
A Novel Approach to the Spherical Codes Problem

Simanta Gautam and Dmitry Vaintrob

Massachusetts Institute of Technology

Abstract

A spherical code is a finite set of points on the surface of a sphere in n dimensional space.

The spherical codes problem asks for the maximum number of points in a spherical code

where the angle between any two points with respect to the center is at least α. A traditional

approach to this problem is to define an energy function for a spherical code as the sum of the

inverse distance power of every pair of points and to optimize for minimum energy. However,

a method to globally minimize the energy function for any given parameters is unknown,

especially for spherical codes in higher dimensions. In our work, we improve the optimization

by imposing certain symmetry groups on the spherical codes, as most configurations are

invariant under reflection groups of certain Euclidean lattices. Furthermore, we develop a

novel algorithm that individually separates pairs of points by treating them as unit vectors

and applying gradient flow on their dot products. Using this approach, we were able to

reproduce configurations for many of the best known spherical codes found in literature and

find new configurations for dimension 6.

Executive Summary

The subject of a famous dispute between Isaac Newton and David Gregory in 1694 was,

in a slightly different context, the following question: what is the maximum number of points

that can be on the surface of a sphere such that any two points are at least 60◦ apart? Newton

correctly believed the answer was 12, whereas Gregory argued that it was 13. Although this

dispute was finally resolved by Schutte and van der Waerden [1] in 1953, it engendered a

larger, open-ended problem in discrete geometry known as the spherical codes problem.

A spherical code is simply a finite set of points on the surface of a sphere in n dimensional

space. The spherical codes problem asks for the maximum number of points in a spherical

code where the angle between any two points is at least α. Some applications of finding

good spherical codes (i.e., configurations of well-distributed points on a sphere) include

assembling colloidal clusters [2], improving spread-spectrum communications [3], studying

microbiological structures of pollens and viruses [4], and constructing Grassmannian frames

(important for wireless communication and multiple description coding [5], [6]).

The purpose of this work is to develop an improved computational tool that allows us to

find useful spherical codes by optimally distributing m points on a sphere in n dimensions.

The known approach to this problem is to define an energy function for a spherical code as

the sum of the inverse distance of every pair of points and optimize for minimum energy using

gradient descent. A configuration with minimum energy corresponds to a useful spherical

code (i.e., a distributed configuration of points on the suface of a sphere). However, a

method to globally minimize such a function is unknown, especially for spherical codes in

higher dimensions. In our approach, we studied how imposing symmetry helps optimize for

minimum energy and consequently find well-distributed configuration of points on a sphere.

Along with comparing different symmetry groups useful for finding optimal spherical codes,

we created a hybrid program with two distinct algorithms to get a new list of spherical codes

in six-dimensional space.

1

1 Introduction

A spherical code in dimension n with a minimal angle α is a finite set X of unit vectors

such that for any distinct vectors x, y ∈ X, we have x · y ≤ cos(α). That is, the pairwise

angle between any vectors x and y is at least α. The spherical codes problem asks for the

maximum cardinality of a spherical code for any given dimension n and angle α.

An important case of the spherical codes problem is the kissing number problem, where

α = π/3. A kissing number is the cardinality of a spherical code where any two vectors

x, y ∈ X satisfy the condition that x · y ≤ 1/2. Thus, the kissing number problem asks for

the maximum cardinality of such a spherical code. Equivalently, the kissing number problem

asks for the maximum number of non-overlapping spheres that can touch another sphere of

the same size in some n-dimensional space. This problem in dimension three created a

dispute between Isaac Newton and David Gregory in 1694. Newton correctly believed that

the maximum kissing number in dimension three was 12, that 12 non-overlapping spheres

could touch another sphere of same size. Gregory, however, believed the maximum kissing

number in this dimension was 13. This dispute was finally resolved by Schutte and van der

Waerden [1] in 1953. Table 1 gives the currently known greatest kissing numbers in other

selected dimensions.

