-Schinzel sequences, which have turned out to be an even deeper and

more interesting object of study with numerous applications in other areas. Instead

of looking at ordinary Davenport-Schinzel sequences which avoided alternations,

they considered sequences that avoided an arbitrary fixed subsequence u.

Before we define these generalized sequences rigorously, we need a concrete defi-

nition of what ‘avoid’ means. Recall that for ordinary Davenport-Schinzel sequences,

the sequence is required to not have a sequence of the form abab . . . as a subsequence,

where a and b are any two distinct letters in the alphabet of the sequence. Thus, in

addition to not containing abab . . ., our sequence also cannot contain subsequences

such as cdcd . . . or xyxy . . .. However, these sequences all have the same basic struc-

ture. For example, we can get from abab . . . by replacing all the a’s with c’s and

all the b’s with d′. In general, we say two sequences are isomorphic when one can

be transformed into the other via a renaming of its alphabet. With this notion of

sequence isomorphism, we can now rigorously define generalized Davenport-Schiznel

sequences.

Given some fixed sequence of letters u over an alphabet of size r, a generalized

Davenport-Schinzel sequence is a sequence S(u) satisfying the following two condi-

tions:

1. S does not contain any sequence isomorphic to u as a subsequence.

2. r-sparsity: No two letters in S(u) within r of each other are the same.

4



Both of these conditions are a natural generalization of the two conditions used

to define regular Davenport-Schinzel sequences.

The main problem in this field is to determine the maximum lengths of gener-

alized Davenport-Schinzel sequences. The function Ex(u, n) denotes the maximum

length of a generalized Davenport-Schinzel sequence on an alphabet of n letters

avoiding the sequence u. Bounds on the value of Ex(u, n) have been used in a va-

riety of situations, including bounding the complexity of faces in arc arrangements

[2] and tightening bounds on the complexity of double-ended queue operations on

splay trees [7].

Another application of generalized Davenport-Schinzel sequences is in the study

of simple k-quasiplanar topological graphs. Fox. et al. [4] found that the bound

on the number of edges in a simple k-quasiplanar graph with n vertices depends on

the value of Ex((a1a2 . . . ac)
t, n), where (a1a2 . . . ac)

t denotes a1a2 . . . ac repeated t

times.

In Section 2 we introduce notation and basic results used in the paper. In

Section 3, we find the formation width of a sequence and show its application in

bounds on quasiplanar graphs. In Section 4, we find the formation width of any

sequence on two distinct letters. In Section 5, we partially characterize how inserting

or concatenating a single letter onto a sequence affects its formation width. We

also make a conjecture that, if assumed true, gives a better upper bound on the

formation width of any sequence. In Section 6, we discuss a new method for finding

a lower bound on the formation width of a sequence. In Section 7, we calculate and

bound the formation width for a variety of sequences. In Section 8, we construct

an algorithm for calculating the formation width and determine its approximate

runtime. We also characterize some large classes of sequences with tight bounds

on Ex(u, n). In Section 9, we prove a Ramsey-like result for sparse sequences. In

Section 10, we propose some open problems.

2 Preliminaries

The following are concepts and notation used in the Results section.

Recall our standard definitions. A sequence is r-sparse if no set of r consecutive

letters contain two equal letters. A sequence is said to be isomorphic to u if it can

be transformed to u by some renaming of its alphabet. A sequence contains u when
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it has some subsequence isomorphic to u, and avoids u if it has no such subsequence.

The function Ex(u, n) denotes the maximum length of an r-sparse sequence on an

alphabet of n distinct letters avoiding a pattern u.

For the purpose of brevity, let Ic be the increasing sequence on c letters, de-

noted by either a1a2 . . . ac or 12 . . . c. Likewise, Dc is the decreasing sequence on

c letters, denoted by either acac−1 . . . a1 or c(c − 1) . . . 1. We refer to alt(l, t) as

a concatenation of t permutations, alternating between Il and Dl. For example,

up(3, 3) = a1a2a3a1a2a3a1a2a3 and alt(3, 3) = a1a2a3a3a2a1a1a2a3. For any sequence

S, Sk denotes S repeated k times.

In this paper, permutations on sequences permute the alphabet of the sequence,

not the sequence itself. For example, 123321→ 312231 is achieved by permuting 1 to

3, 2 to 1, and 3 to 2. Given a permutation π, denote the sequences π(1)π(2) . . . π(c)

and π(c)π(c− 1) . . . π(1) as Iπ and Dπ respectively.

Definition 2.1. An (r, s)-formation is a concatenation of s permutations on r let-

ters.

For example, the sequence (abc)(acb) is a (3, 2)-formation, while

(adbc)(acbd)(abcd)(dcba)(dcab)

is a (4, 5)-formation.

Definition 2.2. For a pattern u, fw(u) is defined as the smallest s for which there

exists r such that every (r, s)-formation contains u.

As a simple example, consider u = abab. It is clear that for any c, the (c, 2)-

formation (12 . . . c)(c(c − 1) . . . 1) avoids abab. Therefore, fw(abab) ≥ 3. We can

then check every (2, 3)-formation and find that they all contain abab under some

permutation, therefore fw(abab) = 3.

A binary formation is a formation with every permutation being either Ic or

Dc. The following lemma by Geneson et al. relates binary formations to general

formations.

