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 n the famous mathematical strategy 
game Nim, two players face a certain 
number of heaps, each containing 
some number of stones. Each turn, a 
player takes one or more stones from 
one heap. The player with no move 

loses. (There is also a misère version in which the 
player who is forced to take the last stone loses.)

Nim has been completely solved: Given any 
collection of stones, we can say which player 
will win, assuming the player follows a winning 
strategy, and we know the winning strategy. All 
Nim-like games—technically called impartial 
combinatorial games—have the property that 
there is a winning strategy for one of the players, 
although we may not know the winning strategy.

This article describes some two-person 
impartial combinatorial games that were 
invented and analyzed by students in grades 
seven through nine who were mentored by Tanya 
Khovanova. Each game has its own flavor.

Rows-and-Columns Game
In this game, tokens are placed on intersections 
of grid lines on a square grid. They are not 
treated as heaps like in Nim. The geometry of the 
configuration plays a role. A player is allowed to 
take any nonempty row or column of tokens. The 
player unable to take a token loses.

As often happens, the simplest case has 
symmetries. If the shape does not contain tokens 
on the axes and is symmetric with respect to 
both axes, then player 2 has a winning strategy: 
If player 1 makes a horizontal move, player 2 
mirrors the move with respect to the x-axis. If 
player 1 makes a vertical move, player 2 mirrors 
the move with respect to y-axis. After two moves, 

the shape is symmetric with respect to both axes 
again, and all the tokens cannot be removed in 
one move.

Now, consider a diamond configuration in 
which tokens are put on points with integer 
coordinates a and b, such that a b c| | | | .+ ≤  See 
figure 1 for an example with c 2= . Player 1 wins 
when the diamond consists of one token. For 
larger diamonds, player 2 is guaranteed a win 
using the following strategy. First, the end game: 
If the tokens form a line, take the line. If the 
tokens form two lines in one axial direction, take 
a line in the other direction. In the middle of the 
game: If the other player takes one axis, take the 
other axis. Otherwise, if the other player takes a 
line parallel to axis a, take the mirror image of 
the line with respect to a.

In the study of impartial combinatorial games, 
a P-position is a game configuration from which 
the previous player—that is, the player who just 
played or player 2 at the start of the game—wins 
given perfect play. All the terminal positions are 
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Figure 1. A diamond in the Rows-and-
Columns game.
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P-positions. An N-position is a configuration from 
which the next player wins given perfect play. 
For example, unless it has one token, a diamond 
configuration is a P-position because player 2 
can always win. A player wants to end her turn 
with the game in a P-position and wants to see 
an N-position before her move.

Many games are solved by first providing the 
sets of P- and N-positions. To prove that they are 
correct, it is enough to show that there exists a 
move from an N-position to a P-position and that 
any move from a P-position is to an N-position.

Consider the Rows-and-Columns game, in which 
the tokens form a cross on both axes, including 
the center (see figure 2). The game depends only 
on the number of tokens on each axis, which we 
denote m and n. A cross is a P-position provided  
m + n is even and m n, 1.>  To prove this, observe 
that no player wants to remove an axis when 
the other axis has more than one token. So, 
each player removes one token per move so that 
the remaining tokens do not form a line. This 
continues until the players get to the cross with 
m n 2.= =  Then, player 2 wins.

Remove-a-Square Game
This game is played on a square grid. Start with 
a shape made out of 1 1×  squares. Each move, 
a player removes a k k×  square for some k. The 
player who has no squares to take loses.

We will focus on the n2×  rectangle game. In 
this case, each turn a player can remove a 1 1×  
or a 2 2×  square. For instance, suppose the game 
starts with a 2 3×  rectangle. If player 1 removes 
a 1 1×  square, player 2 can remove a 1 1×  square 
from the middle column. After that, there are no 
2 2×  squares, and player 2 wins in six moves. 
On the other hand, if player 1 removes a 2 2×  
square, the game ends in three moves, and 
player 1 wins.

If we start with a k2 2×  rectangle, player 1 
has the following winning strategy: Remove the 
middle 2 2×  square. If k 1,>  the game separates 

into two identical configurations. Then, for each 
of player 2’s moves on one board, make the 
identical move on the other board.

To solve the general n2×  game, we will assign to 
each game a nonnegative integer called a Grundy 
number. Grundy numbers have the property that 
they are 0 exactly for the P-positions. We assign 
Grundy numbers recursively. Consider a position 
A. All moves from A comprise a set of positions. Let 
S be the set of Grundy numbers for these positions. 
The Grundy value of A is the least nonnegative 
integer not in S; we denote this minimum excluded 
value mex(S).

