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Abstract

A 0-1 matrix is a matrix in which every element is either 0 or 1. The weight extremal

function ex(n, P ) counts the maximum number of 1’s in an n × n matrix which avoids a

pattern matrix P . The column extremal function exk(m,P ) counts the maximum number of

columns that a matrix with m rows and k 1’s per column can contain such that the matrix

avoids P . Set weight and column extremal functions count maximum numbers of 1’s and

columns respectively of matrices which avoid a given collection of patterns.

We find bounds on the column extremal function for elementary operations on one or

two patterns. Using visibility representations, we determine linear bounds on the column

extremal functions of patterns with 1’s in the same row crossing 1’s in the same column

and linear bounds on the set extremal functions of a related class of pattern sets. We prove

that for any r × c rectangular configuration, the column extremal function is θ(mr). To

improve and find new bounds on the weight extremal function, we determine the relation

ex(m,n, P ) ≤ k(exk(m,P ) + n) for range-overlapping patterns P . We define a new pattern

and use bounds on extremal functions of letter sequences coupled with matrix-sequence

transformations to bound its column extremal function for k = 4 and 5. Finally, we find an

upper bound on its weight extremal function by applying our inequality for range-overlapping

patterns.
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1 Introduction

We define a 0-1 matrix as a matrix consisting solely of 0’s and 1’s. A submatrix of matrix M is

a matrix formed by selecting certain rows and columns of M . Matrix M contains or represents

P if and only if a submatrix of M can be transformed into P by changing any number of 1’s to 0’s.

Conversely, matrix M avoids P if M does not contain P . In Figure 1, A contains B because we

can take the submatrix consisting of the first two rows and last two columns and delete the 1-entry

in the top right corner to obtain B. On the other hand, A avoids C because no submatrix of A can

be transformed into a copy of C by changing some number of 1’s to 0’s.1 1 1
0 0 1
0 0 1

 (
1 0
0 1

) (
1 1
1 0

)
A B C

Figure 1: A contains B but avoids C.

1.1 Definitions and Methodology

Call the number of 1’s in a matrix its weight . A pattern P is a fixed 0-1 matrix in which we are

interested. Here, we define functions on such patterns.

Definition 1.1. The weight extremal function ex(n, P ) is defined as the maximum number of

1-entries that an n × n matrix can sustain without containing the pattern P . A generalized form

of the weight extremal function, ex(m,n, P ) gives the maximum weight of an m× n matrix which

avoids P .

Definition 1.2. For a collection S of 0-1 matrices, let the set weight extremal function

exs(n, S) denote the maximum number of 1-entries in an n × n matrix which avoids every ele-

ment in S.

Definition 1.3. The column extremal function exk(m,P ) gives the maximum number of

columns, each with at least k 1-entries, in a 0-1 matrix with m rows which avoids P .

Definition 1.4. For a collection S of 0-1 matrices, let the set column extremal function

exs(n, S) denote the maximum number of columns, each with at least k 1-entries, in a matrix with

m rows which avoids every element in S .
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We now take a look at some of the types of patterns discussed in this paper.

Definition 1.5. Call a pattern linear if its weight extremal function is linear in n or its column

extremal function is linear in m.

Definition 1.6. We define a rectangular pattern as a matrix filled with 1’s. Let Pr,c denote an

r × c rectangular pattern.

Definition 1.7. For each column c in a pattern P , draw a segment connecting the topmost and

bottommost 1-entries. Call P range-overlapping if, for every pair of columns c1 and c2, there

exists a horizontal line passing through the corresponding segments of both columns.

Representing 1-entries with boxes, Figure 2 shows examples of range-overlapping and nonrange-

overlapping patterns. These patterns provide a crucial link between weight and column extremal

functions.

Figure 2: The pattern on the left is range-overlapping. The pattern on the right is nonrange-
overlapping because its final two columns have disjoint ranges.

Next, we discuss some miscellaneous terms that will figure into the methods and techniques we use

to prove our results.

Definition 1.8. A bar visibility representation or visibility representation of a planar graph

is a drawing where vertices are represented as finite, disjoint horizontal bars and edges are drawn

as vertical segments which may not cross any bar.

Visibility representations will be used to prove linear bounds on the column extremal functions

of L1 and L2, patterns with linear weight extremal functions. More generally, we define bar-s

visibility representations to find linear bounds on the set extremal functions of collections Tr,s,

which we will describe in section 4.
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Definition 1.9. A bar s-visibility representation of a bar s-visibility hypergraph is a drawing

where vertices are represented as finite, disjoint horizontal bars and edges are drawn as vertical

segments intersecting only the s+ 2 vertex bars constituting the edge. The topmost bar in an edge

“sees” through s other bars to view the bottommost bar.

Definition 1.10. The height of a matrix is the number of nonempty rows present in the matrix.

2 Background

2.1 Motivation for the Weight Extremal Function

Fulek [6] briefly discusses the applications associated with the weight extremal function. The

motivation for seeking bounds on ex(n, P ) stems from the problem of determining the complexities

of computer algorithms that avoid specific rectilinear obstacles and minimize path distance, as

described by Mitchell [11]. Finding the weight extremal functions of patterns provides upper

bounds on the complexities of corresponding algorithms. Mitchell also describes the translation

of the shortest path problem to wire-routing, and a later paper by Lee et al. [13] adds motion

planning in robotics to the list.

