Algebra fact sheet

An algebraic structure (such as group, ring, field, etc.) is a set with
some operations and distinguished elements (such as 0,1) satisfying some
axioms. This is a fact sheet with definitions and properties of some of the
most important algebraic structures.

A substructure of a structure A (i.e., a subgroup, subring, subfield
etc.) is a subset of A that is closed under all operations and contains all
distinguished elements.

Algebraic structures of the same type (e.g., groups) can be related to each
other by homomorphisms. A homomorphism f : A — B is a map that
preserves all operations and distinguished elements (e.g. f(ab) = f(a)f(b)).
An isomorphism is a homomorphism which is a one-to-one correspondence
(bijection); then the inverse f~! is also an isomorphism. Isomorphic algebraic
structures are regarded as the same, and algebraic structures of each type
are classified up to an isomorphism.

Semigroup: A set G with an operation G x G — G, (a,b) — ab, called
multiplication, which is associative: (ab)c = a(bc).

Ezxamples: Positive integers with operation of addition.

Monoid: A semigroup G with unit 1 € G, such that 1g = g1 = ¢ for all
geaqG.

Note that a unit is unique: 1 = 11" =1".

Ezxamples: Nonnegative integers under addition; all integers under multi-

plication.
Group: A monoid G with an inversion operation G — G, g — ¢!, such
that gg~t = g7 lg = 1.

Note that inverse is unique: g;' = g;'gg, " = g5 '. So for a semigroup,
being a monoid or a group is a property, not an additional structure.

Ezamples: (1) All integers under addition, Z. Integers modulo n under
addition, Z,. (These two are called cyclic groups). The group Z~ (N-
dimensional vectors of integers). Rational numbers Q, real numbers R, or
complex numbers C under addition. Nonzero rational, real, or complex num-
bers under multiplication.

(2) Permutation (or symmetric) group S, on n items. The group GL,
of invertible matrices with integer, rational, real, or complex entries, or with
integer entries modulo n (e.g. GL,(Q)). The group of symmetries of a
polytope (e.g., regular icosahedron).

Abelian (commutative) group: A group G where ab = ba (commuta-



tivity).
Examples: The examples from list (1) above.
If A is an abelian group, one often denotes the operation by + and 1 by

Action of a monoid or a group on a set: A left action of a monoid
(in particular, a group) G on a set X is a multiplication map G x X — X,
(9,z) — gx such that (gh)z = g(hx) and lx = z. Similarly one defines a
right action, (z,g) — zg.

Ezamples. Any monoid (in particular, group) acts on itself by left and
right multiplication. The symmetric group S, acts on {1,...,n}. Matrices
act on vectors. The group of symmetries of a regular icosahedron acts on the
sets of its points, vertices, edges, faces and on the ambient space.

Normal subgroup: A subgroup H C G such that gH = Hg for all
ge€aqG.

Quotient group: If A is an abelian group and B a subgroup in A, then
A/B is the set of subsets aB in A (where a € A) with operation a1 BasB =
ajasB; this defines a group structure on A/B. If A is not abelian, then in
general A/B is just a set with a left action of A. For it to be a group (i.e.,
for the formula a1 BasB = ajasB to make sense), B needs to be a normal
subgroup. This is automatic for abelian groups A.

Ezamples. Z/nZ = Z,,. S3/Z3 = Zs.

Lagrange’s theorem: The order (i.e., number of elements) of a sub-
group H of a finite group G divides the order of G (the quotient |G|/|H| is
G/H).

The order of g € GG is the smallest positive integer n such that ¢" = 1
(o0 if there is none). Equivalently, the order of g is the order of the subgroup
generated by g. Thus by Lagrange’s theorem, the order of g divides the order
of G. This implies that any group of order p (a prime) is Z,.

Direct (or Cartesian) product (of semigroups, monoids, groups):
G x H is the set of pairs (g, h), g € G,h € H, with componentwise operation.

One can also define a direct product of more than two factors. For abelian
groups, the direct product is also called the direct sum and denoted by .

Generators: A group G is generated by a subset S C G if any element
of G is a product of elements of S and their inverses. A group is finitely
generated if it is generated by a finite subset.

Classification theorem of finitely generated abelian groups. Any
finitely generated abelian group is a direct sum of infinite cyclic groups (Z)



and cyclic groups of prime power order. Moreover, this decomposition is
unique up to order of factors (and up to isomorphism).

(Unital) ring: An abelian group A with operation + which also has
another operation of multiplication, (a,b) — ab, under which A is a monoid,
and which is distributive: a(b+ ¢) = ab+ ac, (b+ ¢)a = ba + ca.

Ezxamples: (1) The integers Z. Rational, real, or complex numbers. Inte-
gers modulo n (Z,). Polynomials Q[z], Q[z,y].

(2) Matrices n by n with rational, real, or complex entries, e.g. Mat,(Q).