Lemma 2.3. [1] There exists a function γ(r, s) such that every (γ(r, s), s)-formation

contains a binary (r, s)-formation.
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By this lemma, it suffices to show that only every binary (r, s)-formation contains

u and that there exists some binary (r, s − 1)-formation that avoids u in order to

prove fw(u) = s.

2.1 Bounding Ex(u, n) using (r, s)-formations

We denote by Fr,s(n) the maximal length of a sequence on n distinct letters that

avoids every (r, s)-formation. Given a pattern u on r letters, we define Exc(u, n) to

be the length of the longest c-sparse sequence on n letters that avoids a pattern u

for some fixed c ≥ r.

Lemma 2.4. [5] If u is a pattern with at most r distinct letters, then Exd(u, n) ≤
Exc(u, n) ≤ (1 + Exc(u, d− 1))Exd(u, n) for all n ≥ 1 and d ≥ c ≥ r.

Lemma 2.4 directly implies Lemma 2.5.

Lemma 2.5. [1] For any pattern u with r letters and fixed c ≥ r, Exc(u, n) =

O(Fr,fw(u)(n)).

Lemma 2.6. [6] For s ≥ 4 and t = b(s− 3)/2c,

Fr,s(n) =

{
n · 2(1/t!)α(n)t+O(α(n)t−1) : s is even

n · 2(1/t!)α(n)t log2 α(n)+O(α(n)t) : s is odd.

Using Lemma 2.5, set c = r and get Ex(u, n) = O(Fr,fw(u)(n)). Using the bounds

in Lemma 2.6 then gives an upper bound on Ex(u, n) that depends on the value of

fw(u).

2.2 The `(u) Function

Let `(u) be the smallest k such that Ikc contains u, where u has c distinct letters.

Geneson et al. [1] used `(u) to find a lower bound for fw(u). Since Ikc is a binary

(c, k)-formation, it follows immediately that fw(u) ≥ `(u). In addition, for a permu-

tation π, define `π(u) to be the smallest k such that Ikc has u under the permutation

π as a subsequence.

Lemma 2.7. [1] For any permutation π, `π(Ic) + `π(Dc) = c+ 1.

Lemma 2.7 also implies `(IcDc) = c + 1. We use this lemma in several of the

subsequent results.
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3 fw(Ikc ) and k-Quasiplanar Graphs

We prove fw(Ikc ) = 2k−1. We show its use in tightening the bounds on the number

of edges in simple k-quasiplanar topological graphs.

Theorem 3.1. fw(Ikc ) = 2k − 1.

Proof. By Theorem 6.2, fw(Ikc ) ≥ 2k − 1.

Every binary (c, 2k − 1)-formation contains exactly two types of permutations.

Thus, it contains ≥ k copies of a single permutation, so Ikc or Dk
c is a subsequence

of every binary (c, 2k − 1)-formation and fw(Ikc ) ≤ 2k − 1. We combine these two

bounds to get fw(Ikc ) = 2k − 1 as desired.

Geneson et al. [1] used this result along with Lemma 2.5 and 2.6 to show

Ex(Ikc , n) = n2
1

(k−2)!
α(n)t−2±O(α(n)t−3). The previous bound on Ex(Ikc , n) used in [4]

was nc2ck−3(10c)10α(n)
ck

, proven in [5].

Lemma 3.2. [4] If Ex(I2
k2+k

c , n) = O(nfk(n)) for some function fk(n), then there

are O((n log n)fk(n)) edges in a simple k-quasiplanar graph on n vertices.

Lemma 3.3. [1] There are O((n log n)2
1

(2k−2)!
α(n)2

k−2−O(α(n)2
k−3)

edges in a simple

k-quasiplanar topological graph on n vertices.

Lemma 3.3 follows immediately from substituting the improved bound onEx(Ikc , n)

into Lemma 3.2.

4 Two letter patterns

We find fw(u) for any pattern u on an alphabet of 2 letters.

Theorem 4.1. If u is a pattern of length s composed of two distinct letters, then

fw(u) = s− 1.

Proof. It suffices to prove this lemma for sequences with different first and second

letters. The upper bound follows since every (2, t−1)-formation contains u. For the

lower bound we construct a (2, t − 1)-formation f(u) which only contains copies of

u for which the last letter of the copy of u is the last letter of f(u). Therefore the

(2, t− 2)-formation in the first t− 2 permutations of f(u) avoids u.
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For each sequence u with two distinct letters and different first and second letters,

the first permutation of f(u) is ab. If the first i permutations of f(u) are defined for

i < t − 1, then permutation i + 1 of f(u) is the same as permutation i if and only

if letters i + 1 and i + 2 of u are the same. Let u′ denote the sequence obtained by

deleting the last letter of u and suppose u has letters x and y. We prove that f(u)

contains only copies of u for which the last letter of the copy of u is the last letter

of f(u) by induction on the length of u.

Since f(xy) = ab, then f(xy) contains exactly one copy of the sequence xy and

the last letter of the copy of xy is the last letter of f(xy). Suppose by inductive

hypothesis that f(u′) contains only copies of u′ for which the last letter of the copy

of u′ is the last letter of f(u′). If the last two letters of u are the same, then the

first letter of the last permutation of f(u) is different from the last letter of f(u′),

so the last letter of f(u) will be the last letter of any copy of u in f(u). If the last

two letters of u are different, then the first letter of the last permutation of f(u) is

the same as the last letter of f(u′), so the last letter of f(u) will be the last letter

of any copy of u in f(u).

