
Diagrammatic Computation of Morphisms Between Bott-Samelson

Bimodules via Libedinsky’s Light Leaves

Evan Chen Francisco Unda

Research Science Institute

January 15, 2014

We consider the left/right action-preserving morphisms between Bott-Samelson

bimodules from a combinatorial perspective; specifically, by using a diagrammatic

representation. We examine the maps formed by a basis known as Libedinsky’s light

leaves, which constructs a map based on a string r, composed of the letters s and

t, and a binary string b. The eventual goal is to find a formula for the composition

of two such maps based on the two original binary strings. The paper provides a

complete formula for the case r = sss . . . , and shows that the possible structures of

maps when r = ststs . . . are, in a certain sense, limited. We additionally provide a

formula for the number of maps between two arbitrary Bott-Samelson bimodules.
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1 Introduction

The Hecke Algebra (or Iwahori-Hecke Algebra) is an object of significant interest, studied in

representation theory, algebraic number theory, and combinatorics. In 1979, Kazhdan and

Lusztig [1, 2] gave a categorification of the Hecke algebra, using a technique involving perverse

sheaves on the flag variety. The result became known as the Hecke category. Soergel [3, 4]

simplified this construction significantly in 1990 with an algebraic approach, using what were

later called Soergel bimodules. The Soergel bimodules permit an easier understanding of this

categorification; their advantage is that they are easier to define and are combinatorial in nature.

For a full treatise, we refer the reader to the introduction of Elias and Williamson [5].

Soergel bimodules can be described in terms of another class of bimodules, known as the

Bott-Samelson bimodules. The morphisms of Bott-Samelson bimodules admit a combinatorial

description. In particular, Elias and Williamson [5], building off earlier works such as Elias and

Khovanov [6], give a presentation for the category of these morphisms in terms of colored planar

diagrammatics (i.e. colored diagrams).

This paper investigates some of the properties of these diagrammatics from a combinatorial

perspective. We consider only the special case where the underlying group W of the Hecke

algebra is an infinite dihedral group with generators s and t (as opposed to an arbitrary Coxeter

group W ).

Given a string of length n composed of the letters s and t, as well as a binary string of length

n, one can construct such a diagram using an algorithm known as Libedinsky’s light leaves.

The light leaves were derived by Libedinsky in [7] and are detailed in Section 2.4. These light

leaves are interesting because, modulo certain “lower terms”, they form a basis for a morphism

spaces, as shown in [5]. In this paper, we develop tools to understand the composition of two

such maps given the original binary strings, with the eventual goal of deriving a combinatorial

formula.

Section 2 contains the preliminaries for the problem; it describes the light leaves and defines

the relation between diagrams and maps. A minimal set of definitions used in this paper is

given in Section 3. In Section 4, we give the problem statement in its full technicality.

The results begin by solving the special case of one color completely in Section 5. In Section 6,

we also present a formula for the number of maps between two given bimodules. The most

important results of this paper are presented in Sections 7 and 8, where we investigate a special

“alternating” case. We show that the possible resulting structures are extremely limited in a

certain sense. We then exploit these restrictions to provide a partial recursion to compute the

compositions of light leaves in the alternating case.

2 Background

Let V be a (real) Euclidean space endowed with a positive definite symmetric bilinear form

(µ, λ). Let W be a group with two generators s and t corresponding to reflecting over two

hyperplanes in V , and let αs and αt be arbitrary vectors normal to these planes. We assume

that the angle formed by αs and αt is not a rational multiple of π, so that the order of st in W

is infinite.

In other words, W is the infinite dihedral group with the presentation

W =
〈
s, t | s2 = t2 = 1

〉
.
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Then for any a ∈ V , reflection over the hyperplane normal to a can be written explicitly for

each v ∈ V as the map

v 7→ v − 2(v, a)

(a, a)
a.

In particular, if W acts on V by this reflection, s(αs) = −αs and t(αt) = −αt. Furthermore,

using the above, we see that there exist fixed constants x and y such that

s(αt) = αt + xαs

t(αs) = αs + yαt.

Explicitly, x = −2(αs,αt)
(αs,αs)

and y = −2(αt,αs)
(αt,αt)

.

Now we define the Coxeter ring by R = R[αs, αt]. Then W acts on R by precisely the same

algorithm as described above.

Let Rs be the subring of R which is invariant under s. In other words,

Rs
def
= {r ∈ R | s(r) = r} .

Define Rt similarly. Then a Bott-Samelson bimodule is a bimodule of the form

R⊗Ri1 R⊗Ri2 R⊗Ri3 · · · ⊗Rin R,

where each ij is either s or t. We write elements of such a bimodule in the form f0 | f1 | · · · | fn,

where fi ∈ R.

We consider maps between these bimodules that preserve left and right actions; that is, we

consider the maps σ such that

σ(rx) = rσ(x) and σ(xr) = σ(x)r for each r ∈ R and x ∈ Domain σ. (2.1)

These maps may be represented diagrammatically.

2.1 Diagrammatics of Maps

These maps can be described in terms of diagrams. We take a detour and first describe the

appearance of such diagrams; in the subsequent section we will explain their algebraic meaning.

A reader who is not interested in this context can simply accept on faith the relations specified

in Section 2.3.

Consider a category D whose elements are linear combinations
∑
ci� of the diagrams de-

scribed below (where the �’s are diagrams). The coefficients ci belong to the ring Z[x, y].

The diagrams may be described as planar graphs, not necessarily connected, drawn in a

rectangle, with the following properties.