In literature, attempts at improving spherical codes have primarily been done by finding

methods to maximize α for a fixed dimension and number of unit vectors. Such methods

have been both computational and theoretical, incorporating a myriad of global optimization

techniques as well as analytic bounds and lattice theory [7]. Our approach to the spherical

codes problem starts by defining an energy function as the sum of the inverse distance of

every pair of unit vectors in the spherical code, as frequently done in literature. This energy

function tells us the overall distribution of the vectors in the spherical code because as

we optimally distribute the vectors, we would expect the energy value of the configuration

2

Dimension Highest Kissing Number
1 2
2 6
3 12
4 24
5 40
6 72
7 126
8 240
12 756
16 4320
24 196560

Table 1: The currently known lower bounds for the kissing numbers in selected dimensions.
Kissing numbers known to be the largest are bolded.

to decrease. Thus, the spherical code problem turns into a global optimization problem,

where we try to globally minimize the energy function to find good spherical codes. Possible

approaches for global optimization include a genetic algorithm, stochastic processes like the

random walk, and gradient descent. In this study, we work with gradient descent as a

technique to minimize energy. The problem with using gradient descent by itself as a global

optimization method, as acknowledged by Nurmela [8], is that it tends to give local minima

more often than global minima. To mitigate this problem, we propose and evaluate two

potential solutions: combining the gradient descent algorithm with an angle optimization

algorithm and limiting the starting configuration of vectors to certain symmetries (e.g.,

antipodal symmetry).

1.1 Tammes and Thomson Problem

Although we address the spherical codes problem, which asks for the maximum number of

unit vectors for a fixed dimension and α, our attempt towards a solution actually involves

answering the Tammes problem, named after a Dutch botanist who proposed the problem

in 1930 as he studied pores on pollen grains. The Tammes problem asks for the maximum

3

α for a fixed dimension and number of unit vectors. Though this problem was proposed for

unit vectors in three dimensional space, we study it in even higher dimensions because of its

relation to spherical codes.

The Thomson problem, also related to the distribution of unit vectors in three dimensional

space, asks for the minimum energy configuration of a fixed number of electrons on the surface

of a sphere repelling each other with a force given by Coulomb’s law. Because our energy

function is similar to that given by Coulomb’s law, in the case of three dimensional space, the

unit vectors are analogous to electrons and the gradient flow models the physical movement

of electrons repelling amongst each other. Thus, our methods in this work can also be used

to address the Thomson problem.

1.2 Motivation

Improved understanding of good spherical codes in higher dimensions has a considerable

impact in error correcting codes and digital communications [9]. Bachoc, Ben-Haim and

Litsyn [5] showed that the Rayleigh flat-fading single-input multiple-output (SIMO) scenarios

with 1 transmit antenna and n transmitted symbols with the channel unknown to the receiver

correspond to configurations of points on the sphere in Rn with antipodal symmetry. Thus,

considering symmetries of configurations, as done in our work, not only helps find better

spherical codes, but also has practical applications in information transfer.

Furthermore, the problem of distributing a configuration of unit vectors also shows up

in biological sciences, such as the analysis of protein structure [10] and the creation of a

numerical method to evaluate the growth and development of solid tumors [11]. By proposing

a new hybrid algorithm and ideas from group theory to an existing global optimization

problem, we are create an efficient way to find good spherical codes that can be applied into

these fields.

4

2 Preliminaries

We denote the unit sphere of the Euclidean space Rn as Sn−1, namely

Sn−1 :=

{
(x1, ..., xn) ∈ Rn

∣∣∣∣∣
n∑

i=1

x2i = 1

}
. (1)

The dot product of two unit vectors v and w given by v · w =
∑
viwi is a natural invariant

that allows us to reconstruct the angle between v and w using the formula cos(α) = v · w.