If u has the same first and second letters, then we can use Lemma 5.1 and find

fw(u) = fw(u′) + 1, where u′ is the pattern created by removing the first letter of

u.

We note that any binary (c, k)-formation must contain a (2, k)-formation which

has a formation width of 2k − 1 and find the following corollary.

Corollary 4.2. For any binary (c, k)-formation u, fw(u) ≥ 2k − 1.

5 Letter insertion

We examine the change in fw(u) upon insertion or concatenation of a single letter

a.

Lemma 5.1. If u is a sequence beginning with the letter a, then fw(au) = fw(u)+1.

Proof. Assume u has c distinct letters. Let f(u) be any (c, fw(u)) formation such

that the first fw(u)− 1 permutations of f(u) do not contain u. We will show that

f(u) avoids au. Assume to the contrary that it contains au. Since the first and

second letters of au are the same, they are in different permutations. Therefore, u is
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contained in the last fw(u)−1 permutations of f(u), so we arrive at a contradiction

and fw(au) ≥ fw(u) + 1. In addition, any binary (c, fw(u) + 1)-formation contains

au since a can be found in the first permutation and u under some permutation

can be found as a subsequence of the remaining fw(u) permutations, so fw(au) =

fw(u) + 1.

Lemma 5.2. If u′ is the sequence created by inserting the letter a into a subsequence

u with r distinct letters, then fw(u′) ≤ fw(u) + b r
2
c+ 1.

Proof. Any binary (c, fw(u) + b r
2
c + 1)- formation can be constructed by inserting

an arbitrary binary (c, b r
2
c + 1)-formation into a binary (c, fw(u))-formation f(u).

Assume u is a subsequence of f(u) under some permutation π. Consider the sequence

u′. Let the letter a be inserted between the letters x and y.

If x and y occur in different permutations in f(u), then the formation created by

inserting any permutation between their occurrences in f(u) contains u′.

Assume that the k1 letters immediately to the left of a and the k2 letters imme-

diately to the right of a all occur in the same permutation of f(u). If k1 ≥ k2, then

the formation created by inserting any arbitrary binary (c, b r
2
c+ 1)-formation to the

right of this permutation will contain u′ since the inserted formation must contain

a and the k2 ≤ b r2c letters to its right. If k1 ≤ k2, we insert the formation to the left

of the permutation instead.

Therefore, fw(u′) ≤ fw(u) + b r
2
c+ 1.

6 The r(u) function

Recall that Ic is the sequence a1a2 · · · ac and Dc is the sequence acac−1 · · · a1. Let

r(u) be the smallest k such that alt(c, k) contains u, where u is a pattern with c

distinct letters.

Lemma 6.1. fw(u) ≥ r(u).

Proof. Assume for the sake of contradiction that fw(u) < r(u) and that, without

loss of generality, u has c distinct letters. Since alt(c, fw(u)) is a binary formation,

alt(c, fw(u)) contains u. However, fw(u) < r(u) and r(u) is defined as the minimum

k such that alt(c, k) contains u, so we arrive at a contradiction and fw(u) ≥ r(u).
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By Lemma 6.1 r(u) gives a lower bound on fw(u). We find r(u) for a binary

formation u.

Lemma 6.2. r(Ie1c D
e2
c I

e3
c · · · Len) = 2

∑n
i=1 ei − n.

Proof. First we show that r(Ie1c ) = 2e1 − 1. We also show the last letter condition,

namely that alt(c, r(Ie1c )) contains Ie1π as a subsequence only if π(c) = c. We define

πr(alt(c, k)) to be the (c, k)-formation DcIcDc . . . .

We proceed by induction on e1. The base case r(Ic) = 1 is evident by the

definition of r(u). In addition, Iπ is only a subsequence of Ic if π is the identity

permutation, therefore π(c) = c. Assume that r(Ie1c ) = 2e1 − 1 and that the last

letter condition holds for this k. We claim that r(Ie1+1
c ) = 2e1 + 1 and that the last

letter condition also holds for e1 + 1.

Let π be an arbitrary permutation. We will first show Ie1+1
π is not a subsequence

of alt(c, 2e1). If π(c) = c, then the last letter of alt(c, 2e1 − 1) corresponds to to

the last letter of Ie1π . In order for Ie1+1
π to be a subsequence of alt(c, 2e1 + 1) under

these conditions, Dc must contain a copy of Iπ as a subsequence. However, c is the

first letter of Dc and c is the last letter of Iπ, so Iπ is not a subsequence of Dc and

consequently Ie1+1
π is not a subsequence of alt(c, 2e1 + 1).

Assume π(c) = i for some 1 ≤ i < c, and assume for the sake of contradiction

that Ie1+1
π is a subsequence of alt(c, 2e1 +1). The last letter condition does not hold,

so the last letter of Ie1π has a leftmost occurence in the last permutation of alt(c, 2e1).

The sequence Iπ must be a subsequence of the remaining letters. The last letter of

Ie1π is i. Since the last letter of the remaining Iπ is also i, then this letter occurs in

the last permutation of alt(c, 2e1+1). There are exactly i−1 distinct letters between

these two i’s. The remaining c − 1 letters of the final Iπ cannot be a subsequence

of this, so Ie1+1
π is not a subsequence of alt(c, 2e1 + 1). Therefore, r(Ie1c ) = 2e1 − 1,

and Ie1π satisfies the last letter condition.