The problem has mathematical applications in discrete geometry as well as graph theory. We

can relate 0-1 matrices to bipartite graphs by allowing rows and columns to represent the two

disjoint sets of vertices and letting 1’s represent edges. Keszegh [7] notes that the problem of

determining ex(n, P ) is a variation of Turán extremal graph theory for bipartite graphs. Avoiding

a given pattern matrix is equivalent to avoiding a corresponding subgraph.

Forbidden patterns can also be connected to forbidden subsequences in sequences of letters.

Pettie [10] used bounds on ex(n, P ) to derive bounds on the maximum lengths of sequences on 3

or more letters that must avoid certain subsequences. He has developed matrix-sequence transfor-

mations that relate the extremal functions of matrices and sequences.

2.2 Previous Work

Tardos [4] proved that all nontrivial patterns have weight extremal functions that are at least linear

in order. His result reveals the significance of linear patterns as a set of fundamental patterns and

justifies their being extensively studied.
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The Stanley-Wilf conjecture, which states that for every permutation Π, there exists a constant

C such that the number of permutations of length n which avoid Π is at most Cn, was proposed

around 1992 and remained a major open problem for over 10 years. Füredi and Hajnal [5] then

conjectured that permutation matrices are linear. Several years later, Klazar [2] showed that Füredi

and Hajnal’s conjecture, if validated, would imply the Stanley-Wilf conjecture. Finally, in 2004,

Marcus and Tardos [1] proved the Füredi-Hajnal conjecture, indirectly solving the Stanley-Wilf

conjecture.

Keszegh [3,7], Tardos [4], Füredi and Hajnal [5], among others, proposed elementary operations

which alter patterns in such ways that their new weight extremal functions can still be bounded

above using function values of the original patterns. Many of these operations preserve the orders of

weight extremal functions with respect to n. Operations allow us to both generate larger patterns

with bounded functions and find bounds on complex patterns.

Fulek [6] found bounds on the weight extremal functions of L1 and L2, shown in Figure 1,

using visibility representations constructed by treating rows of a given n×n matrix as vertices and

projections of 1-entries on lower rows as edges. He bounded the number of edges, and, in turn,

the number of 1-entries of the square matrix by limiting the multiplicity of edges in the visibility

representation. 0 1 1 0
1 0 0 1
0 1 0 0

 0 1 1 1 0
1 0 0 0 1
0 0 1 0 0


L1 L2

Figure 3: Patterns L1 and L2

2.3 The Column Extremal Function, exk(m,P )

Nivasch [9] improved early bounds on maximum sequence length by blocking sequences into groups

of unique symbols. He defined a function Exk(m, s) which gives the maximum number of letters in

a sequence with m blocks, avoiding an alternation abab... of length s, such that each letter occurs at

least k times. Using matrix-sequence transformations, these sequence extremal functions can once

again be related to matrix extremal functions. In their paper, Cibulka and Kynčl [8] defined what

we call column extremal functions. Cibulka and Kynčl used these functions to assess situations in

which matrices avoid a set of patterns.
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2.4 Contents and Results

Section 1 provides a basic explanation of the topic and a selection of key terms and methodology. In

section 2, we give the historical context of extremal functions, discuss previous developments, and

state our own results. In section 3, we determine upper bounds on the column extremal functions

of patterns undergoing elementary operations. Section 4 uses visibility representations and bar s-

visibility representations to restrict matrices avoiding patterns and classes of patterns. Extending

Fulek’s [6] argument, we prove linear bounds on the column extremal functions of patterns L1, L2,

and L3 and on the set extremal functions of Tr,s. The pattern L3 and the collections Tr,s will be

described in detail later. Section 5 investigates the column extremal functions of patterns with

rectangular configurations of r rows and c columns. For k ≥ r, we show exk(m,Pr,c) = θ(mr)

1. By a proof analogous to Nivasch’s [8], we relate the column and weight extremal functions of

range-overlapping patterns in section 6. In section 7, we bound the column extremal function of

a new pattern Q for k = 4, 5. Finally, in section 8, we discuss the implications of our results and

propose questions for future inquiry.

3 Bounds on Operations for exk(m,P )

3.1 Operations on Patterns for ex(n, P )

Earlier research has yielded several notable examples of operations that induce bounded changes in

weight extremal functions. Tardos [9] proved that ex(n, P ′) ≤ ex(n, P ) + n, where P ′ is a matrix

formed by appending a column with a single 1-entry to the right of a 1-entry in the final column of

P . Keszegh [7] showed that when we join patterns P and Q at opposite, 1-entry containing corners,

ex(n,R) ≤ ex(n, P ) + ex(n,Q), where R is the resultant matrix. Here, we extend the concept of

operations to exk(m,P ).

Lemma 3.1. Let the final column of P contain a 1-entry in row r. If P ′ is the pattern formed

by appending a column with a single 1-entry in row r to the right of P , as shown in Figure 4,

exk(m,P
′) ≤ exk(m,P ) +m.