(i) Vertices may lie on the upper or lower boundary, but not on the left or right boundary.

In other words, the graph is embedded in R× [0, 1].

(ii) Each vertex has degree 1 or 3.

(iii) Each connected component is colored either blue or red.

The vertices on the boundary are by convention not explicitly shown, but are nonetheless

labelled s or t for blue or red, respectively.

An example of such a diagram is shown in Figure 1.
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Figure 1: An example of a possible diagram.

The elements of D can be added by simply adding corresponding coefficients in front of

each diagram; no other relations exist. Multiplication is defined as follows: the product of two

diagrams is the composition of the diagrams if the labels on the bottom of the first coincide with

those on the top of the second. By composition, we mean that the first diagram is vertically

juxtaposed on top of the second diagram; see Figure 3 for an example. Otherwise, the product

is 0.

2.2 Algebraic Context

The maps are conventionally read from bottom to top. The labels on the upper and lower

boundaries specify the domain and codomain of the map by “transcribing” the tensor products

to take; for example, a map with bottom stt and top s represents a map with domain R ⊗Rs

R⊗Rt R⊗Rt R and codomain R⊗Rs R. An unlabelled domain corresponds to R.

Let us introduce one final definition.

Definition 2.1. The Demazure operator ∂s : R→ R is given by

∂s(f) =
f − s(f)

αs
.

With this, we can now describe the meanings of each type of vertex (for blue lines) in Table 1.

The corresponding equations hold for red in t.

Note that the descriptions are sufficient to determine outputs for all values because these

morphisms respect left and right actions, as prescribed in (2.1).

Maps are composed by juxtaposition, and disjoint portions of the diagrams act independently.

Therefore, by a combination of these structures, we can generate arbitrarily complicated maps.

Example. The diagram in Figure 1 represents a map

R⊗Rs R⊗Rt R⊗Rs R→ R⊗Rs R by a | b | c | d 7→ a∂s(bc) | d.

Henceforth, we will make the convenient abbreviation of as . It will also be under-

stood that edges need not be straight lines, but any topologically equivalent deformation shall

represent the same graph. With this understanding, any of the graphs described in the previous

section can be viewed as compositions of the primitive structures we describe here.
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Map Modules Description

R⊗Rs R→ R 1 | 1 7→ 1

R→ R⊗Rs R 1 7→ 1
2 (1 | αs + αs | 1)

R⊗Rs R→ R⊗Rs R⊗Rs R 1 | 1 7→ 1 | 1 | 1

R⊗Rs R⊗Rs R→ R⊗Rs R 1 | g | 1 7→ ∂s(g) | 1

R⊗Rs R→ R⊗Rs R 1 | 1 7→ 1 | 1

Table 1: Describing the maps.

2.3 Operations for Diagrammatics

From the algebraic context given above, one can derive the following relationships, which are

here described completely graphically. These rules are sufficient to compute the maps we are

interested in.

Unless multiple colors appear in an equation, blue represents a generic color.

Operation 0 (Isotropy). If two diagrams can be continuously deformed into each other (in the

topological sense), then they are equivalent. In other words, the maps are isotropy invariant.

Remark. The justification for the above operation is not obvious; see page 7 of [5] for an

explanation.

Operation 1 (Associativity). We have = .

Operation 2 (Contraction). We have = = .

Operation 3 (The Needle). We have = 0.

Remark. Using contraction and the above, one can show that the diagram is zero as well.

In fact, in general, any map which contains a “closed” and empty region is the zero map.

Operation 4 (Barbell-Forcing Rules). We have the following three equalities:

(a) + = 2 , and the similar equation for red.

(b) = −x + + x .

(c) = −y + + y .
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Figure 2: An example of a light leaf.

2.4 Libedinsky’s Light Leaves

We now present the algorithm for Libedinsky’s light leaves, in the special case where W is the

infinite dihedral group. A full construction for more general Coxeter groups is given in [5].

Fix an expression r of length n. Then for any binary string b of length n we construct a

diagram based on a series of rules.

Each bit of b is read from left to right in order and designated either open or closed; the state

of a bit can change more than once. Initially all bits are closed. We say that a bit b[j] is an

open neighbor of b[k] if

(i) b[j] is marked open

(ii) b[j] and b[k] have the same color, and

(iii) there are no other bits marked open between b[j] and b[k].

Note that each bit will have at most one open neighbor.

Now for k = 1, 2, . . . , n, in that order,

• If the current bit b[k] is 1 and has an open neighbor b[j], then draw an arc joining the two

bits, and mark both bits as closed. Otherwise, designate b[k] as open.

• If the current bit b[k] is 0 and has an open neighbor b[j], then draw an arc joining the two

bits, mark b[j] as closed, and b[k] as open. Otherwise, create a “stub”, i.e. a single vertex

of degree one, and mark b[k] as down.

Finally, join any bits which are open at the end of the process to the upper boundary of the

diagram. A map which arises in such a manner is called a light leaf. An example of such a light

leaf is shown in Figure 2.

The top of such a map is the expression which appears on the upper boundary; i.e. the bits

which are still up at the end of the algorithm. For example, the map in Figure 2 has top ts.

Note that any top is a reduced expression.

3 Preliminaries and Definitions

In Section 2, we provided the background behind the Bott-Samelson bimodules, and the cor-

respondence between our maps and diagrams. We then introduced Libedinsky’s light leaves, a

basis by which maps can be constructed using binary strings.