By an identical argument, we find that De1
π is contained in πr(alt(c, 2e1−1)) and

satisfies the last letter condition.

We prove the claim that r(Ie1c D
e2
c I

e3
c · · · Len) ≤ 2

∑n
i=1 ei− n. We proceed by in-

duction. The base case for n = 1 has been proven above. Assume r(Ie1c D
e2
c I

e3
c · · · Lek) =

2
∑k

i=1 ei − k for some k. We get r(Ie1c D
e2
c I

e3
c · · · Lek+1 by adding I

ek+1
c if k is even

and D
ek+1
c if k is odd.

In either case, the first letter of the I
ek+1
c or D

ek+1
c is equal to the last letter of the
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Dek
c or Iekc , respectively, so they occur in separate permutations. If L = Ic, then since

r(I
ek+1
c ) = 2ek+1−1, we have r(Ie1c D

e2
c I

e3
c · · · Lek+1) ≤ r(Ie1c D

e2
c I

e3
c · · · Lek)+2ek+1−1,

which simplifies to 2
∑k+1

i=1 ei − k − 1 as desired. The case for L = Dc is similar.

We now prove the lower bound. Let π be an arbitrary permutation. For all

permutations π, Ie1π is a subsequence of alt(c, k) only for some k ≥ 2e1−1. Similarly,

De2
π is a subsequence of πr(alt(c, k)) for some k ≥ 2e2 − 1. We can iterate this from

i = 1 to i = k, adding all the expressions to get r(Ie1c D
e2
c I

e3
c · · · Lek) ≥ 2

∑k
i=1 ei− k.

The upper and lower bounds are equal, so r(Ie1c D
e2
c I

e3
c · · · Lek) = 2

∑k
i=1 ei − k.

We compare when r(u) gives a better lower bound that `(u) on fw(u). Given

some binary formation, let A and B be the number of permutations that are equal

to Ic and Dc respectively in the binary formation. Geneson et al. [1] found that

`(Ie1c D
e2
c I

e3
c · · · Len) = (c − 1)m + M + bn

2
c, where m = min(A,B) and M =

max(A,B). Qualitatively, we find that r(u) gives a better lower bound on binary

formations composed mostly of copies of one permutation.

Lemma 6.3. For a binary formation u, r(u) ≥ l(u) iff M − (c− 3)m ≥ n+ bn
2
c.

Proof. r(u) ≥ l(u) whenever 2
∑n

i=1 ei − n ≥ (c− 1)m+M + bn
2
c. Since

∑n
i=1 ei =

m+M , we can simplify the expression to obtain the condition that M − (c− 3)m ≥
n+ bn

2
c.

We extend Lemma 2.7 to a large class of sequences u. We call a greedy monotonic

partition of a pattern u on c distinct letters with length s under a permutation π to

be a partitioning of π(u) = a1a2 . . . as (where ai ∈ {1, 2 . . . c}∀i) into sets of the form

{ai, ai+1 . . . aj}. The letters in each set are in monotonic order under some well-

defined ordering of the alphabet of u. In addition, each of these intervals is greedy,

so if [xi, xj] is monotonically increasing, then xj+1 ≤ xj, with a similar definition for

monotonically decreasing.

Lemma 6.4. Let u be a sequence on the alphabet {1, 2, . . . c} with length s under

some permutation π. If ur is the pattern obtained by reversing u and the order on

the alphabet is 1 ≤ 2 ≤ . . . ≤ c, and the monotonic greedy partition of π(u) consists

solely of increasing sets, then `π(u) + `π(ur) = s+ 1.
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Proof. Assume `π(u) = k, so there are k increasing sets in the greedy partition.

This is equivalent to there being k decreasing sets in the greedy partition of ur. The

last letter of set i and the first letter of set i + 1, for 1 ≤ i ≤ k − 1 form exactly

k − 1 disjoint pairs where the letter x is greater than the letter y to its left. By the

structure of the partition, we can see that there are no other such pairs. Each letter

not in one of these pairs will occur in its own Ic and each pair will occur in its own

Ic, so `π(ur) = (k − 1) + (s− 2(k − 1)) = s− k + 1 and `π(u) + `π(ur) = s+ 1.

7 Formation width of binary formations

This section contains results on the value of fw(u) for some binary formations u.

We first prove a general lower bound for fw(alt(c, k)) and compute exact values for

small k.

Lemma 7.1. fw(IcDcIc) = c+ 3

Proof. We claim that the binary (c, c+2)-formation IccD
2
c avoids IcDcIc. Assume for

the sake of contradiction that IccD
2
c contains IπDπIπ as a subsequence under some

permutation π. From [1], `(IcDc) = c + 1. Therefore, the last letter of the Dπ in

alt(c, 3) must occur in the first Dc in IccD
2
c . However, the letter after Dπ is the same,

so it must occur in a different permutation, namely the last Dc of IccD
2
c . There are

c letters in Dc to fit the c letters in the last Ic of the IcDcIc, so π must rename

IcDcIc to DcIcDc. We can see instantly that IccD
2
c does not contain DcIcDc as a

subsequence.