Furthermore, the distance between v and w is defined by the dot product

||v − w|| =

√√√√ n∑
i=1

(vi − wi)
2 =

√
2− 2(v · w). (2)

It follows from (2) that

||v − w|| =
√

2− 2 cos(α). (3)

2.1 Energy Function

We define an energy function of a configuration of vectors v1, v2, ..., vm on Sn−1 with constant

of power p given by the equation

Ep(v1, v2, ..., vm) =
m∑
i<j

1

||vi − vj||p
. (4)

We vary the constant of power to control the effect of the distance of pairs of vectors on E. For

example, to flow a random configuration of vectors into a more stable configuration, we start

out with a small value for p (e.g., p = 1) and increase p as the vectors become more separated.

Our algorithm strives to find a configuration of these vectors that minimizes the energy

function. To do this, the program calculates the gradient of each vector vi = (x1,i, x2,i, ..., xn,i)

5

given by

∇E(vi) = ∇
m∑
j 6=i

1

‖vi − vj‖
=

(
m∑
j 6=i

−2p(x1,i − x1,j)
‖vj − vi‖p+1

, ...,

m∑
j 6=i

−2p(xn,i − xn,j)
‖vj − vi‖p+1

)
. (5)

The gradient of a vector vi in a configuration gives another vector∇E(vi) that points towards

the local maximum of the energy function of this configuration. We scale ∇E(vi) by some

ε ≈ 10−3 and take vi → vi − ε∇E(vi) to locally minimize the energy function. By iterating

this process for all the vectors in a spherical code, we expect the vectors to flow to either a

configuration that gives either the local or global minimum of the energy function.

Note that minimizing the energy function does not always maximize α. Finding global

minimum for the energy function solves the Thomson problem, but for the spherical codes

problem, we are more concerned with maximizing α. For example, in the case of 14 unit

vectors in three dimensions, the configuration with the least known energy value has α ≈

52.866◦, whereas a configuration with α ≈ 55.670◦ exists, but has a larger energy value.

Thus, we describe a more direct approach at maximizing α in the following subsection.

2.2 Minimizing Dot Product

Applying a similar algorithm of using gradient descent to find optimal spherical codes, we

look at minimizing dot products instead of minimizing the energy function. First, two

vectors, v = (x1, x2, ..., xn) and w = (x′1, x
′
2, ..., x

′
n), with the smallest pairwise angle in the

configuration are found. These two vectors are then treated as vector valued functions where

v : (x1, ..., xn, x
′
1, ..., x

′
n) 7→ (x1, ..., xn) and w : (x1, ..., xn, x

′
1, ..., x

′
n) 7→ (x′1, ..., x

′
n). Now we

take the gradient of the dot product of v and w given by

∇(v · w) = (w, v) = (x′1, x
′
2, ..., x

′
n, x1, x2, ..., xn) (6)

6

To minimize the dot product, we change v to v− εw and w to w− εv. Iterating this flow for

new vectors with smallest pairwise angle will stabilize the configuration for the maximum α

within some interval of error dependent on ε, n, and m. This algorithm works well when the

value of ε is reduced as the unit vectors become more distributed. Thus, using an appropiate

monotonically decreasing function for ε that is dependent on the distribution of the vectors

becomes an essential part of this algorithm.

2.3 Local and Global Minima

The immediate problem with both of these algorithms is that as we increase n and m, there

is an exponential rise in the number of good local minima, which results in configurations

that do not always have the minimum energy value. Although an optimization that results

in a local minimum energy produces a good spherical code, our goal is to be able to optimize

for global minimum energy and the global maximum α to get the best spherical codes.

The primary strategies proposed, like imposing certain symmetries described in Section 4

and combining two algorithms, are meant to curtail the occurrence of a locally optimized

spherical code. With these strategies, we are able to find many spherical codes that match

the best known, cumulative records [12] and come up with new spherical codes in dimension

six.

2.4 Group Action

Consider a group G acting on a set of vectors V . The symmetries we consider are given by

linear actions of G on Rn.