Proof. In pattern P , call the 1-entry in row r of the last column x. Suppose we have a matrix A

with dimensions m × exk(m,P ′) and k 1-entries per column which avoids the pattern P ′. Create

1Here, we use Bachmann-Landau notation, which will be implemented throughout the paper.
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 1 1
1 0
0 1

→
 1 1 0

1 0 0
0 1 1


Figure 4: Operation appending 1-entry

a new matrix A′ by deleting the columns containing the rightmost 1-entry in each row. Note that

no more than m columns could have been deleted in this process.

Assume for contradiction that A′ contains P . Then by construction, there must exist some

1-entry y to the right of x in the copy of P which was deleted in creating A′. Thus, A must contain

P ′, a contradiction. Hence, exk(m,P
′) ≤ exk(m,P ) +m.

Lemma 3.2. Let P and Q be pattern matrices with height j where the last column of P and the first

column of Q are both completely filled with j 1-entries. Then we claim that exj(m,P )+exj(m,Q) ≥

exj(m,R), where R is the matrix created by overlapping P and Q at their last and first columns

respectively, as shown in Figure 5.

 1 1 1
0 0 1
0 1 1

 ,

 1 1 0
1 0 0
1 0 1

→
 1 1 1 1 0

0 0 1 0 0
0 1 1 0 1


Figure 5: Operation overlapping P and Q at filled columns

Proof. Suppose A has m rows and exj(m,P ) + exj(m,Q) + 1 columns, each with j 1-entries. Since

exj(m,P )+exj(m,Q)+ 1 > exj(m,P ), we can find a copy of P in A. Delete the rightmost column

of the copy and repeat this process exj(m,Q) + 1 times, obtaining a submatrix A′ of exk(m,Q) + 1

deleted columns. By definition, we can find a copy Q within A′. Note that the column in A′ which

contains the leftmost column of the copy of Q also contains the rightmost column of some copy of

P . All 1-entries in this column will align and overlap exactly, so A contains R and

exj(m,P ) + exj(m,Q) ≥ exj(m,R).

Lemma 3.3. Let P and Q be matrices such that P has a 1 in its bottom-right corner and no other

1-entries in its bottommost row, and Q has a 1 in its top-left corner and no other 1-entries in

8



its topmost row. Overlap P and Q at their aforementioned corners, as shown in Figure 6. For

sufficiently large m, exj+k−1(m,R) ≤ exj(m,P ) + exk(m,Q), where R is the resultant matrix.

 1 1 1
1 0 1
0 0 1

 ,


1 0 0 0
0 1 0 1
1 0 1 1
0 0 1 0

→


1 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 1
0 0 0 0 1 0


Figure 6: Operation joining P and Q at corners

Proof. Let matrix A have m rows, j + k − 1 minimum 1-entries per column and exj(m,P ) +

exk(m,Q) + 1 columns. Only considering the top j 1’s in each column, we can find exk(m,Q) + 1

copies of P , each time deleting the rightmost column of the copy in A. We form a submatrix

A′ from the exk(m,Q) + 1 deleted columns. Next, we find a copy of Q using only the bottom

k 1-entries in each column. Delete all rows lying exclusively between the second row of the copy

of Q and the bottom row of the corresponding copy of P . This forms a copy of R. Hence,

exj+k−1(m,R) ≤ exj(m,P ) + exk(m,Q).

4 Bounds on the extremal functions of Li and Tr,s

4.1 Bar s-visibility hypergraphs and 0− 1 matrices

Define Tr,s to be the collection of matrices M with r+s+2 rows and r+2s+2 columns such that M

restricted to the first s+ 1 columns and rows 2, . . . , s+ 2 is an (s+ 1)× (s+ 1) permutation matrix,

M restricted to the last s + 1 columns and rows 2, . . . , s + 2 is an (s + 1) × (s + 1) permutation

matrix, M restricted to the middle r columns and the last r rows is an r × r permutation matrix,

and M has 1-entries in the middle r columns in row 1. For example T1,0 contains a single 3 × 3

matrix with four 1-entries in a diamond formation. Figure 7 represents a pattern in T4,1. Black

squares are cells with 1’s; white squares are cells with 0’s.

We extend Fulek’s method to show exs(n, Tr,s) = O(n) for all r ≥ 1 and s ≥ 0. First, we prove

a linear bound on the number of edges in a bar s-visibility hypergraph with n vertices. This proof

is similar to the proof of the maximum number of edges in a bar s-visibility graph with n vertices
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Figure 7: element of T4,1

in [12] by Dean et al. We assume all bar endpoints have distinct coordinates since this does not

decrease the maximum number of edges.

Lemma 4.1. All bar s-visibility hypergraphs with n vertices have at most (2s+ 3)n edges.

Proof. Scan any representation of the given bar s-visibility hypergraph in the plane from left to

right, listing distinct edges. List an edge when, for the first time, a vertical segment can be drawn

which intersects only the vertices in the edge. Then edges will be listed only when the scan passes

the left or right end of some bar.

For each bar B, the maximum possible number of edges added to the list when the scan passes

the left end of B is s+ 2 since there are at most s+ 2 vertical segments representing different edges

which pass through the left end of B and through s+ 1 other bars. The maximum possible number

of edges added to the list when the scan passes the right endpoint of B is s+ 1 since there are at

most s + 1 vertical segments representing different edges which pass just right of B and through

s + 2 other bars, at least one of which is below B and at least one of which is above B. With n

bars, we have at most (2s+ 3)n edges.