We prove that every binary (c, c+ 3)-formation contains IcDcIc. For any forma-

tion that is not a string of Ic’s followed by a string of Dc’s, it obviously contains

IcDcIc. Thus we are only concerned with the binary formation IacD
b
c where a+ b =

c + 3. We find that using the permutation π mapping 12 . . . c to 1 . . . (b − 1)c . . . b,

IacD
b
c contains IπDπIπ as a subsequence.

Lemma 7.2 and Corollary 7.3 are central to the proofs of Lemma 7.4 and Theorem

7.5.

Lemma 7.2. IπDπ is a subsequence of IccDc iff π(1) < π(2).
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Proof. Let π be a permutation.

By Lemma 2.7, the last letter of IπDπ, namely π(1), occurs in the last Dc of

IccDc. If it not the only letter of IπDπ occurring in that last Dc, then π(2)π(1) is a

subsequence of this Dc. This is possible iff π(1) < π(2).

Assume that the final Dc only contains π(1). If π(1) > π(2), this is impossible

since its adjacent π(2) occurs in some Ic, and π(1) can then fit in the same Ic,

implying that IπDπ is a subsequence of Icc , which is impossible. However, this is

possible if π(1) < π(2). Therefore, IπDπ is a subsequence of IccDc iff π(1) < π(2).

Corollary 7.3. IπDπ is a subsequence of DcI
c
c iff π(2) < π(1).

Proof. From Lemma 7.2, we can reverse the sequences to get that DπIπ is a subse-

quence of IcD
c
c iff π(2) < π(1). Therefore, πr(DπIπ) is a subsequence of πr(IcD

c
c) iff

π(2) < π(1). Simplifying, IπDπ is a subsequence of DcI
c
c iff π(2) < π(1).

Using Lemma 7.2 and Corollary 7.3 we calculate fw(alt(c, 4)).

Lemma 7.4. fw(IcDcIcDc) = 2c+ 3.

Proof. We have c + fw(IcDcIc) ≥ fw(IcDcIcDc) so 2c + 3 ≥ fw(IcDcIcDc). In

addition, the (c, 2c+2) formation F = IccD
2
cI

c
c avoids IπDπIπDπ for all permutations

π.

First assume that π(1) < π(2). The first IccDc of F avoids IπDπ, therefore the last

IπDπ be a subsequence of the remaining Icc , which is impossible since `(IcDc) = c+1.

The proof is similar for π(1) > π(2).

We extend the technique used in the proof of Lemma 7.4 to bound alt(c, k) below

for general c and k.

Theorem 7.5. fw(alt(c, 2k)) ≥ k(c+ 2)− 1 and fw(alt(c, 2k + 1)) ≥ k(c+ 2) + 1.

Proof. We claim that the (c, k(c + 2) − 2)-formation S2k = IccD
2
cI

c
c . . . I

c
c avoids

alt(c, 2k). We proceed by induction. The base cases have already been proven in

Lemma 7.4 for k = 2.

Assume S2j avoids alt(c, 2j) for all j ≤ bk
2
c. Also assume for the sake of contra-

diction that S2k+2 contains alt(c, 2k+2) under some permutation π as a subsequence.

Let G be alt(c, 2k+2) without the rightmost two permutations. Then G = alt(c, 2k).

The leftmost (c, k(c+2)−2)-formation IccD
2
cI

c
c . . . I

c
c , or S2k+2 without the rightmost
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D2
cI

c
c , avoids alt(c, 2k). Therefore, the last letter of G must occur somewhere in the

rightmost D2
cI

c
c of S2k+2. In addition, the letter directly after G in alt(c, 2k + 2) is

the same as the last letter of G, so it must be found at least one permutation to

the right of where the last letter of G occurs. Thus, if the last letter of G occurs in

anywhere but the first Dc of D2
cI

c
c , this means we must have IπDπ as a subsequence

of some subsequence of Icc , which is impossible since `(IcDc) = c + 1 by [1]. Thus,

the last letter of G occurs in the first Dc of D2
cI

c
c , so IπDπ must be a subsequence

of DcI
c
c . Using Lemma 7.3, we can see that π(2) < π(1).

Consider the IπDπ in alt(c, 2k+ 2) directly to the left of the rightmost IπDπ and

the rightmost c+4 permutations of S2k+2, namely D2
cI

c
cD

2
cI

c
c . This new IπDπ occurs

at its rightmost in the leftmost DcI
c
c of these c + 4 permutations since π(2) < π(1)

and otherwise it would be contained in IccDc. We can iterate this for every block of

IπDπ in alt(c, 2k + 2) to show that at their rightmost, every block is contained in

DcI
c
c and the Dc directly to the left of that is unused, so each block uses at least

c+ 2 permutations. A minimum of k(c+ 2) permutations are used, but since there

are only k(c+ 2)− 1 permutations in alt(c, 2k+ 2), we arrive at a contradiction and

S2k+2 avoids alt(c, 2k + 2).

For the odd case, we claim the (c, k(c+ 2) + 1)-formation S2k+1 = IccD
2
cI

c
c . . . D

2
c

avoids alt(c, 2k + 1). The base case for k = 1 has been proven in Lemma 7. We

proceed by induction. Assume for some k, S2k avoids alt(c, 2k). Also assume for

the sake of contradiction that S2k+1 contains alt(c, 2k + 1) under some permutation

π. Let G be alt(c, 2k + 1) without the rightmost permutation, so G = alt(c, 2k).