Definition 2.1. A representation of a group G is a group homomorphism ρ : G 7→ GL(n),

where GL(n) is the group of invertible n× n matrices.

For our purposes, we can identify G with its image and think of elements of G as matrices.

7

We will study actions which take the unit sphere to itself, and in particular preserve distance

and angle.

Definition 2.2. The orbit of v ∈ V is the set of vectors to which v can be moved by the

elements of G. This is denoted as Gv = {g ◦ v|g ∈ G}.

In a symmetric configuration, keeping track of one representative of every orbit allows us

to keep track of the entire configuration of vectors, which reduces the number of computa-

tions.

3 Algorithm

In this section, we describe our programs and compare the results obtained with and without

antipodal symmetry in the energy optimization and angle optimization algorithms. Further-

more, we look at the hybrid algorithm, which first applies the energy optimization algorithm

to a configuration of random vectors to get a configuration with minimal energy. Then it

applies the angle optimization algorithm to this configuration to minimize α.

One of our global variables used is d: the cardinality of an orbit of a given vector. This

value is also equal to the order of group G. Thus, because we want a group G with order d

acting on m vectors, we randomly generate only m/d vectors v1, v2, ...vm
d

and multiply all of

the elements I,M1,M2, ...Md−1 of a representation of G by the randomly generated vectors

to get m vectors.

3.1 Energy Optimization Without Symmetry

The program accepts parameters n, m, ε, and p. From this, it randomly generates a set V

of m vectors on Sn−1. After a random configuration of vectors is generated, the program

iterates the following steps until a stable configuration is found (default number of iterations

8

is set to 105). First, the gradient ∇E(vi) is calculated for each vector. After all the gradients

are calculated, the program flows each vector vi to vi − ε∇E(vi). Then it prints out the

energy value and α of this configuration.

This program is very effective in dimensions two and three, but there is a fundamental

problem in higher dimensions. This program strives to find the global minimum of E, but

tends to get stuck in configurations yielding local minima of E.

For example, we run this program 100 times with the following inputs: n = 4, m = 24,

ε = 0.01, and p = 2 to get the following results:

Occurrences Energy α
4 167.000 60◦

96 167.048 55.36937517592919◦

Table 2: Results generated from running the program 100 times.

From Table 2, we see that the program correctly finds the kissing number configuration

for dimension four approximately 4% of the time. In the other 96 cases, the programs

reaches some local minimum. Thus, our algorithm, without constraints from symmetry, is

only effective in finding the configurations for the Thomson problem in dimension three. In

higher dimensions, we need to impose some symmetry so that we limit the number of local

minima of each vector.

3.2 Antipodal Symmetry

We change the program described in Subsection 3.1 by randomly generating a set V of m/2

vectors and for every generated vector v ∈ V , we add −v to V . Note that the orbit of each

vector v has two elements, namely v and −v. Thus, we only need to compute the gradients

of m/2 vectors because ∇E(v) = r ⇒ E(−v) = −r for all r ∈ R.

Therefore, adding antipodal symmetry not only allows for faster running time due to

fewer computations, but also reduces the number of local minima of each vector. Running

9

the same simulation as in Subsection 3.1, we get the following result.

Occurrences Energy α
100 167.000 60◦

0 167.048 55.36937517592919◦

Table 3: Result from running the program 100 times for inputs n = 4, m = 24, ε = 0.01,
and p = 2.

By adding antipodal symmetry to the configuration of vectors, we produced the optimal

kissing number configuration for S3 more quickly and accurately than the program without

antipodal symmetry. Furthermore, we were also able to find the kissing number configu-

rations and the energy values in Table 4. Motivated by this result, we studied the effect

of other symmetries on optimizing different spherical codes. In section 4, we compare the

results of imposing other symmetries on the optimzation with that of imposing antipodal

symmetry.

Dimension Energy α
2 8.75 60◦

3 39.00 63.4349488◦

4 167.00 60◦

6 1509.00 60◦

7 4593.75 60◦

8 16550.00 60◦

Table 4: E and α for final configurations generated by this program, p = 2.