In the following theorem, we will change 0− 1 matrices avoiding Tr,s into bar s-visibility hyper-

graphs, and then show that the resulting hypergraphs have edge multiplicity at most r − 1.

Theorem 4.2. For all r ≥ 1 and s ≥ 0, exs(n, Tr,s) = O(n).
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Proof. Let M be an n× n matrix which avoids Tr,s. Define M ′ to be the matrix obtained from M

by deleting the first s + 1 and last s + 1 1-entries in every row, and the last r 1-entries in every

column. Construct a representation of a bar s-visibility hypergraph H from M ′ by drawing a bar

in each row with left end at the first 1-entry of M ′ in the row and right end at the last 1-entry of

M ′ in the row. For each 1-entry which is not among the bottommost s+ 1 1-entries in its column

in M ′, draw a vertical line starting from the 1-entry and extending through s bars until reaching

the (s+ 1)st bar below the 1-entry.

Suppose for contradiction that H contains some edge e with multiplicity at least r. Let

u1, . . . , us+2 be the rows of M ′ which contain the vertices in the edge e, and let c1, . . . , cr be

columns of M ′ which contain r vertical segments representing the copies of e. Let v1, . . . , vr be

distinct rows of M such that vi contains one of the bottommost r 1-entries of ci in M for each

i = 1, . . . , r; let d1, . . . , ds+1 be distinct columns of M such that di contains one of the s+1 leftmost

1-entries of ui in M for each i = 1, . . . , s+1; and let e1, . . . , es+1 be distinct columns of M such that

ei contains one of the s+1 rightmost 1-entries of ui in M for each i = 1, . . . , s+1. Then the subma-

trix of M consisting of rows u1, . . . , us+2, v1, . . . , vr and columns c1, . . . , cr, d1, . . . , ds+1, e1, . . . , es+1

contains an element of the collection Tr,s, a contradiction.

Then every edge of H has multiplicity less than r, so the number of 1-entries in M is at most

(2s+ 2 + r)n+ (r − 1)(2s+ 3)(n− r).

Observe that every element of Tr,s contains the pattern L3, shown in Figure 8, for r ≥ 3 and

s ≥ 1. Hence we obtain the following corollary.
0 1 1 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


Figure 8: Pattern L3

Corollary 4.3. ex(n,L3) = O(n)

Let L1 and L2 be the patterns depicted in Figure 1. Visibility representations can also be used

to derive linear bounds on the column extremal functions of L1, L2, and the collections Tr,s. The

first proof is much like Fulek’s [6] proof that ex(n,L1) = O(n).

Lemma 4.4. For k ≥ 3, exk(m,L1) ≤ 5m−13
k−2 .
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Proof. We follow Fulek’s proof for ex(n,L1) with some slight modifications. Begin with matrix A

which contains k 1’s in each column. Delete columns containing the first and last 1’s in each row.

We note that at most 2m columns are deleted in this process. Next, let us denote the cell in row

r and column c of A as (r, c). Construct a visibility representation by creating a bar from the first

1-entry to last 1-entry of every nonempty row excluding the bottommost nonempty row. We call

these bars vertices of our representation of A. We say that (r, c) is directly above (r′, c) if there

exists a direct, vertical path along column c between the two cells such that the path intercepts no

other bar lying between vertices r and r′, and (r, c) and (r′, c) lie on bars r and r′ respectively. For

every 1-entry (ri, c) that is not the bottommost or second bottommost 1-entry in its column and

lies directly above a cell (rj , c), drop an edge from vertex ri to rj in column c.

We claim that A cannot avoid L1 if it contains multiple edges between the same pair of vertices.

Suppose for contradiction that the visibility representation of A contains edges projecting down

from 1-entries (r1, c1) and (r1, c2) on vertex r1 to vertex r2. Then by our construction, we can find

1-entries on row r2 to the left of column c1 and to the right of c2, namely, the endpoints of the

r2. Call these (r2, cleft) and (r2, cright). Also by construction, we must have a 1-entry below row

r2 in column c1, namely, the bottommost 1-entry in c1. Call this (rbottom, c1). We see that the

configuration created by 1-entries (r1, c1), (r1, c2), (r2, cleft), (r2, cright), and (rbottom, c1) contains

pattern L1, as shown in Figure 9, a contradiction.

Figure 9: Portion of visibility representation that yields L1

We use the well-known fact that a simple, connected planar graph with x ≥ 3 vertices can

have at most 3x − 6 edges. Our visibility representation has at most m − 1 vertices and hence

at most 3m − 9 edges, which correspond to 1-entries that are not the bottommost or second

bottommost 1’s in their column or the leftmost and rightmost 1-entries in their row. To account

12



for these, we add back a possible 2(exk(m,L1) − 2) and 2m 1-entries respectively and obtain

k(exk(m,L1)) ≤ 2m+ 3m− 9 + 2(exk(m,L1))− 4, which becomes exk(m,L1) ≤ 5m−13
k−2 for k ≥ 3.

By a similar argument, if we have a matrix A which avoids L2, the visibility representation of

A cannot have any edges of multiplicity 3. Then exk(m,L2) ≤ 8m−22
k−2 for k ≥ 3.

We extend this technique to obtain upper bounds on the column extremal functions of Tr,s

which are tight up to constant gaps.