In Section 3.1 we introduce several of our definitions which we use throughout the paper.

Next, in Section 3.2, we describe how these maps can be represented as polynomials. The

actual problem statement is then deferred to Section 4.
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3.1 Definitions and Notations

Take an infinite dihedral group W =
〈
s, t | s2 = t2 = 1

〉
and let R = R[αs, αt] be the Coxeter

ring as defined in Section 2, where αs denotes reflection over the hyperplane normal to s.

3.1.1 Notations for Strings

For each nonnegative integer n, let us define for convenience the strings

Sn def
= s . . . s︸ ︷︷ ︸

n s’s

and the “alternating” string

An def
=


sts . . . s︸ ︷︷ ︸
n letters

if n ≡ 1 (mod 2)

sts . . . t︸ ︷︷ ︸
n letters

if n ≡ 0 (mod 2).

Similarly, let A′n denote the string obtained by switching s with t in An. We take S0 = A0 =

A′0 = ∅ where ∅ denotes the empty string.

In general, a string of s’s and t’s will be referred to as an expression. In the case where there

are no consecutive identical characters (in other words, the string is either An or A′n), we refer

to them as reduced expressions.

Next, let Bn denote the set of binary strings of length n.

Finally, given a string x (either a binary string or an expression), let x[i] denote the ith

character. In general, underlined Roman letters denote strings.

3.1.2 Definitions for Maps and Diagram

Consider an expression r. Given a binary string b, let Mr(b) denote the map formed by

the light leaves, as described in Section 2.4. We refer to maps and their associated diagrams

interchangeably.

Maps constructed by the light leaves are called half-maps or half-diagrams (since subsequently

we compose pairs of them). Figure 2 (in Section 2.4, on page 6) gives an example of such a

half-map.

Additionally, let Topr(b) denote the top of the half-diagramMr(b), as defined in Section 2.4.

Note that the top of any half-map is always a reduced expression. In fact, one can verify that

the top of a map is given explicitly by

Topr(b) =
n∏
i=1

(r[i])b[i] ∈W. (3.1)

Two maps Mr(a) and Mr(b) with identical tops may be composed by juxtaposing Mr(a)

with a flipped copy ofMr(b); an example of such a composition is given in Figure 3. We denote

this product byMr(a, b). If the two half-maps are not compatible (that is, Topr(a) 6= Topr(b)),

then we simply set Mr(a, b) = 0.

Such structures are called full-maps or full-diagrams for clarity. If r is clear from context, we

abbreviate Mr as simply M and Topr as Top.

Recall that the light leaves are based off a sequence of vertices at the bottom boundary of a

half-map. We call these vertices, whether on the bottom boundary of a half-map or the center

of a full-map, the anchors for that map, and the associated sequence of letters the base.

An example of a full-map with base A5 is given in Figure 4.
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Figure 3: An example of composing two maps, Msttstst(1001100) and Msttstst(1001001).

Figure 4: A full-map with base ststs, hence with five anchors. The top is ∅.

3.1.3 Nomenclature for Certain Structures in Diagrams

Let us make a few convenient definitions for some recurring characters in our full-diagrams.

Figure 5: Two red barbells with a very twisted fence, which creates two pastures.

Definition 3.1. A connected component which (i) is acyclic, and (ii) does not touch the top

or bottom boundaries is called a barbell.

Notice that, by combining homotopy and contraction (see Section 2.3), every blue barbell is

simply . Similarly, every red barbell is simply .

Definition 3.2. A fence is a contiguous path which runs from the top of the boundary to the

bottom of the boundary (i.e. paths between the labelled vertices). The diagram is divided by

these fences into pastures.

Definition 3.3. A component is called attached if it is connected to a fence. Otherwise, it is

called free.

An example of a fence complete with two barbells is given in Figure 5.

Next, we name some recurrent characters in our work.
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Figure 6: A blue bubble with two barbells inside it.

Definition 3.4. A bubble is a bounded face along with any components contained within the

face. The color of the bubble is the color of the edges which form the bounded face.

Definition 3.5. We say that the bubble B holds a component c if c is inside B, but there is

no other bubble B′ inside B which contains c.

An example of a bubble is given in Figure 6.

Figure 7: A caterpillar made of three bubbles.

Definition 3.6. A caterpillar consists of a free component and the contents of any bubbles

formed by its edges. A caterpillar holds a component if some bubble of the caterpillar holds it.

An example of a caterpillar is given in Figure 7. Notice that any barbell or bubble is a special

case of a caterpillar.

3.2 Representations of Maps as Polynomials

Recall that every diagram represents a map using the generators and relations in Section 2.2

and Section 2.3.

In order to study these maps as algebraic structures, we wish to consider full-maps as poly-

nomials in R[x, y][αs, αt]. Hence, we establish the following conventions:

1. For any f ∈ R, the map x 7→ fx (i.e. multiplication on the left) will be abbreviated as f

from this point forward.

In particular, the map is αs. This follows from a straightforward computation. Fur-

thermore, one can check that, for example, = α2
sαt. Note that x 7→ xf does not

get a similar abbreviation. So, 6= αs.

2. We work modulo lower terms. That is, any map which contains a connected component

that touches any boundary only once (total) is considered zero. So, for example, we have

= 0.
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Henceforth, we refer to diagrams and their associated polynomials interchangeably.

One can verify that, using the barbell-forcing rules, we can recursively move all barbells to

the left, and any “broken” walls are reduced to zero, or are contracted. Hence, any full-diagram

can be reduced to linear combinations of maps of the form f 7→ αms α
n
t f . In other words, every

full-diagram can be represented as a polynomial in R[x, y][αs, αt].