Since the leftmost S2k of S2k+1 avoids G, the last letter of G must occur in the last

D2
c of S2k+1. The last letter of G is equal to the preceding letter, so they must

be in different permutations and the last letter of G must occur in the first Dc of

the last D2
c of S2k+1. The remaining Iπ of alt(c, 2k + 1) must be contained as a

subsequence of the final Dc of S2k+1. Therefore, π can only be the permutation

mapping Ic to Dc and vice versa. It is easy to check that, however, S2k+1 does not

contain πr(alt(c, 2k + 1)), so we arrive at a contradiction.

Therefore, fw(alt(c, 2k)) ≥ k(c+2)−1 and fw(alt(c, 2k+1)) ≥ k(c+2)+1.

Lemma 7.6. fw(IkcDc) = c+ 2k − 1.

Proof. From Theorem 3.1, fw(Ikc ) = 2k−1. The upper bound for fw(IkcDc) follows

immediately from this result, since fw(IkcDc) ≤ c+ fw(Ikc ) ≤ c+ 2k − 1.
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We prove the lower bound by constructing a binary formation avoiding IkcDc.

Let Sk be the (c, c+2k−2) binary formation created by concatenating alt(c, 2k−2)

and Icc . We claim Sk avoids IkcDc.

Let π be some permutation. Assume for the sake of contradiction that Sk does

contain IkπDπ as a subsequence.

We claim that the last IπDπ of IkπDπ must be found as a subsequence of the final

DcI
c
c block of Sk.

Assume for the sake of contradiction that it is not, so that the first letter of this

IπDπ lies at its rightmost in the last Ic of the remaining alt(c, 2k − 3) block. Then

the remaining Ik−1π must be a subsequence of the remaining alt(c, 2k − 3) block.

Note that since the first letter of the last IπDπ lies at its rightmost in the last Ic

of the remaining alt(c, 2k − 3) block, the last letter of alt(c, 2k − 3) cannot be part

of the Ik−1π . Since this does not satisfy the last letter condition from the proof of

Lemma 6.2, Ik−1π cannot be a subsequence of alt(c, 2k − 3). Therefore we arrive at

a contradiction and the last IπDπ of IkπDπ must be found as a subsequence of the

final DcI
c
c block.

As a consequence of DcI
c
c containing IπDπ, π(1) > π(2).

We proceed by induction. The base case k = 1 is immediate, IcDc is avoided by

Icc since `(IcDc) = c+ 1 [1].

Assume IkcDc is avoided by Sk. Also assume for the sake of contradiction that

Sk+1 contains Ik+1
c Dc. Since Sk avoids IkπDπ, we must have the first letter π(1) of

IkπDπ must occur in the initial IcDc of Sk+1. In addition, the first Iπ of Ik+1
π Dπ

has π(1) and π(2) in that order, so π(1)π(2)π(1) must be a subsequence of IcDc.

First consider the case of π(2) occurring in the Dc. This produces a contradiction

since π(1) > π(2), so it cannot occur after π(2) in the Dc. If π(2) occurs in the

Ic, we get another contradiction since π(1) > π(2) so it cannot occur before π(2)

in the Ic. Therefore, π(1)π(2)π(1) cannot be a subsequence of IcDc, we arrive at a

contradiction and Sk+1 avoids Ik+1
c Dc.

Therefore, Sk avoids IkcDc for all k and fw(IkcDc) ≥ c+ 2k − 1. The upper and

lower bounds are equal, so fw(IkcDc) = c+ 2k − 1.
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8 Computer algorithms and pattern classification

We determine an upper bound on the time complexity of calculating fw(u) using a

new algorithm.

Theorem 8.1. Let u be a pattern of length s on r distinct letters. An algorithm

that calculates fw(u) requires O((r2 + s)s2s+r(u)−1) time.

Proof. The time to check if one subsequence of length s is equivalent to u upon

permutation of its alphabet takes O(r2 +s) time. Calculating `(u) requires checking

subsequences of a formation of at most s − r permutations. There are
∑s−r

i=1

(
ri
s

)
=

O(
(
r(s−r)
s

)
) subsequences to check, so calculating `(u) requires O((r2 + s)

(
r(s−r+1)

s

)
)

time. Calculating r(u) takes the same amount of time.

Let l(u) = x, r(u) = y. Given r(u) = y, u is contained in all binary formations of

the fw Ie1c D
e2
c . . .Len where n ≥ y by definition. We also have min(2x−1, s−r+1) ≥

fw(u) ≥ max(x, y).

We search every possible binary formation in order to find fw(u). We only need

to check all binary formations of the fw Ie1c D
e2
c . . .Len where n < y and

∑
ei ranges

from max(x, y) to s − r + 1. Therefore we search at most
∑s−r+1

i=max(x,y)

(
i−1
y−1

)
binary

formations. Therefore, the total time to check all of these is

O((r2 + s)
s−r+1∑

i=max(x,y)

(
ri

s

)(
i− 1

y − 1

)
) = O((r2 + s)

(
r(s− r + 1)

s

)(
s− r
y − 1

)
)

= O((r2 + s)

(
r(s− r + 1)

s

)(
s− r
y − 1

)
)

= O((r2 + s)rs(s− r)s+y−1)

= O((r2 + s)s2s+y−1)

.

Nivasch [6] proved that Ex(u, n) = O(nα(n)) for any pattern u with fw(u) = 4,

where α(n) is the inverse Ackermann function.