3.3 Angle Optimization and Hybrid Optimization

Using the gradient of the dot product of two vector valued functions to maximize α was

better than the energy optimization algorithm in that it seemed to have less local extremes.

The run time and accuracy, however, were significantly worse with this program. In the

energy optimization algorithm, ε does not affect the final configuration as much as it does

10

in the angle optimization algorithm. In fact, as m increase, ε must be decreased to get a

smooth flow. If ε is too small, however, then the run-time of the program increases. Thus,

we vary ε with the monotonic function like e−
r3/4

500 where r is the current number of iterations.

The hybrid optimization program that optimizes for maximal α by using the alpha op-

timization algorithm right after the energy optimization algorithm performed best in that

there was less occurrence of getting stuck in the local extremes and the running time was

reasonable given the accuracy. This program was able to match most of the currently known

cumulative records on spherical codes in dimensions three, four, and five. Appendix A has

the pseudocode.

4 Other Symmetry Groups

Motivated by the results produced by the addition of just antipodal symmetry on the con-

figurations of vectors, we studied the effect of other symmetry groups acting on the con-

figurations. We focused specifically on configuration of vectors in dimension 16. Given a

group G with order d, the program was adjusted so that it began by generating a set X of

m/d random vectors. Recall that d is also the cardinality of the orbit of each vector. The

program then finds a representation Y of G, where Y := {M1,M2,M3, ...,Md}. To generate

all the vectors, the program multiplies all the elements of Y by the vectors in V . Similar

to the antipodal symmetry program, this program calculates the gradient of exactly one of

the vectors v per orbit and applies the representation of G to v such that the gradient of

another vector Miv in the orbit of v is given by Mi∇E(v).

4.1 Rotational Symmetry, and Sparse Subgroups

After first imposing antipodal symmetry on the configuration of vectors, we look at the results

of imposing rotational symmetry for improved optimization. Specifically, we impose rotation

11

by 60 degrees such that for every randomly generated vector, v, there are six corresponding

vectors {v, v60, v120, v180, v240, v300} in its orbit, where vi denotes rotation of v by i degrees.

Running this program in dimensions up to 24, enough data was gathered to compare the

results with antipodal symmetry. The rotational symmetry was able to perform better

than antipodal symmetry only for two different number of vectors in dimension six and one

in dimension 12. Thus, we learned that imposing more than antipodal symmetry (which

corresponds to {v, v180}) results in worse performace.

Next, we compared the results obtained from antipodal symmetry with the results of

some symmetry groups that we call sparse. A subgroup is called sparse if the coodinate

representation for the group forms a sparse lattice. The motivation to try sparse subgroups

arose from the existing theoretical work on the spherical codes problem and lattice theory.

An example of a sparse subgroup we tried was the Checkerboard Lattice in dimension four.

This is a subgroup of (Z/5Z)2 is {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}. This symmetry, along

with a few other sparse subgroups that we have tried, have not given notably better results

than antipodal symmetry. Because every spherical code is different, even within the same

dimension, there is a still a potential for a symmetry to be better for a specific spherical code.

Thus, we are still conjecturing and testing new symmetries that seem promising, but have

not improved our initial finding that imposing antipodal symmetry with hybrid optimization

algorithm is effective in finding better spherical codes. The best spherical codes for vectors

in six dimensions found by our program is given in Table 6.

4.2 Spherical Codes in S15

In dimension eight, the kissing number problem is solved by the E8 lattice, defined by

E8 =

{
xi ∈ Z ∪ (Z +

1

2
)8 :

∑
xi ≡ 0 (mod 2)

}
. (7)

12

Number of Vectors α
72 60◦

74 58.07521958◦

76 57.61988357◦

78 57.438259759◦

80 56.399346513◦

82 56.3340096038◦

84 56.0106264680◦

86 55.6994474052◦

88 55.2136149122◦

Table 5: Results of optimal spherical codes in dimension 6.