Lemma 4.5. exsk(m,Tr,s) = O(mk )

Proof. Fix k ≥ r + s + 2. Let M be a matrix with m rows and k 1’s per column which avoids

Tr,s. Define M ′ to be the matrix obtained from M by deleting the columns which contain the first

s + 1 and last s + 1 1-entries in every row. At most 2(s + 1)m columns are deleted. Construct a

representation of a bar s-visibility hypergraph H from M ′ by drawing a bar in every row besides

the bottommost r rows with left end at the first 1-entry of M ′ in the row and right end at the last

1-entry of M ′ in the row. For each 1-entry which is not among the bottommost s+ r + 1 1-entries

in its column in M ′, draw a vertical line starting from the 1-entry and extending through s bars

until reaching the (s+ 1)st bar below the 1-entry.

Suppose for contradiction that H contains some edge e with multiplicity at least r. Let

u1, . . . , us+2 be the rows of M ′ which contain the vertices in the edge e, and let c1, . . . , cr be

columns of M ′ which contain r vertical segments representing the copies of e. Let v1, . . . , vr be

distinct rows of M such that vi contains one of the bottommost r 1-entries of ci for each i = 1, . . . , r;

let d1, . . . , ds+1 be distinct columns of M such that di contains one of the s+ 1 leftmost 1-entries of

ui in M for each i = 1, . . . , s + 1. Let e1, . . . , es+1 be distinct columns of M such that ei contains

one of the s+ 1 rightmost 1-entries of ui in M for each i = 1, . . . , s+ 1. Then the submatrix of M

consisting of rows u1, . . . , us+2, v1, . . . , vr and columns c1, . . . , cr, d1, . . . , ds+1, e1, . . . , es+1 contains

an element of the collection Tr,s, a contradiction.

A bar s-visibility hypergraph with x vertices can have at most (2s+3)x distinct edges, so the s-

visibility representation of M has at most (r−1)(2s+3)(m−r) edges which correspond to 1-entries

that are not among the s + r + 1 bottommost 1’s in their column or the s + 1 leftmost and s + 1

rightmost 1-entries in their row. To account for these, add back a possible (s+r+1)(exsk(m,Tr,s)−

2(s+ 1)) and 2(s+ 1)m 1-entries respectively. Summing all components, we obtain the inequality
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k(exsk(m,Tr,s)) ≤ 2(s + 1)m + (r − 1)(2s + 3)(m − r) + (s + r + 1)(exsk(m,Tr,s) − 2(s + 1)).

Rearranging confirms the lemma.

This result gives an upper bound on the column extremal function of L3 that is tight up to a

constant.

Corollary 4.6. exk(m,L3) = O(mk )

5 Column Extremal Functions of Rectangular Patterns

5.1 k = r

In the case that k is equal to the number of rows in our rectangular pattern, we can find the exact

value of exk(m,Pr,c) using a simple counting argument.

Lemma 5.1. exk(m,Pk,c) = (c− 1)
(
m
k

)
.

Proof. There exist
(
m
k

)
configurations of k 1-entries in a column with m rows. By the pigeonhole

principle, a matrix with (c− 1)
(
m
k

)
+ 1 columns must have one configuration that occurs at least c

times. A submatrix consisting of c identical columns and their k nonempty rows forms a copy of

Pk,c. Hence, exk(m,Pk,c) ≤ (c− 1)
(
m
k

)
. We obtain the same lower bound by constructing a matrix

with c− 1 copies of each configuration; this avoids Pk,c. Therefore, exk(m,Pk,c) = (c− 1)
(
m
k

)
.

5.2 General bounds for k ≥ r

Theorem 5.2. For k ≥ r,

exk(m,Pr,c) = θ(mr).

Proof. We proceed by induction on k to prove a lower bound of order mr. For our base case, we

see that exr(m,Pr,2) = θ(mr), according to Lemma 5.1. Since exk(m,P ) is decreasing in k, this

also serves as an upper bound.

For any 0-1 matrix M , let GM be the graph obtained from M by letting every column of M

be a vertex and adding an edge between two vertices if and only if their corresponding columns

have 1-entries in exactly r − 1 common rows. Note that r − 1 is the maximum number of rows a

pair of columns may share without containing Pr,2. If M is a matrix with m rows and r 1-entries
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per column which avoids Pr,2, then the maximum degree of any vertex of GM , ∆(GM ), is at most

r(m− r).

Fix k > r. Let M be the matrix obtained in the last inductive step avoiding Pr,2 with xm rows,(
m
r

)
columns, and k − 1 1’s per column, such that ∆(GM ) ≤ ym for some constants x and y.

Using a greedy algorithm, color the vertices in GM using ∆(GM ) + 1 colors so that no two

vertices with a common edge share a color. Let C : VGM
→ {1, . . . ,∆(GM ) + 1} be the coloring

function. Place a 1-entry in row xm+ r of column b if and only if C(b) = r. Since ∆(GM ) ≤ ym,

the resulting matrix M ′ has at most xm+ ym+ 1 rows.