We implemented this algorithm in the Java programming language and used it to

partially classify all patterns u for which fw(u) = 4, and as a consequence determine

a class of sequences with quasilinear bounds on Ex(u, n).
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A lemma by Geneson et al. [1] states that fw(ua) = fw(u) given a is some

letter not in the pattern u. Therefore, we need only regard patterns with at least

two occurrences of each letter as distinct, since a pattern with exactly 1 occurence

of a letter has the same fw as a pattern with no occurences of that letter.

Corollary 8.2. The patterns u on 3 letters with fw(u) = 4 described up to isomor-

phism are: abccba, abcbca, aabccb, aabcbc, aabbcc, abaccb, abacbc, ababcc, baaccb,

baacbc, baabcc, aabcabc, abacabc, abcaabc, abcabac, abcabca, aabcacb, abcaacb, abcacba,

and aabcbac.

Corollary 8.3. The patterns u on 4 letters with fw(u) = 4 described up to isomor-

phism are: abcdabdc, abcdadbc, abcdadcb, abcdacbd, abcdacdb, abcdbacd, abcdbcad,

abcdbcda, abcddabc, abcddacb, abcddbac, abcddbca, abcddcab, abcdbdac, abcdbdca,

abcdcabd, abcdcadb, abcdcbad, abcdcbda, abcdcdab, abcdcdba, aabcddbc, aabcdbdc,

aabcdbcd, aabcdcbd, baacddbc, baacdbdc, baacdbcd, baacdcbd, bcaaddbc, bcaabddc,

bcaabcdd, bcaadbdc, bcaadcdb, bcaabdcd, bcaadbcd, bcaadcbd, abacddbc, abacdbdc,

abacdbcd, abacdcbd, bacaddbc, bacaddcb, bacabddc, bacabcdd, bacadbdc, bacadcdb,

bacadbcd, bacadcbd, abcaddbc, abcaddcb, abcabddc, abcacddb, abcabcdd, abcacbdd,

abcadbdc, abcadcdb, abcabdcd, abcacdbd, abcadbcd, and abcadcbd.

We classify a large number of patterns with tight bounds on Ex(u, n) below.

Lemma 8.4. Any sequence u = 0v0v′0, with v being a sequence of distinct letters

not including 0 and v′ being the sequence obtained by either moving the first letter

of v or shifting any of the other letters to the end has fw(u) = 4.

Proof. Assume without loss of generality that v = 123 . . . (n − 1). First consider

v′ = 123 . . . c1(c + 1) . . . (n − 1) for some 2 ≤ c ≤ n − 1. It is apparent that

0v0v′0 is a subsequence of any binary (n, 4)-formation with containing at least 3

of In or Dn. Thus, it suffices to show that it is contained by I2nD
2
n, InD

2
nIn, and

InDnInDn. The first contains a copy of u such that all of the letters in the last

permutation are used. The second contains a copy of u such that all of the letters in

the third permutation are used. The final contains a copy of u where 0v is mapped

to 1(r − c+ 1) . . . r(r − c) . . . 2.

The case where v′ is obtained by shifting a letter in v to the end can be obtained

by reversing 123 . . . c1(c+ 1) . . . (n− 1) and renaming the alphabet.
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The corollary below follows from [6].

Corollary 8.5. Let u = 0v0v′0 as described in the previous lemma. Then Ex(u, n) =

O(nα(n)).

Lemma 8.6. fw((abc)s(acb)t) = 2(s+ t)− 1.

Proof. We show that any binary (3, 2(s+t)−1)-formation contains either (cba)s(cab)t,

(acb)s(abc)t, or (bac)s(bca)t as a subsequence. We assume without loss of general-

ity that the last 2(s + t) − 3 permutations contain at least as many increasing as

decreasing permutations. The base case for s = 1 is easy to check.

Now consider assume the inductive hypothesis holds for s = k−1. Consider some

binary (3, 2(k+t)−1)-formation. The last 2(k+t)−3 permutations of the formation

contain either (cba)k−1(cab)t, (acb)k−1(abc)t, or (bac)s(bca)t as a subsequence.

Assume that they only contain (cba)k−1(cab)t. If the first two permutations are

anything but abcabc, the formation contains (cba)k(cab)t as desired. However, if they

are abcabc, then the formation contains (bac)k(bca)t as a subsequence.

Assume instead that they contain (acb)k−1(abc)t. If the first two permutations

are anything but cbaabc, the formation contains (acb)k(abc)t as desired. However, if

they are cbaabc, then the formation contains (cba)k(cab)t as a subsequence.

Finally assume that they contain (bac)k−1(bca)t. If the first two permutations

are anything but abccba, the formation contains (bac)k(bca)t as desired. However, if

they are abccba, then the formation has (acb)k(abc)t as a subsequence.

Therefore, fw((abc)s(acb)t = 2(s+ t)− 1.

The corollary follows from [1].

Corollary 8.7. Ex((abc)s(acb)t) = n2
1

(k−2)!
α(n)k−2±O(α(n)k−3) where k = s+ t ≥ 3.

Lemma 8.8. Any sequence u = ax1ax2 . . . axt−1axt, where each xi is a rearrange-

ment of bcd, has fw(u) = 2t− 1 if and only if all of the xi are equal.

Proof. Since u contains (ab)t as a subsequence, fw(u) ≥ 2t− 1.