For example, consider the five-block shown at 
the top of figure 3. There are six possible moves: 
There’s one way to remove a 2 2×  block and 
five ways to remove a 1 1×  block. Each resulting 
shape can be decomposed, and we obtain the 
graph shown in the figure. We then work our 
way from the bottom up. The terminal position 
at the bottom has Grundy number 0. The single 
block on the next level has Grundy number 
mex({0}) 1.=  The two 2-block configurations on 
the next level have Grundy number mex({1}) 0.=  
Continue in this way up to the top, concluding 
that that configuration has Grundy number 
mex({0,1,2}) 3.=

We can assign Grundy numbers to any such 
impartial combinatorial game. A cool fact, which 
we will not elaborate on, is that two games with 
the same Grundy numbers are equivalent. This is 
the Sprague–Grundy theorem.

There’s a surprising arithmetic trick that 
enables us to compute Grundy numbers. To 
understand it, we must introduce the notion of 

Figure 2. This cross is a P-position for the 
Rows-and-Columns game.
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Figure 3. Using a recursive algorithm, we 
compute that the Grundy number of the five-
box game is 3.
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XOR or bitwise addition, which we denote .⊗  To 
compute, say, 13 17,⊗  we convert 13 and 17 into 
binary; they are 1101 and 10001, respectively. 
Then we add them using the XOR operation. 
In other words, we add them so that 0 0 0,+ =  
1 1 0,+ =  and 0 1 1.+ =  In this case, we obtain 
11100, or 28:

1 1 0 1
⊗ 1 0 0 0 1

1 1 1 0 0

If we can decompose a game into a sum of 
games, the Grundy value of the game is the 
bitwise sum of the Grundy values of the smaller 
games. For instance, suppose our board is a 1 1×  
and a 2 2×  square, which have Grundy values 1 
and 2, respectively. Then the Grundy value of the 
game is 1 2 3.⊗ =  (In binary, 1 10 11.)⊗ =

We can now return to our n2×  game. In the 
first move, player 1 can remove a 2 2×  square 
or a 1 1×  square. The first move leaves the sum 
of games on k2×  and n k2 ( 2)× − −  rectangles 
(one of which could be the empty game), and the 
second leaves the sum of games on k2× , ×1 1,  
and n k2 ( 1)× − −  rectangles. This allows us to 
calculate the Grundy values recursively.

Let’s denote the Grundy number of a n2×  
rectangle as G(n). Then G G(0) (1) 0= =  and

G n G i G n i G j G n j( ) mex({ ( ) ( 2), ( ) 1 ( 1)})= ⊗ − − ⊗ ⊗ − −

where i n1, 2= … −  and j n1, , 1.= … −  For 
instance, figure 4 shows the 2 3×  case, in which
G G G G G G G(3) mex({ (1) (0), (1) 1 (1), (2) 1 (0)})

mex({0 0,0 1 0,2 1 0})

mex({0,1,3})

2.

= ⊗ ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗

=
=

Using this recurrence, we computed the first 200 
values of G(n) (starting with n 0= ) and displayed 
the first 96 in table 1. We presented them in 12 
columns to emphasize the eventual periodicity. 
We will prove that the periodicity begins at 
n 71.=  This sequence of Grundy numbers is now 
sequence A286332 in the Online Encyclopedia of 
Integer sequences (OEIS). See oeis.org.

It follows that for n 0,>  the P-positions are 
periodic: They correspond to numbers = +n a12 1. 
In other words, under perfect play, the second 
player can win n2×  games for these n. In all 
other cases, player 1 can win.

We will prove the periodicity result by 
induction. We verified that G k G k( ) ( 12)= −  for 
k 83, ,167.= …  These are the base cases. Now, 
assume n 168≥  and G k G k( ) ( 12)= −  for all 
k n83, , 1.= … −  We claim that the set of Grundy 

values obtained from any move on a n2×  or 
a n2 ( 12)× −  game are the same, and thus 
G n G n( ) ( 12).= −  If we remove a 2 2×  square from 
a n2×  rectangle, the resulting game is the sum 
of games on k2×  and n k2 ( 2)× − −  rectangles 
for some k n0 2.≤ ≤ −  The Grundy value for this 
game is G k G n k( ) ( 2).⊗ − −  Either k or n k 2− −  
is at least 83; we may assume that k is. By our 
inductive assumption,

G k G n k G k G n k( ) ( 2) ( 12) ( 2),⊗ − − = − ⊗ − −

and we can obtain this value by removing a 2 2×  
square in a game on a n2 ( 12)× −  rectangle. 
Conversely, any value obtained by removing a 
2 2×  square in a game on a n2 ( 12)× −  rectangle 
corresponds to one obtained by removing a 
2 2×  square from a n2×  rectangle. A similar 
equivalence holds if we remove a 1 1×  square 
from either rectangle. Thus, G n G n( ) ( 12).= −

Remove-an-Edge Game
This game is played on a simple graph (one 
without loops or parallel edges). Each turn, a 
player is allowed to remove two neighboring 
vertices and all edges coming out of them. The 
player who does not have a turn loses.

Consider a star graph with n 1>  vertices 
(see figure 5). Player 1 can win in one move by 
removing the central vertex, one other vertex, 
and all edges, leaving n 2−  isolated vertices.

Table 1. The first 96 Grundy numbers G(n).