We bound the maximum degree of GM ′ using the fact that GM is a subgraph of GM ′ and

bounding the increase from ∆(GM ) to ∆(GM ′). Fix a column b of M ′. A column c is a neighbor

of b in GM ′ but not in GM only if there are exactly r− 2 rows in M which have 1s in both b and c,

and b and c were assigned the same color in GM . There are
(
k−1
r−2
)

ways to choose which r− 2 rows

contain 1’s in both columns b and c. For every set of r − 2 rows with shared 1-entries there are

at most xm−(k−1)
(k−1)−(r−2) possible new neighbors c of b in M ′, since every pair of new neighbors of b in

GM ′ get the same color in GM and thus have no common rows in M containing 1-entries besides

the r − 2 rows each neighbor shares with b. Then ∆(GM ′) ≤ xm−(k−1)
(k−1)−(r−2)

(
k−1
r−2
)

+ ym, completing

the induction.

We proved that for each k ≥ r, there exists a constant ak such that exk(akm,Pr,2) ≥
(
m
r

)
. To

generalize the bounds for all integral values of m, find n which satisfies akn ≤ m ≤ ak(n+ 1). We

see that

exk(akn, Pr,2) ≥
(
n

r

)
≥
(m
ak
− 1

r

)
.

Hence, exk(m,Pr,2) = θ(mr).

For c ≥ 2, we can say that exk(m,Pr,c) ≥ exk(m,Pr,2) since Pr,c contains Pr,2. Therefore,

exk(m,Pr,c) = Ω(mr) for all k ≥ r. Since exr(m,Pr,c) = (c− 1)
(
m
r

)
, then exk(m,Pr,c) = O(mr) for

all k ≥ r. This gives exk(m,Pr,c) = θ(mr) for all k ≥ r and c ≥ 2, completing the proof.

6 Relating exk(m,P ) to ex(m,n, P )

Nivasch [8] proved the correspondence between blocked and unblocked sequences that avoid symbol

alternations of a given length. We show that such a relation also exists between the weight and
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column extremal functions of certain patterns.

Theorem 6.1. For any pattern P that is range-overlapping,

ex(m,n, P ) ≤ k(exk(m,P ) + n).

Proof. Create a matrix A with m rows and n columns which avoids a range-overlapping pattern

P . For each column c in A, from top to bottom, section off clusters of k 1-entries. Delete all

1-entries remaining outside of a cluster. Starting from the second cluster, move each cluster to a

new column. Call the newly formed matrix A′, and let there be n′ columns in A′.

Suppose for contradiction that A′ contains P . Consider two cases.

Case 1: The copy of P in A′ contains columns that originated from the same original column

c. In this case, P could not be range-overlapping because our construction separated columns of A

into clusters with disjoint row indices. This contradicts our assumption.

Case 2: The copy of P in A′ only contains columns derived from different original columns.

Here, we see that our original matrix A must also contain P , a contradiction.

Therefore, A′ cannot contain P . In our construction, we deleted a maximum of n(k−1) 1-entries.

Each column of A′ contains k 1-entries, so we see that ex(m,n, P ) ≤ k(n′+n) ≤ k(exk(m,P ) +n),

and ex(m,n, P ) ≤ k(exk(m,P ) + n).

7 Column Extremal Function for Patterns with Alternating 1-

entries


0 0 1
1 1 0
0 0 1
1 0 0




0 1
1 0
0 1
1 0


Q P4

Figure 10: Patterns Q and P4

Lemma 7.1. ex4(m,P4) ≥
(
m−2
2

)
.

Proof. Let M be a matrix with m rows and
(
m−2
2

)
columns such that every column is indexed

with a unique (i, j), where i+ 1 < j < m. The column with index (i, j) contains 1-entries in rows
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i, i + 1, j, j + 1. Order these columns lexicographically. If columns c1 and c2 have indices (i1, j1)

and (i2, j2) respectively, order c1 to the left of c2 if and only if i1 < i2, or i1 = i2 and j1 < j2.

We claim that M cannot contain P4, shown in Figure 10. From top to bottom, let the 1-entries in

P4 be e1 . . . e4. Assume for contradiction that columns cx and cy, with indices (ix, jx) and (iy, jy)

respectively, contain P4. Suppose cx is to the left of cy. Then e1 and e3 must lie in cy. Consider

two cases.

Case 1: ix = iy. By construction, there exist no 1-entries in column cx below row jy in M .

Therefore e4 cannot be in column cx, a contradiction.

Case 2: ix < iy. Since ix < iy, then e2 must lie in either row jx or row jx + 1. In either case,

e4 cannot be in column cx, a contradiction.

Therefore, M does not contain P4, so ex4(m,P4) ≥
(
m−2
2

)
.

Proposition 7.2. ex4(m,Q) = θ(m2).

Proof. We find quadratic upper and lower bounds on ex4(m,Q).

Because pattern Q, shown in Figure 10, contains P4, a matrix which contains Q must also

contain P4, so ex4(m,Q) ≥ ex4(m,P4) and ex4(m,Q) = Ω(m2). Let M be a matrix with 4 1-

entries per column and m rows containing 2
(
m−2
2

)
+ 1 columns. Beginning from the top of each

column, call the 1-entries e1 . . . e4. Define e2 and e4 to be even 1-entries. To find an upper bound,

we consider the
(
m−2
2

)
distinct arrangements of even 1-entries. We claim that ex4(m,Q) ≤ 2

(
m−2
2

)
.