Commutative ring: A ring in which ab = ba.

Examples: List (1) of examples of rings.

Division ring: A ring in which all nonzero elements are invertible (i.e.,
form a group).

Ezramples: Rational, real, complex numbers. Integers modulo a prime
(Z,). Quaternions.

Field: A commutative division ring.

Examples: Rational, real, complex numbers. Integers modulo a prime
(2,).

Characteristic of a field F': The smallest positive integer p such that
1+ ...+ 1 (p times) is zero in F. If there is no such p, the characteristic is
said to be zero. If the characteristic is not zero then it is a prime.

FEzamples: The characteristic of Z, is p. The characteristic of Q is zero.

Algebra over a field F: A ring A containing F' such that elements of
F' commute with all elements of A.

Ezamples: Q[z], Qlz,y], Maty(Q) (2 by 2 matrices with rational enties)
are algebras over Q.

(Left) module over a ring A: An abelian group A with a multiplication
Ax M — M, (a,m) — am which is associative ((ab)m = a(bm)) and
distributive (a(my + n2) = amy + ams, (a1 + az)m = aym + agm), and such
that 1m = m (i.e., the monoid A acts on M, and the action is distributive in
both arguments). Similarly one defines right modules (with multiplication
(m,a) — ma). Note that for a commutative ring, a left module is the same
thing as a right module.

Ezxamples: A module over Z is the same thing as an abelian group. Also,
for any ring A, A" = A& ... & A (n times) is a module over A, left and
right (called free module of rank n). More generally, if S is a set, then the
free A-module A[S] with basis S is the set of formal finite sums ) __q ass,
as € A, where all a, but finitely many are zero.



Quotient module: If N C M are A-modules, then so is the quotient
M/N.

Vector space: A module over a field.

Ezxamples: F™, where F'is a field. The space of complex-valued functions
on any set X.

Basis of a vector space V: A collection of elements {v;} such that any
element (vector) v € V' can be uniquely written as v = ) a;v;, a; € F.

Basis theorem: A basis always exists and all bases have the same num-
ber of elements (which could be infinite). This number is called the dimension
of V.

Theorem: Any finite field has order p™, where p is its characteristic
(which is a prime).

Indeed, such a field is a vector space over Z, of some finite dimension n,
so its order is p™.

In fact, for any prime power ¢ there is a unique finite field of order g,
denoted F,.

Linear map: A homomorphism of vector spaces, i.e. amap f:V — W
of vector spaces over a field F' such that f(a+b) = f(a)+ f(b), and f(Aa) =
Af(a) for A € F.

Examples: A matrix n by m over F' defines a linear map F — F™. The
derivative d/dz is a linear map from C[z] to itself.

Ideal: A left ideal in a ring A is a left submodule of A, i.e., a subgroup
I C A such that Al = I. Similarly, a right ideal is a right submodule of A
(IA=A). A two-sided ideal is a left ideal which is also a right ideal.

Examples: f € A, I = Af is the ideal of all multiples of f. For example,
nZ inside Z.

If I C Ais a left ideal, then the quotient group A/I is a left A-module.
If I is a two-sided ideal, then A/ is a ring.

Ezamples: Z/nZ = Z,,. R[z]/(2* +1) = C.

Lie algebra: A vector space L over a field F' with a bracket operation
[,] : Lx L — L, which is bilinear (i.e., [a, b] is linear with respect to a for fixed
b and with respect to b for fixed a), skew-symmetric ([a,a] = 0, so [a,b] =
—[b, a]), and satisfies the Jacobi identity [a, [b, ¢]] + [b, [c, a]] + [¢, [a, b]] = 0.

Ezamples: Any algebra A with [a,b] = ab— ba is a Lie algebra. So square
matrices over a field form a Lie algebra. Other examples are the Lie algebra

of matrices with trace zero and the Lie algebra of skew-symmetric matrices
(XT = -X).



Tensor product of modules: If A is a ring, M is a right A-module, and
N a left A-module, then M ® 4 N is the quotient of the free abelian group
with basis S = {m®n,m € M,n € N} (where m ® n are formal symbols)
by the subgroup spanned by

(m14+me)@n—m1@n—mo®@n, m®(n;+ny) —men;—mens, ma@n—mean,

where a € A. By doing this we force the relations saying that the expressions
above are zero.

Note that if A is commutative then left and right module is the same
thing, and so M, N are just A-modules. Moreover, in this case the abelian
group M ®4 N is also an A-module: a- (m®n) =ma®@n =m an.

Example: Z, @z 4y = ZLigeq(r,s). For example, Zy @z Zz = 0.

Theorem: If V, W are vector spaces over a field /' with bases v; and w;
then the set of elements v; ® w; is a basis of V' ®r W. In particular, the
dimension of V ®p W is the product of dimensions of V' and W.

So, unlike abelian groups, the tensor product of nonzero vector spaces is
nonzero.