0 0 2 2 1 4 3 3 1 4 2 6

5 0 2 7 1 4 3 3 1 4 7 7

5 0 2 8 4 4 6 3 1 8 7 7

5 0 2 2 1 4 6 3 1 8 2 7

5 0 2 8 1 4 6 3 1 4 2 7

5 0 2 8 1 4 6 3 1 8 7 7

5 0 2 8 1 4 6 3 1 8 2 7

5 0 2 8 1 4 6 3 1 8 2 7
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Figure 4. We can use XOR to compute G(3).
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If we begin with a complete graph (every 
pair of vertices are connected by an edge) with 
n 1>  vertices, any move turns the game into a 
complete graph with n 2−  vertices. This is a no-
strategy game. Player 1 wins if n equals k4 2+  or 
k4 3+  for some k. Otherwise, player 2 wins.
Let Pn be a path graph with n vertices. 

This game is equivalent to a known game 
called domino covering on a n1×  rectangle. 
In the domino-covering game, the players 
take turns placing dominoes (1 2×  rectangles) 
on a board that is a n1×  rectangle. The 
loser is the first player unable to move. The 
P-positions in this game are OEIS sequence 
A215721. It begins 0, 1, 5, 9, 15, 21, 25, 29, 
35, 39, 43, 55, 59, 63, and then afterward 

n nA215721( ) A215721( 5) 34.= − +  In particular, 
other than 0, all P-positions are odd. If n is even, 
player 1 can remove the center edge, dividing the 
game into two equivalent games, and player 1 
wins.

The Grundy numbers for this game can be 
computed recursively: After one move, a path 
graph becomes the union of two smaller path 
graphs. If we let G(n) denote the Grundy value 
for the n1×  rectangle, then G G(0) (1) 0= =  and

G n G i G n i( ) mex({ ( ) 1 ( 2)}),= ⊗ ⊗ − −

where i n1, , 2.= … −
Next, consider a cycle graph with n vertices, Cn. 

After the first move, the game on Cn is equivalent 
to the game on the path graph Pn 2− . So, the 
N-positions are nA215721( ) 2.+  This is sequence 
A274161 in the OEIS.

The OEIS describes A274161 in terms of 
a different game—the edge-delete game—in 
which two players alternate turns, permanently 
deleting one edge from a graph. Unlike our 
game, the vertices are not removed. The game 
ends when a vertex is isolated. The player whose 
deletion creates an isolated vertex loses.

Sequence A274161 gives the P-positions 
of the edge-delete game played on Pn. Let 
us consider a domino-covering game on the 

n1 ( 2)× +  rectangle. We can associate a vertex 
to each square cell and connect the vertices if 

the cells share an edge. Then, deleting an edge 
corresponds to covering the vertices connected 
by this edge by a domino. The rule that does not 
allow isolated vertices means that the dominoes 
cannot overlap and cannot cover the ending cells. 
So, the edge-delete game on Pn is the same as 
the domino-covering game on a n1×  rectangle, 
where dominoes can’t cover the end squares. 
The latter game is the same as the domino-
covering game on the n1 ( 2)× −  rectangle without 
end restrictions. Consequently, the sequence of 
P-positions of the game on Cn is the complement 
of sequence A274161.

No-Factor Game
Write out the integers 1 through n. Each turn, a 
player may remove any set of numbers that have 
no proper factors existing at the beginning of the 
turn. The person who does not have a move loses.

This game can be solved using a “strategy 
stealing” argument. Surprisingly, it is player 2 
who is stealing. We will show that for n 1> , 
player 2 wins the no-factor game.

Player 1 must take 1. If n 1= , player 1 wins. 
Suppose n 1>  and, for the sake of contradiction, 
player 1 has a winning strategy. Suppose player 2 
was to take a prime number p n / 2;>  such a 
prime exists due to a theorem called Bertrand’s 
postulate. By assumption, this is an N-position. 
Player 1’s winning strategy would prescribe 
a certain move that would put the game in a 
P-position. But p does not have any common 
factors with the rest of the numbers, so on the 
second move, player 2 can take p and whatever 
numbers player 1 would have taken on the third 
move. This leaves the game in a P-position after 
player 2’s turn, thereby stealing the winning 
strategy. This is a contradiction. Player 2 has a 
winning strategy.

Further Reading
A longer version of this article containing more 
games can be found at arxiv.org/abs/1707.07201. 
See Winning Ways for Your Mathematical Plays 
by Elwyn Berlekamp, John Conway, and Richard 
Guy (AK Peters, 2001) or Lessons in Play by M. 
H. Albert, R. J. Nowakowski, and D. Wolfe (AK 
Peters, 2007) for more on impartial games.  

Ten students in the MIT PRIMES STEP program 
for talented youth from greater Boston wrote this 
article under the guidance of Tanya Khovanova. 
We are thankful to the program for allowing us 
the opportunity to conduct this research. 
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Figure 5. Left to right: a star graph, a complete 
graph, a path graph, and a cycle graph.