In fact, we can even show, with this new convention, that the following identity holds for

every f :

f = ∂s(f) + s(f) (3.2)

where ∂s is the Demazure operator defined in Section 2.3.

For reference, Appendix A contains a complete table of all maps of the form MA5(a, b).

3.2.1 Quantum Numbers

A particularly nice sequence of polynomials can be defined recursively. These polynomials are

termed two-color quantum numbers.

Definition 3.7 (Quantum Numbers). For each integer n ≥ 0, define two polynomials [n]x, [n]y ∈
Z[x, y] recursively by [0]x = [0]y = 0, [1]x = [1]y = 1, [2]x = x, [2]y = y, and

[2]x[n]y = [n+ 1]x − [n− 1]x

[2]y[n]x = [n+ 1]y − [n− 1]y.

Finally, [−n]x = −[n]x and [−n]y = −[n]y for each n ≥ 0.

As an example, [3]x = [2]x[2]y + [1]x = xy + 1.

The quantities [n]x and [n]y are closely related. In particular, [2k + 1]x = [2k + 1]y and

[2]x[2k]y = [2]y[2k]x for all integers k. This follows immediately by induction.

Recall that the generators s and t of W act on R by the action given in Section 2. The

quantum numbers are relevant to the problem because of the identity

s([n− 1]xαs + [n]yαt) = [n]xαs + [n+ 1]yαt (3.3)

and its analogous form for t. One can verify that (3.3) immediately follows from definitions.

This gives us a robust way to express the results of action on αs or αt by the elements of W .

For example, ststst(αs) = ststst([1]xαs + [0]yαt) = [7]xαs + [6]yαt.

Now (3.3) motivates us to make the following definition, which we use in Section 8.

Definition 3.8. For any reduced expression r, we define the quantum polynomial Qr by QAn =

[n+ 1]xαs + [n]yαt when r = An, and otherwise, QA′n = [n]xαs + [n+ 1]yαt.

The significance is that, if r is a reduced expression of length n+ 1, then

Mr(11 . . . 11︸ ︷︷ ︸
n 1’s

0, 11 . . . 11︸ ︷︷ ︸
n 1’s

0) = Qr.

An illustration of such a full-map is given in Figure 8. This follows from (3.2).
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Figure 8: M(11110, 11110).

4 Problem Statement

Definition 4.1. A map is idempotent if multiplying it with itself returns the original map.

Two idempotents are orthogonal if their product is zero.

If we can find two half-maps A and B for which AB is the identity, then (BA)2 = BABA =

BA is an idempotent. More generally, however, if AB = c for some scalar c 6= 0, then(
BA

c

)(
BA

c

)
=
BABA

c2
=
BA

c

is also an idempotent.

However, if we are interested in finding sets of pairwise orthogonal idempotents, then this

becomes a linear algebra problem in which we require a matrix of all products. The construction

of such a set of idempotents is closely related to the decomposition of these bimodules, which

in turn gives information about the Soergel bimodules1.

This motivates the main objective of our study.

Question. For a fixed r and two binary sequences a and b with Topr(a) = Topr(b), find a

formula for Mr(a, b) in terms of r, a, and b.

In this paper, we wish to compute the polynomial which corresponds to the map.

5 A Complete Characterization of the One-Color Case

In this section we provide a complete characterization for MSn(a, b).

First, we need a criteria to determine the top of such compositions.

Definition 5.1. For a binary string b, let π1(b) denote the number of 1’s in b.

Proposition 5.2. For any b ∈ Bn,

TopSn(b) =

{
∅ if π1(b) ≡ 0 (mod 2)

s if π1(b) ≡ 1 (mod 2).

Proof. This is a direct application of (3.1).

Subsequently, we make the following definition for this section only.

1Actually, the Soergel bimodules may be defined as the images of idempotents in the endomorphism rings of

the Bott-Samelson bimodules.
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Definition 5.3. For a binary string b, define the partial-sum string of b, denoted b∗, as follows:

b∗[i] =

{
1 if b[1] + b[2] + · · ·+ b[i] ≡ 1 (mod 2)

0 otherwise.

We are now ready to state our main result for this section.

Theorem 5.4 (One-Color Theorem). If a, b ∈ Bn satisfy TopSn(a) = TopSn(b), then

MSn (a, b) =

{
0 if there exists 1 ≤ i ≤ n− 1 : a∗[i] = b∗[i] = 1

α
n−π1(a∗)−π1(b∗)+a∗[n]
s otherwise.

1
s

0
s

0
s

1
s

0
s

1
s

1
s

0
s

Figure 9: A half-map with base S8.

Proof of Theorem 5.4. We will only consider the case where Top(a) = ∅, so that a∗[n] = b∗[n] =

0; the other case is essentially identical. See Figure 9 for an example of such a map.

Number the anchors 1, 2, . . . , n from left to right. For a half-map M(b), define the antennae

of a connected component to be the anchors which it touches. Note that the antennae of a

component always form a single contiguous sequence of anchors.

The key observation is that for 1 ≤ i ≤ n− 1, we have that b∗[i] = 1 if and only if i and i+ 1

are both antennae of some component in M(b). This follows by construction.