We conjecture that an abelian group corresponding to the E8 lattice can be incorporated

in one of our optimization algorithms to find improved spherical codes in S15. An example

of a group that corresponds to the E8 lattice is the subgroup H of (Z/4Z)8 satisfying the

following conditions for any (x1, x2, ...x8) ∈ H

1.
∑
xi ≡ 0 (mod 4)

2. xi + xi+1 ≡ 0 (mod 2) ∀ i ∈ (1, 2, ..., 7)

The representation of H is a set of 16×16 matrices that have cardinality 256. An 8-tuple

is mapped to a 16×16 matrix by putting eight 2×2 matrices along the diagonal where each

number in the 8-tuple corresponds to the 2× 2 matrix defined by the mappings below:

0 7→
[
1 0
0 1

]
, 1 7→

[
0 1
−1 0

]
, 2 7→

[
−1 0
0 −1

]
, 3 7→

[
0 −1
1 0

]
If we randomly generate 17 vectors and find all the other points in the orbit of those

17 vectors using the representation of H, then we have 17 × 256 = 4342 vectors in our

configuration. We have not fully tested this particular configuration of vectors using one of

our programs due to long run-time, but we conjecture that either this, or more likely another

abelian group acting on a configuration of vectors can improve the lower bound of the kissing

number problem in S15.

13

5 Conclusion

As a computational approach to the spherical codes problem, we began by defining an energy

function that allowed us to treat each vector as a point charge. From this perspective, every

configuration of vectors on Sn−1 has some energy-value and our goal was to minimize the

energy value so that we maximize the minimum pairwise angle in the configuration. Using our

energy minimization algorithm with antipodal symmetry, we were able to globally minimize

the energy and thus maximize the angle for many cases up to dimension eight. To strictly

maximize the minimum pairwise angle in the configuration, we created another algorithm

that took into account the gradient of the dot product of two vector valued functions. With

this algorithm, we were able to decrease the number of good local extremes at a cost of less

accuracy and slower run-time. We then created a hybrid algorithm that incorporates both

the energy minimization algorithm and the angle maximization algorithm.

With this hybrid algorithm, we were able to match currently known cumulative results

for many cases of the spherical codes problem along with creating a list of new spherical

codes in dimension six found in literature. Furthermore, we conjectured that incorporating

a sparse abelian subgroup of (Z/kZ)
n
2 for k ∈ N, acting by rotating pairs of coordinates with

our program may not only help with improving spherical codes in dimension 16, but also in

other dimensions.

6 Further Work

The problem of determining the best spherical codes for any dimension n and cardinality

m is still open in mathematics. With our hybrid algorithm and implementation of certain

symmetry groups, we improve on known computational tools to determine good spherical

codes by offering a new approach with good run time that matches and improves existing

results found in literature. Our approach could be further improved by considering the

14

following:

1. A classification of other symmetry groups that, when implemented with our program,

would produce good spherical codes in higher dimensions would be interesting and

feasible with more experimental data. In small dimensions, most of the spherical codes

from our program match best known spherical codes, but in higher dimensions, it may

be possible to further improve certain known spherical codes by implementing the right

symmetry group with our program.

2. In our work, we use gradient descent as an approach to minimize energy. There are,

however, other approaches of minimization like the genetic algorithm and stochastic

processes that could be used with the symmetry groups we proposed. It would be

interesting to see the results with these other approaches of optimization.

3. A more detailed study of specific global and local minima per dimension, as we did

with 24 vectors in four dimensional space, would be important because this knowledge

would potentially help with global optimization.

4. As with many optimization problems, there is a great potential of finding applications

of good spherical codes in various fields. In fact, the discoveries of applications into

fields like quantum physics are fairly recent. Thus, a good study would be to find

connections between distributing unit vectors (in any dimension) to another field like

microbiology, where spherical codes help understand structures of certain viruses.