By the pigeonhole principle, we have 3 columns cx < cy < cz which have even 1-entries in

identical rows. Take e2 and e4 from cx, e2 from cy, and e1 and e3 from cz; these form a copy of Q.

Hence,

(
m− 2

2

)
≤ ex4(m,Q) ≤ 2

(
m− 2

2

)
so, ex4(m,Q) = θ(m2).

Proposition 7.3. ex5(m,Q) = θ(m log(m)).

Proof. We use a lower bound of order m log(m) on ex5(m,P4) to bound ex5(m,Q) as well. The

proof of this bound can be found in section A.1 of the Appendix.
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For an upper bound, we count columns by category. Divide matrix M with 2m rows into a

top m rows and a bottom m rows. Consider columns in which all 5 1-entries are either in the top

or bottom section. There are at most a total of 2ex5(m,Q) of these columns. Next, we consider

columns which have at least 3 but fewer than 5 1-entries in the top section. There are at most

ex3(m,Q2) of these because if configuration Q2, shown in Figure 11, occurs in the top section, then

adding the 1-entry that must occur in the bottom section in the leftmost column of this copy of

Q2 would create Q. Similarly, there are at most ex3(m,Q1) columns with 3 or 4 1-entries in the

bottom section, where Q1 is also shown in Figure 11. We note that these categories cover all cases.1 1 0
0 0 1
1 0 0

 0 0 1
1 1 0
0 0 1


Q1 Q2

Figure 11: Patterns Q1 and Q2

Hence, we obtain the inequality

ex5(2m,Q) ≤ 2ex5(m,Q) + ex3(m,Q1) + ex3(m,Q2).

In general, exk(m,Q1) and exk(m,Q2) are linear. We see that Q1 is a subpattern of L1, so Q1 also

has linear extremal function. Furthermore, Q2 is contained within a pattern which can be derived

from applying elementary operations to a trivial pattern, so Q2 is linear as well. We then rewrite

our inequality as ex5(2m,Q) ≤ 2ex5(m,Q) + lm for some constant l. Using an induction argument

found in section A.2 of the Appendix, we show ex5(m,Q) ≤ cm log(m) for some constant c, which

ultimately yields ex5(m,Q) = θ(m log(m)).

Corollary 7.4. ex(n,Q) = O(n log n)

Proof. This follows from Theorem 6.1 and the previous proposition.

8 Conclusion

8.1 Discussion

With analogous methods, we extended bounds on several elementary operations to exk(m,P ). It

remains unknown which other operations can be applied successfully in the context of column
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extremal functions. A basic example is the insertion of a column with a single 1-entry between

columns containing 1-entries in the same row. While weight extremal functions remain unchanged

after rotating patterns, column extremal functions present the challenge that they are not preserved

through rotation. For instance, exk(m,P2,3) clearly differs from exk(m,P3,2). Furthermore, rotated

operations are also unequivalent in column extremal functions. Inserting a 1-entry between columns

in the manner mentioned earlier may not change the function in the same way as inserting a 1-entry

between two rows containing 1-entries in the same column.

We examined exk(m,P ) for patterns that had been studied exclusively in ex(n, P ), including

L1, L2, P4, and the new pattern Q. Examining the extremal functions of these specific patterns

will help develop methods for bounding the extremal functions of more general classes of patterns.

In particular, we extended the use of visibility representations to find linear bounds on the set

extremal functions of collections Tr,s and, in turn, linearly bounded the extremal functions of L3.

We would like to investigate exk(m,Q) for k > 5 as well and examine the growth of the order of

the function as k increases. Using related techniques, perhaps we can also derive bounds for other

pattern matrices created by adding a column with a single 1-entry to an alternating pattern Pn.

As a case study, we then determined θ(mr) bounds on the column extremal functions of r × c

rectangular patterns. However, we have yet to bound the coefficients of these functions in terms

of k. With our present construction, we attain an exponentially decreasing lower bound, but these

coefficients are not necessarily optimal.

We were also able to relate modified extremal functions to the original extremal functions for

range-overlapping patterns. We used the derived inequality to find an analogous upper bound of

order n log(n) on ex(n,Q). Our relation may aid in future attempts to find bounds on column and

weight extremal functions that are difficult or impractical to analyze directly.

8.2 Future Work

Additionally, we hope to consider the following open problems: Are there patterns P where

exk(m,P ) is finite and nonlinear in m, but exk+1(m,P ) is linear? Is exk(m,P ) = O(m) for

all permutation matrices P with at most k rows? Is there any pattern P for which ex(n, P ) is

linear but exk(m,P ) is nonlinear, or vice versa? Similarly, can certain collections of patterns have

linear set weight extremal functions but nonlinear set column extremal functions, or vice versa?

For what patterns P is exk(m,P ) nonlinear in m (or infinite) for every k, but exk(m,P
′) is linear
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in m (or infinite) for every k, for every pattern P ′ properly contained in P? How many minimal

nonlinear patterns, which become linear upon deletion of any 1-entry, are there, e.g., are there in-

finitely many? Answering these questions will provide fundamental insight on the nature of column

extremal functions and their relation to weight extremal functions.
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A Appendix

A.1 Lower bound on exk(m,P4)

Proof. We modify Pettie’s [10] matrix-sequence transformations to show bounds on exk(m,P ) for

alternating patterns P . Let as be an alternation aba . . . of length s and let Ps be the 0-1 matrix

with s rows 0, . . . , s−1 and 2 columns 0, 1 such that the number in each entry is the sum of its row

and column mod 2. A block of a sequence is a contiguous, possibly empty, subsequence with no

repeated letters. Define Exk(m, s) to be the maximum number of letters in a sequence on m blocks

which avoids as such that every letter occurs at least k times. Let Ex(m,n, s) be the maximum

length of a sequence with n letters on m blocks which avoids as.