Let us now compose Ma
def
= M(a) and Mb

def
= M(b) to obtain a full-map. Two components

(one from Ma and one from Mb) are said to feel each other k times if they have k antennae in

common. Notice that if any two components feel each other at least twice, then there exist two

adjacent common antennae, forcing the composition of the entire map to be zero because the

two antennae combine to form an empty bubble. Furthermore, it is evident that any bubbles

must be formed in this manner. In combination with the claim above, this implies the first case

of the theorem.

On the other hand, suppose this product is nonzero, and consider a component from the top

with k antennae. It suffices to show that there are n − π1(a∗) − π1(b∗) barbells. Notice that

π1(a
∗) + π1(b

∗) counts the number of edges between adjacent anchors (i and i + 1). Because

there are no cycles, deleting one of these edges increases the number of connected components

by exactly one (since all the connected components are barbells). If we delete all such edges,

then we obtain n barbells. Therefore there must have been n−π1(a∗)−π1(b∗) barbells to begin

with, as desired.

6 Counting Maps

We give a formula for the number of binary strings b such that Topr(b) = w for each expression

w and r.

Definition 6.1. Let Reduce(r) denote r with any consecutive blocks of s’s replaced by a single

s, and similarly for t.
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For example, Reduce(sststttts) = ststs.

Proposition 6.2. Let r be an expression of length `, and suppose Reduce(r) = An.

(i) If n = 2k + 1 is odd, then for each 0 ≤ m ≤ k, there are 2`−n
(
n−1
m+k

)
binary strings b

yielding each of A2m+1, A2m, A′2m−1, and A′2m as Topr(b).

(ii) If n = 2k is even, then for each 0 ≤ m ≤ k − 1, there are 2`−n
(
n−1
m+k

)
binary strings b

yielding each of A2m+1, A2m+2, A′2m, and A′2m+1 as Topr(b).

If r begins with the character t, then one can simply reverse the roles of s and t in the above

theorem to obtain an analogous formula.

Proof of Proposition 6.2. The proof proceeds in two steps. The first is to resolve the case ` = n.

We do so by using induction on n, and applying (3.1). By splitting into the case where b[n] = 1

and b[n] = 0, we get two binomial coefficients; the computation is to verify that we can then

apply Pascal’s identity. The second step is to reduce the case where ` 6= n to the previous step

using Proposition 5.2.

First we resolve the case where r = An, so that ` = n and 2`−n = 1. We proceed by induction

on n ≥ 1 and consider eight cases. (The base case is trivial.) The strategy for each is that, for

the binary strings of length n and top w, we consider those binary strings which end with 1

and those which end with 0. Using (3.1), we may then write the new quantity in terms of the

number of strings of length n− 1 with a different top.

When n = 2k+ 1, we have An[n] = s and n− 1 = 2k. Let b′ denote the first n− 1 characters

of b. Then,

• The top A2m+1 ends in s. So, if b[n] = 1 then we have top A2m = A2(m−1)+2 for b′, and

otherwise b′ has the same top A2m+1. In total, we get
(

n−2
(m−1)+k

)
+
(
n−2
m+k

)
=
(
n−1
m+k

)
.

• The top A2m ends in t. So, if b[n] = 1 then we have top A2m+1 for b′, and otherwise b′

has the same top A2m = A2(m−1)+2. In total, we get
(
n−2
m+k

)
+
(

n−2
(m−1)+k

)
=
(
n−1
m+k

)
.

• The top A′2m−1 ends in t. So, if b[n] = 1 then we have top A′2m for b′, and otherwise b′

has the same top A′2m−1 = A′2(m−1)+1. In total, we get
(
n−2
m+k

)
+
(

n−2
(m−1)+k

)
=
(
n−1
m+k

)
.

• The top A′2m ends in s. So, if b[n] = 1 then we have top A′2m−1 = A′2(m−1)+1 for b′, and

otherwise b′ has the same top A′2m. In total, we get
(

n−2
(m−1)+k

)
+
(
n−2
m+k

)
=
(
n−1
m+k

)
.

The case where n = 2k is similar, but we now have n − 1 = 2(k − 1) + 1. Now the last bit

changes the top by t.

• The top A2m+1 ends in s. So, if b[n] = 1 then we have top A2m+2 = A2(m+1) for b′, and

otherwise b′ has the same top A2m+1. In total, we get
(

n−2
(m+1)+(k−1)

)
+
(

n−2
m+(k−1)

)
=
(
n−1
m+k

)
.

• The top A2m+2 ends in t. So, if b[n] = 1 then we have top A2m+1 for b′, and otherwise b′

has the same top A2m+2 = A2(m+1). In total, we get
(

n−2
m+(k−1)

)
+
(

n−2
(m+1)+(k−1)

)
=
(
n−1
m+k

)
.

• The top A′2m ends in s. So, if b[n] = 1 then we have top A′2m+1 = A′2(m+1)−1 for b′, and

otherwise b′ has the same top A′2m. In total, we get
(

n−2
(m+1)+(k−1)

)
+
(

n−2
m+(k−1)

)
=
(
n−1
m+k

)
.

• The top A′2m+1 ends in t. So, if b[n] = 1 then we have top A′2m for b′, and otherwise b′ has

the same top A′2m+1 = A′2(m+1)−1. In total, we get
(

n−2
m+(k−1)

)
+
(

n−2
(m+1)+(k−1)

)
=
(
n−1
m+k

)
.
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This completes the inductive step. Hence, the proposition is true for ` = n.

To finish the case ` 6= n, we note that we can treat each consecutive block of s’s of length m

as a single s, where there are 2m−1 ways to get a 1 and 2m−1 ways to get a 0. (This follows from

Proposition 5.2.) This reduces to the previous case r = An multiplied by additional factors of

2; aggregating all of them yields the factor of 2`−n, as desired.