7 Acknowledgements

I would like to extend my gratitude to the Center for Excellence in Education, Research

Science Institute, and Massachusetts Institute of Technology for providing the opportunity

and place to work on this research project. I would also like to thank Dr. Abhinav Kumar

15

for the research idea, Dr. Tanya Khovanova for helpful suggestions, and my mentor Dmitry

Vaintrob for his guidance throughout this research. Furthermore, I want to thank my tutor

Dr. John Rickert for his editing and advice.

16

References

[1] K. Schutte and B. van der Waerden. Das problem der dreizehn kugeln. Math. Ann.,
125, 1953.

[2] C. Phillips, E. Jankowski, M. Marval, and S. Glotzer. Self assembled clusters of spheres
related to spherical codes. preprinted arXiv:1201.5131v1, 2011.

[3] Z. Utkovski and J. Lindner. On the construction of non-coherent space time codes
from high-dimensional spherical codes. Spread Spectrum Techniques and Applications
Conference, pages 327–331, 2006.

[4] D. Weaire and T. Aste. The Pursuit of Perfect Packing. Taylor & Francis Group, 2008.

[5] C. Bachoc, Y. Ben-Haim, and S. Litsyn. Bounds for codes in products of spaces,
grassmann and stiefel manifolds. IEEE Transactions Information Theory, 54:1024–
1035, 2008.

[6] J. B. Sandrine Vialle. Performance of optimal codes on gaussian and rayleigh fasing
channels: a geometrical approach. in Proceedings of the 37th Annual Allerton Confer-
ence on Communication, Control and Computing, 1999.

[7] J. Conway and N. Sloane. Sphere Packings, Lattices, and Groups. Springer-Verlag,
1998.

[8] K. J. Nurmela. Constructing spherical codes by global optimization methods. Research
Report A32, Helsinki University of Technology, Department of Computer Science and
Engineering, Digital Systems Laboratory, Espoo, Finland, 1995.

[9] T. M. Thompson. From Error-Correcting Codes Through Sphere Packings to Simple
Groups. Math. Assoc. Amer., 1984.

[10] R. Morris, R. Najmanovich, and A. Kahraman. Real spherical harmonic expansion
coefficients as 3d shape descriptors for protein binding pocket and ligand comparisons.
Bioinformatics, 21:2347–2355, 2005.

[11] M. Chaplain, M. Ganesh, and I. Graham. Spatio-temporal pattern formation on spher-
ical surfaces: numerical simulation and application to solid tumour growth. Journal of
Mathematical Biology, 42:387–423, 2001.

[12] N. J. A. Sloane. Spherical codes: Nice arrangements of points on a sphere in
various dimensions. Available at http://neilsloane.com/packings/index.html#I

(2012/07/30).

17

A One of the Algorithms Created

Alg. 1 Hybrid Algorithm

Input: dimension n, number of vectors m, group G, constant ε
Output: good spherical code, minumum angle α, Energy E
foreach 0 < i < m/d do

Randomly choose vi ∈ Rn with ‖vi‖ = 1
add vi to setOfOrbits[]

end
foreach g ∈ G do

foreach v ∈ setOfOrbits[] do
add g ◦ v to setOfVectors[]

end

end
while Configuration is unhappy do

foreach v ∈ setOfOrbits[] do

v 7→ v−ε∇E(v)
‖v−ε∇E(v)‖

end
foreach g ∈ G do

foreach v ∈ setOfOrbits[] do
add g ◦ v to setOfVectors[]

end

end
if ∆E/∆r ≈ 0 then

Configuration is happy
end

end
Change ε to 0.01
while b ≤ 100, 000 do

foreach vi, vj ∈ setOfVector[] do
if vi 6= vj and vi · vj < leastdotprod then

vector1 = vi
vector2 = vj
leastdotprod = vi · vj

end

end
vector1 7→ vector1− εvector2
vector2 7→ vector2− εvector1
Reduce ε accordingly

end
Print spherical code, α, and E

18