Pettie’s sequence to matrix transformation starts with a sequence Q with n letters on m blocks

which avoids alternations of length s+ 2, and results in a 0-1 matrix A with n columns and m rows

which avoids the matrix Ps+1. The letters of Q are named 0, . . . , n− 1 by first occurrence and the

blocks are named 0, . . . ,m− 1 from left to right. We place a 1-entry in column i and row j of A if

and only if the letter i occurs in block j of Q.

Suppose for contradiction that A contains Ps+1. Then there is a submatrix of A with 2 columns

c0 < c1 corresponding to an alternation c1c0 . . . of length s+ 1 in Q. However, the first occurrence
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of c0 is before the first occurrence of c1 in Q, so Q contains an alternation of length s + 2, a

contradiction. This implies Ex(m,n, s + 2) ≤ ex(m,n, Ps+1) for m,n, s ≥ 1 and Exk(m, s + 2) ≤

exk(m,Ps+1) for s, k,m ≥ 1.

Pettie then uses a matrix to sequence transformation to show that ex(m,n, Ps+1) ≤ Ex(m,n, s+

2)+n. He converts a 0-1 matrix A with m rows 0, . . . ,m−1 and n columns 0, . . . , n−1 to a sequence

Q with m blocks and n letters, named likewise. Letter i occurs in block j of Q if and only if there

is a 1-entry in column i and row j.

Let Cj be the letters in block j of Q which occur in no block before j and let Dj be the letters

in block j of Q which occur in a block before j. All letters in Dj occur before all letters in Cj in

block j, and letters in Dj occur in block j in reverse order of their last appearance before block j.

In Pettie’s paper the letters in Cj were ordered arbitrarily, but here letter x in Cj occurs before

letter y in Cj if and only if x < y.

Suppose that Q contains an alternation of length s+ 2 on letters x and y such that x < y. List

all alternations of length s+ 2 on the letters x and y in Q lexicographically, so that alternation f

appears before alternation g if there exists some i ≥ 1 such that the first i− 1 elements of f and g

are the same, but the ith element of f appears before the ith element of g in Q.

Let f0 be the first alternation on the list and let πi be the number of the block which contains

the ith element of f0 for 1 ≤ i ≤ s + 2. Suppose for contradiction that for some 2 ≤ i ≤ s + 1,

πi = πi+1. Let a be the ith element of f0 and let b be the (i+ 1)st element of f0.

Since the b in πi is not the first occurrence of b, the a in πi cannot be the first occurrence of

a, as Dπi precedes Cπi . Hence, a and b in π are both in Dπi , and the last occurrence of a before

πi follows the last occurrence of b before πi. Let f1 be the subsequence obtained by replacing the

letter a in πi from f0 with the last occurrence of a before πi. Then f1 is an alternation of length

s+ 2 and f1 occurs before f0 on the list. This contradicts the definition of f0, so for 2 ≤ i ≤ s+ 1,

πi < πi+1. We now consider two cases.

Case 1: The first element of f0 is x. Here, the submatrix of A with 2 columns x, y and s + 1

rows π2, . . . , πs+2 contains Ps+1 since x < y.

Case 2: The first element of f0 is y. Suppose for contradiction π1 = π2. The occurrences of

x and y in block π1 are both first occurrences of x and y in Q. Otherwise, f0 would not be the

first alternation on the list. Since x and y are in Cπ1 , then x appears before y in block π1 because

x < y, a contradiction. Then the submatrix of A with 2 columns x, y and s + 1 rows π1, . . . , πs+1
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contains Ps+1.

This implies Ex(m,n, s+ 2) ≥ ex(m,n, Ps+1) for m,n, s ≥ 1 and Exk(m, s+ 2) ≥ exk(m,Ps+1)

for s, k,m ≥ 1. We proved ex5(m,P4) = ex5(m, a5), and Nivasch [9] showed that ex5(m, a5) =

Ω(m log(m)). Hence, ex5(m,P4) = Ω(m log(m)) .

A.2 Induction

Proof. In Proposition 7.3, we proved ex5(2m,Q) ≤ 2ex5(m,Q) + lm for some constant l.

Inductive hypothesis and base case: Assume ex5(m,Q) ≤ cm log(m) for all m ≤ i for some

constant c. This can be done because there are finitely many such m. Additionally, pick c ≥ 2l
log(2) .

Inductive step: By substituting values into our original inequality, for all m such that i < m ≤

2i, we see that ex5(2m,Q) ≤ 2cm log(m) + lm, which we rewrite as ex5(2m,Q) ≤ 2cm log(2m) −

2cm log(2) + lm. Because we chose c >
2l

log(2) ,

ex5(2m,Q) ≤ 2cm log(2m)− 2lm

log(2)
log(2),

which simplifies to ex5(2m,Q) ≤ cm log(2m), completing our induction.
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