7 Colorful Lemmata for the Alternating Case

We now turn our attention to the case of r = An.

Below we present three results which show that the possible outputs of a map with base An
all take certain forms.

Lemma 7.1 (Bubble Lemma). Consider a bubble in a full-diagram with base An. The bubble

holds exactly one caterpillar, whose color is opposite that of the bubble.

Lemma 7.2 (Caterpillar Lemma). Any caterpillar in a full-diagram with base An evaluates in

the form xmynαs if it is blue, or xmynαt if it is red.

Lemma 7.3 (Pasture Lemma). Consider a full-diagram with N + 1 pastures (numbered 0, 1,

. . . , N) with base An and top w. Suppose further that N ≥ 1 (or equivalently, w 6= ∅). Then

(i) Pastures 1 through N − 1 contain no caterpillars.

(ii) Pasture N is empty if w[N ] = An[n], and contains a single caterpillar otherwise. The

caterpillar is blue if An[n] is s, and red otherwise.

Included in Figure 10 is an example of a map with base A27. The Bubble Lemma and Pasture

Lemma can be readily observed in this example.

Figure 10: A large map with base A27.

The Bubble Lemma is the key combinatorial observation, which hinges on the fact that any

two anchors with the same color have a third anchor of the other color between them. The

other two lemmas follow directly from it.
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7.1 Proof of the Bubble Lemma

We begin with a proof of the Bubble Lemma2, which is the fundamental lemma for the alter-

nating case. Indeed, both of the subsequent lemmas are fairly straightforward consequences of

this one.

Proof of Lemma 7.1. Take a bubble B and assume without loss of generality that it is blue. By

construction all caterpillars held inside B must be red. This implies that there must be at least

one red caterpillar, because there is at least one red anchor inside B.

Define a pair of red anchors u, v, with u to the left of v, to be quasi-connected if (i) one can

draw an arc from u to v contained entirely in one half-map which does not intersect blue lines,

and (ii) there is no red anchor w strictly between u and v for which one can draw a similar arc

on the same half-map joining w and v.

Now we claim that any quasi-connected pair of red anchors is actually joined by a

red arc. To prove this, take such a quasi-connected pair u and v. Now we will focus only on

the half-map in which the prescribed arc is drawn. We thus may state that an arc shields any

anchors which lie between its endpoints.

A

u x v

A

u x v

Figure 11: Proving the bubble lemma with quasi-connected vertices.

Because the string is alternating, we can take a blue anchor x immediately to the left of

v. Now, there must be some blue arc shielding u and v (since u, v are inside a blue bubble).

By construction, there must be some red arc A covering x. If this arc joins u and v, then we

are done. Otherwise, if it has endpoint v then it must completely cover u by condition (ii) of

quasi-connectedness; if not, then it must completely cover v. This leads us to two cases.

• If the arc covers exactly one of u or v, say u, then there must be a blue arc shielding u

from A. But then this contradicts the quasi-connectedness, because now it is not possible

to join u and v by an arc on this half-map. This case is illustrated by the left half of

Figure 11.

• If the arc covers both u and v, then there must be a blue arc which shields both u and v,

which is itself shielded by A. Then we can repeat the same procedure with this new blue

arc. This case is illustrated by the right half of Figure 11.

Therefore any pair of quasi-connected anchors must be connected by an arc. However, one can

verify that the red anchors in B but not in any other bubble are “connected” under quasi-

2We should remark that attempting to construct counterexamples to the Bubble Lemma leads to a far better

understanding than trying to read the following proof.
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connectedness.3 Therefore all such red anchors must be connected. So there is a single cater-

pillar, as desired.

7.2 Proof of the Caterpillar Lemma

We will now derive the Caterpillar Lemma as a consequence of the Bubble Lemma.

It is worth intuitively explaining the main idea of the proof; the rest is book-keeping. Es-

sentially, because caterpillars may only hold a single other caterpillar, we may “descend down”

until we find a caterpillar which contains barbells in its bubbles. Now we break each of the

bubbles of this caterpillar one at a time using the barbell forcing rule. This generates several x

and y terms, but the barbell disappears at each such move. Hence, we break all cycles in the

caterpillar, at which point it becomes a barbell (modulo the addition of new x and y terms).

Rinse and repeat.

First, a few definitions for this section only.

Definition 7.4. Consider a caterpillar C in a full-diagram with base An. Define the nesting

level of the caterpillar as the largest integer n for which there exists caterpillars C = C0, C1,

C2, . . . , Cn such that Ci holds Ci+1 for each i = 0, 1, . . . , n−1. Define the size of the caterpillar

to be the number of bubbles it contains.

Proof of Lemma 7.2. The proof is by double induction. First we will consider caterpillars with

nesting level 0.

We perform induction on the size of the caterpillar. If there are no bubbles, then the caterpillar

is simply a barbell. This is the base step. For the inductive step, consider an arbitrary bubble.

Inside it is exactly one caterpillar, say c, by the Bubble Lemma. Because the original caterpillar

has nesting level 0, we deduce c is merely a barbell, and hence is either αs or αt. Applying

the barbell-forcing rule of equation (3.2) generates two terms. One of them is zero because it

creates a new empty bubble. The other is the original diagram with the cycle cut open and the

contents removed, multiplied by one of {x, y}. The inductive hypothesis now applies directly,

and this completes the first induction.