If any of the xi equal dbc or cbd when xt is mapped to abcd, it suffices to show that

alt(4, 2t−1) avoids any sequence that does not satisfy the condition. Assume for the

sake of contradiction that alt(c, 2t−1) contains u = ax1ax2 . . . xt. If axi occurs solely

in the kth permutation of alt(4, 2t−1), then since axi+1 has the same initial letter, we
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can say without loss of generality that it does not occur in the (k+1)th permutation.

Similarly, if axi occurs in the kth and (k + 1)th permutations, axi+1 occurs only in

the (k+ 2)th permutation onwards. Therefore, since ax1 has its leftmost occurrence

in the 1st permutation, in general axi has its leftmost occurrence in the (2i − 1)th

permutation. Therefore, axt must occur solely in the final permutation of alt(4, 2t−
1), so axt must be renamed to abcd. Therefore, there exists exactly one renaming

for which alt(4, 2t − 1) contains u, and all the other axi must be subsequences of

abcddcba under this renaming. This is only true when none of the axi are equal to

adbc or acbd.

Given any axi 6= axt, we can show the formation alt(4, 2i−4)(dcba)(abcd)alt(4, 2t−
2i+1) avoids ax1ax2 . . . axt. Assume for the sake of contradiction that this formation

contains ax1ax2 . . . axt. Similarly to alt(4, 2t − 1), the leftmost possible occurrence

of aj is in the (2j − 1)th permutation for 1 ≤ j ≤ t. Therefore, axt occurs in the

(2t− 1)th permutation and the formation can only contain ax1ax2 . . . axt under the

renaming mapping axt to abcd. However, since axi 6= axt, we find axi under this

mapping is avoided by dcbaabcd since dcbaabcd does not contain abdc, acdb, or adcb.

Therefore, its leftmost occurrence spans the (2i−1)th, (2i)th, and (2i+1)th permu-

tations. Since the (2i + 1)th permutation is equal to abcd, we find that axi+1 must

have its first letter occur at its leftmost in the (2i + 2)th permutation. Using the

same argument as before, we find that axt−1 must have its leftmost occurrence in the

(2t− 2)th permutation. However, since the (2t− 2)th permutation is equal to dcba,

the last letter of axt−1 must occur in the (2t− 1)th permutation because axt−1 can

only equal abdc, acdb, or adcb. Therefore, axt = abcd must occur in the remaining

≤ 3 letters, which is impossible. We conclude our formation avoids ax1ax2 . . . axt.

Therefore, fw(u) = 2t− 1 only if all xi are equal to xt.

Assuming all the xi are equal, u is isomorphic to (abcd)t and fw(u) = 2t− 1 by

Theorem 3.1. We conclude that fw(u) = 2t − 1 if and only if all xi are equal to

xt.

9 Monotonic subsequences of k-sparse sequences

It is easy to show by Ramsey’s Theorem that any sequence of integers will contain

a monotonically increasing or decreasing subsequence of some fixed size, but not

necessarily both. We show that sparsity is a strong enough condition on the sequence
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to ensure that it contains both an increasing and a decreasing subsequence of a

certain size.

Lemma 9.1. Any k-sparse sequence on the alphabet {1, 2, . . . n} of length ≥ nk

contains a monotonically decreasing and a monotonically increasing subsequence,

each of length k
2
.

Proof. It suffices to prove this for sequences of length nk. We split our sequence

into n consecutive blocks B1, B2, . . . Bn of size k. From our sequence, we construct

the n × n matrix P = [aij], setting aij = 1 if the number i is in block Bj and 0

otherwise.

Note that if P has the m ×m identity matrix Im (not to be confused with Ic)

as a submatrix, then our sequence contains a monotonically increasing subsequence

of length m. The matrix P has k nonzero entries in each column, it has a total of

kn entries equal to 1. By a result from [10], any 0 − 1 square matrix of dimension

n with ≥ 2kn nonzero entries contains Ik as a submatrix. Therefore, we see that

P contains I k
2

as a submatrix, so our sequence contains a monotonically increasing

subsequence of length k
2
.

The proof is identical for finding the decreasing subsequence.

10 Open problems

Several problems remain open.

The algorithm described in Section 9 runs in exponential time and is unfeasible

for calculating fw(u) for longer patterns. Improving this algorithm would allow

easy calculation of fw(u) for many more patterns u, which could yield many new

insights.

Define an n-shaped sequence to be a sequence of the form

a1a2 . . . akak−1 . . . a2a1a2 . . . ak−1ak.

It is proven in [9] that Ex(u, n) = O(n). This result is used in [4] to bound the

number of edges in simple x-monotone topological graphs. Improving the constant

term in the bound would lead to tighter edge number bounds on x-monotone graphs.
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[8] P. Erdős, G. Szekeres. A combinatorial problem in geometry. Compositio Math-

ematica 2 (1935) 463–470.

[9] S. Pettie. On the structure and composition of forbidden sequences, with ge-

ometric applications. Proceedings of the twenty-seventh annual symposium on

Computational geometry, 370–379, 2011.

[10] Z. Furedi, P. Hajnal. Davenport-Schinzel theory of matrices. Discrete Mathe-

matics, Volume 103, Issue 3, 233-251.

[11] R. Adamec, M. Klazar, and P. Valtr, Generalized Davenport-Schinzel sequences

with linear upper bound, Discrete Math., 108:219–229, 1992.

23