Now suppose a caterpillar has nesting level k ≥ 1. We simply apply the exact same induction

on size as before. The only modification is that, instead of a barbell, we have a caterpillar with

nesting level strictly less than k. However, these caterpillars all evaluate as a polynomial again

of the form xmynαs or xmynαt, by the outer inductive hypothesis. So applying equation (3.2)

in the same manner completes this induction as well.

7.3 Proof of the Pasture Lemma

The Bubble Lemma and the Pasture Lemma are structurally very similar. In fact, we will now

show a somewhat surprising proof of the Pasture Lemma via the Bubble Lemma.

Proof of Lemma 7.3. Again, let w denote the top, with length N . In the first case, suppose

w[N ] 6= An[n]; that is, the last characters of w and An differ. Then it must be the case that

the rightmost anchor is not part of a fence. Now suppose the map arose from MAn(a, b). Let

a′ be the string formed by appending N 1’s to a, and define b′ similarly. Now consider the map

MAn+N

(
a′, b′

)
.

3That is, one can follow a sequence of red anchors, each consecutive pair quasi-connected, from any red anchor

to any other red anchor.
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→

Figure 12: In the first diagram, a = b = 110010. In the second, a′ = b′ = 110010111. Closing

the pastures allows us to deduce the Pasture Lemma from the Bubble Lemma.

See Figure 12 for an example.

Clearly the top of this new map is zero, say by (3.1). Now what we have done is enclose the

contents of each pasture into bubbles. The Bubble Lemma tells us that the innermost bubble

can have exactly one caterpillar, while the other bubbles must contain only a single caterpillar,

which was once a fence. This implies the Pasture Lemma in the first case.

The case where w[N ] = An[n] is similar. We simply append a zero followed by N 1’s and

repeat the same procedure. The only difference is that the innermost barbell was generated by

the 0 we appended, and thus was not part of the original diagram.

8 Algebraic Computations for the Alternating Case

We now turn to using the tools developed in Section 7 in order to compute polynomials.

8.1 Restrictions and Definitions for the Final Output

Let us now endow our maps with base An with some additional structure.

Theorem 8.1. For any binary strings a, b ∈ Bn, if MAn(a, b) is nonzero and has top w, then

for some nonnegative integers mx, my, ms, and mt, we have

MAn(a, b) = xmxymyαms
s αmt

t ·
{

1 if w and An have the same last character

Qw otherwise.

Here, Qw is the quantum polynomial defined in Section 3.2.1.

Proof. This is an immediate consequence of the Caterpillar Lemma and the Pasture Lemma.

Everything in the first pasture is a product of monomials by the Caterpillar Lemma. If w and

An agree, then the last pasture is empty and hence we obtain the first case. Otherwise, there is

a single caterpillar of color opposite to w, and hence after evaluating that caterpillar, we obtain

some monomial times a single barbell. This generates the final Qw term after the barbell is

pushed through all the fences; the broken fences are all zero because they are lower terms.

Theorem 8.1 motivates the following definition, which is relevant for Proposition 8.3.
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Definition 8.2. If a nonzero map M with base An is presented as in Theorem 8.1, then we

call the term xmxymyαms
s αmt

t the fluff of M , and call the polynomial (either 1 or Qw) the face

of M .

Remark. According to Theorem 8.1, a nonzero map MAn has face 1 if and only if its top has

the same last character as An.

8.2 A Partial Recursion

In this section we present a partial recursion for computing MAn(a, b).

Proposition 8.3. Let n ≥ 2 be an odd integer and consider two binary strings a, b ∈ Bn such

that w = TopAn
(a) = TopAn

(b). Let a′ and b′ be the first n − 1 bits of a and b, respectively.

Suppose M1 =MAn−1

(
a′, b′

)
is a nonzero map with fluff F .

(i) If a[n] = b[n] = 0, then

MAn(a, b) =


αsM1 if w = ∅
−xF if w ends in s

QwM1 if w ends in t.

(ii) If a[n] = b[n] = 1, then

MAn(a, b) =


−xαsF if w = ∅
M1 if w ends in s

−xFQw if w ends in t.

Analogous statements hold when n is an even integer, with the roles of x and y interchanged,

as well as the roles of s and t.

The recursion arises because, using the lemmata of Section 7, we are able to see exactly what

happens in the rightmost pasture if a pair of 1’s or a pair of 0’s is added. In short, either a

barbell or a fence is added on the far right, or a caterpillar is enclosed in a bubble; each of these

leads to one of the cases above.

Notice that this recursion is sufficient to calculate MAn(b, b).

Proof of Proposition 8.3. We will only resolve the case where n is odd; that is, An terminates

in s. The other case is identical.

(i) Suppose a[n] = b[n] = 0. Note that the top of M1 is also w.

• If w = ∅, then M1 also had top ∅. Therefore, the addition of the 0’s at the end

simply generates an extra blue barbell. So the resulting map is simply a multiple by

αs; i.e. M = αsM1.

• The case where w ends in t is analogous; we simply obtain a new barbell. However,

because w 6= ∅, the extra factor is Qw instead of simply αt. Hence, M = QwM1.

• Now suppose w ends in s. Then the addition of the 0’s resulted in enclosing a

caterpillar of M1 in an attached bubble, as per Figure 13. Breaking out of the

additional blue loop now adds a factor of x, but the red caterpillar is annihilated

in the process; therefore, only the fluff remains, because there is nothing to push

through the fences. Hence, M = −xF .

18



→

Figure 13: M(1000, 0010) on the left, and M(10000, 00100) on right.

(ii) Now suppose that a[n] = b[n] = 1.

• First, suppose w ends in s. Then the additional 1’s added simply create a fence on

the far right, because there are no “up” blue anchors to interact with. Because this

fence is already on the far right, it does not affect the product, hence M = M1.

→

Figure 14: M(0110, 0110) on the left, and M(01101, 01101) on right.

• Conversely, suppose that w ends in t. See Figure 14 for an example.

In that case, M1 must have had the top w with an s appended. Once again, we find

that the red caterpillar from M1 is enclosed in a bubble. This time, however, the

bubble is not attached. Therefore, while we still obtain the extra factor of x and the

caterpillar is still removed, we remain with a blue barbell on the far right pasture.

So we must push this blue barbell through w. This adds a factor of Qw, and so we

obtain the desired form M = −xFQw.

• The case where w = ∅ is analogous to the previous case; in a sense, we merely have a

degenerate Q∅ = αs. Specifically, the blue barbell is already on the correct pasture,

so we simply add a factor of αs. Therefore, M = −xFαs.

This exhausts all the cases in the proposition, hence we are done.

9 Conclusion

The overarching goal of the paper was to compute Mr(a, b) in terms of r, a, and b. In this

paper, we solved the case where r = Sn completely, and showed that outputs in the case r = An
are substantially constrained. We also provided a partial recurrence for An. An obvious next

direction would be to attempt to finish the recursion forAn so thatMAn(a, b) can be determined

completely.
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What about the original problem of arbitrary r? It was initially hoped that, by understanding

An and Sn, one could derive the general formula (perhaps by viewing strings of s’s in r as a

single s with a formula for Sn, and then aggregating all this information with a formula for

An). Unfortunately, the lemmata of Section 7 show that in fact, maps with base An have very

special properties. So, either the results of Section 8 will have to be generalized significantly (in

the context of maps outside those with base An), or an entirely new approach will be required.

Yet another possible direction is to search for similar results when the order of st in W is

finite, or even if W is an arbitrary Coxeter group.
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A Complete Product Matrix for ststs

For reference, here is a complete product matrix for maps with base ststs. The blank entries

are 0 maps. The top is recorded as the title of each table.

stst 11110

11110 [5]αs + [4]yαt

ststs 11111

11111 1

tst 01110

01110 [3]α2
s + [4]yαsαt

tsts 01111

01111 αs

ts 01100 01001 00011 10111

01100 −[2]xαs αs
01001 αs −[2]yαs α2

s αs
00011 α2

s α2
sαt αsαt

10111 αs αsαt −[2]xαs

st 11000 10010 00110 11101

11000 −[2]y[3]αs −
[2]y[2]yαt

[3]αs + [2]yαt [3]αs + [2]yαt

10010 [3]αs + [2]yαt −[2]x[3]αs −
[2]x[2]yαt

[3]αsαt + [2]yα
2
t

00110 [3]αsαt + [2]yα
2
t [3]α2

sαt + [2]yαsα
2
t

11101 [3]αs + [2]yαt −[2]x[3]αs −
[2]x[2]yαt

t 01000 00010 10110 01101

01000 −[2]yα
2
s −

[2]y[2]yαsαt

α3
s + [2]yα

2
sαt α2

s + [2]yαsαt α2
s + [2]yαsαt

00010 α3
s + [2]yα

2
sαt α3

sαt + [2]yα
2
sα

2
t α2

sαt + [2]yαsα
2
t

10110 α2
s + [2]yαsαt α2

sαt + [2]yαsα
2
t −[2]xα

2
s −

[2]x[2]yαsαt
01101 α2

s + [2]yαsαt −[2]xα
2
s −

[2]x[2]yαsαt

sts 11100 11001 10011 00111

11100 −[2]x 1

11001 1 −[2]y 1

10011 1 −[2]x αt
00111 αt αsαt

∅ 00000 10100 01010 10001 00101 11011

00000 α3
sα

2
t α2

sα
2
t α3

sαt αsα
2
t α2

sα
2
t α2

sαt
10100 α2

sα
2
t −[2]xα

2
sαt α2

sαt −[2]xαsαt αsα
2
t αsαt

01010 α3
sαt α2

sαt −[2]yα
2
sαt αsαt α2

sαt −[2]yαsαt
10001 αsα

2
t −[2]xαsαt αsαt [2]x[2]xαs −[2]xαsαt −[2]xαs

00101 α2
sα

2
t αsα

2
t α2

sαt −[2]xαsαt −[2]xα
2
sαt αsαt

11011 α2
sαt αsαt −[2]yαsαt −[2]xαs αsαt [2]x[2]yαs
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s 10000 00100 11010 00001 10101 01011

10000 [2]x[2]x −[2]xαt −[2]x α2
t −[2]xαt αt

00100 −[2]xαt −[2]xαsαt αt αsα
2
t α2

t αsαt
11010 −[2]x αt [2]x[2]y αsαt αt −[2]yαt
00001 α2

t αsα
2
t αsαt α2

sα
2
t αsα

2
t α2

sαt
10101 −[2]xαt α2

t αt αsα
2
t −[2]xαsαt αsαt

01011 αt αsαt −[2]yαt α2
sαt αsαt −[2]yαsαt

B GitHub Repository

For the project, the first author wrote several scripts to produce and/or compute diagrams.

The source code can be checked out here: https://github.com/vEnhance/lightleaves.
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