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Abstract

We propose a deterministic algorithm for solving second-order cone programs of the form

min
Ax=b,x∈L1×···×Lr

c⊤x,

which optimize a linear objective function over the set of x ∈ Rn contained in the intersection
of an affine set and the product of r second-order cones. Our algorithm achieves a runtime of

Õ((nω + n2+o(1)r1/6 + n2.5−α/2+o(1)) log(1/ϵ)),

where ω and α are the exponents of matrix multiplication, and ϵ is the relative accuracy. For
the current values of ω ∼ 2.37 and α ∼ 0.32, our algorithm takes Õ(nω log(1/ϵ)) time. This
nearly matches the runtime for solving the sub-problem Ax = b. To the best of our knowledge,
this is the first improvement on the computational complexity of solving second-order cone
programs after the seminal work of Nesterov and Nemirovski on general convex programs.
For ω = 2, our algorithm takes Õ(n2+o(1)r1/6 log(1/ϵ)) time.

To obtain this result, we utilize several new concepts that we believe may be of independent
interest:

• We introduce a novel reduction for splitting ℓp-cones.

• We propose a deterministic data structure to efficiently maintain the central path of inte-
rior point methods for general convex programs.

*michelle.wei89@gmail.com. PRIMES-USA.
†ghye@mit.edu. MIT.
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1 Introduction

Second-order cone programming (SOCP) is a fundamental class of problems in mathematical opti-
mization. The widespread applications of SOCP extend to various areas such as machine learning,
operations research, robust optimization, and combinatorial optimization, spanning several in-
dustries including information technology, finance, energy, and transportation [LVBL98, AG03].
SOCP provides a generalized representation of several well-known convex optimization prob-
lems, including linear programs (LP), convex quadratic programs (QP), and quadratically con-
strained convex quadratic programs (QCQP).

SOCPs represent a class of problems that aim to optimize a linear objective within the intersec-
tion of the Cartesian product of second-order cones and an affine space. The standard definition of
a SOCP includes n variables within r second-order cones and is subject to m constraints, as stated
below:

Definition 1.1 (Second-order Cone Program). Given the constraint matrix A ∈ Rm×n, two vectors
b ∈ Rm and c ∈ Rn, and r second-order cones L1, . . . ,Lr, a SOCP can be expressed as:

min c⊤x subject to Ax = b,xi ∈ Li for all i ∈ [r], (1)

where x is the concatenation of xi and lies in the domain L def
= L1 × · · · × Lr, where Li ∈ Rni is

defined as Li := {x = (x◁,x▷) ∈ Rni : ∥x▷∥2 ≤ x◁}.

1.1 Related Work

Second-order cone programming is an extremely well-studied problem with a long history. As
a natural generalization of linear programming, there are numerous algorithmic frameworks de-
veloped for solving SOCPs, such as the simplex method for conic programming [Gol02, Zha19,
Zha20], sequential linear programming [Siv02], and polyhedral reformulation of second-order
cones [BTN01].

Interior Point Methods Karmarkar first proved interior point methods (IPM) can solve linear
programs in polynomial time in 1984 [Kar84]. By introducing a barrier function in the objective
and adjusting its weight, the method solves a slightly changing optimization problem at each iter-
ation. IPMs are a prominent algorithm class for solving SOCPs to attain high-accuracy solutions.
There are many efforts to generalize IPM to a more broad class of problems [BV03, NN94].

IPM with Linear Programming Recently, much attention has been given to IPM-based meth-
ods for solving linear programs. [CLS21] first demonstrated that general LPs could be solved in
O∗(nω)1 time, where ω ≈ 2.37 is the exponent of matrix multiplication. For LPs with specific
structures, nearly linear-time algorithms have been proposed [BLSS20, BLL+21, DLY20].

IPM with Nonlinear Programming The advancements made in linear programming through
IPM have been successfully extended to a broader range of optimization problems. This in-
cludes domains such as semi-definite programming [JKL+20, HJS+22], empirical risk minimiza-
tion [LSZ19, QSZZ23], and quadratic programming [GSZ23].

1Throughout the report, we use O∗ to hide no(1) and poly log(n/ε) factors, and we use Õ to hide factors poly-
logarithmic in n and log(1/ε).
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Table 1: Previous work utilizing interior point methods in various convex programming problems

Year Type of Convex Program
Complexity
Achieved

Researchers

1984 Linear program O∗(n3.5) Karmarkar [Kar84]

1994 Second-order cone program O∗(nω+0.5)2 Nesterov, Nemirovski
[NN94]

2019
Constant dimension convex

program
O∗(nω) Lee, Song, Zhang [LSZ19]

2021 Linear program O∗(nω) Cohen, Lee, Song [CLS21]
2023 Convex quadratic program O∗(nω) Gu, Song, Zhang [GSZ23]

In Table 1, we summarize several important advancements in convex programming. As shown
in the table, IPMs have been an active area of research since Karmarkar [Kar84] proved that they
can solve linear programs in polynomial time. Recent years have seen substantial advances in both
linear programming and semi-definite programming (SDP), especially in the theoretical computer
science community [CLS21, LSZ19, LS14, LS15, LS19, LSW15, JKL+20, JLSW20, HJS+22], and the
current fastest algorithms for both LP and SDP are based on an interior-point method.

The seminal paper by Nesterov and Nemirovski [NN94] in 1994 showed that their general
results on self-concordant barriers can be applied to the SOCP problems, thereby yielding interior-
point methods for SOCPs with run time O∗(

√
rnω) time. However, progress appears to have

stagnated for SOCPs in the last 30 years. To date, Nesterov and Nemirovski’s work remains the
most efficient for SOCPs.

1.2 Research Gap and Objectives

The recent breakthroughs in IPMs are underpinned by inverse maintenance techniques [Vai87,
LS15, CLS21, LSZ19], taking advantage of the block-diagonal structure of the Hessian matrix to
simplify per-iteration updates into solving lower-dimensional linear systems. However, it is chal-
lenging in making similar improvements to SOCP. Given the inherent nature of SOCPs, the sizes of
the block matrices in the Hessian can vary significantly. Even updating a single high-dimension
block will keep the time complexity unchanged at O(

√
rnω). Addressing these challenges, our

research objectives are as follows:

• Develop time complexity-reducing strategies: Design strategies to overcome the complex-
ity barrier inherent in SOCP algorithms by exploring innovative approaches to reduce com-
putational costs.

• Develop a fast SOCP algorithm and prove its runtime: Create a new SOCP solution and
provide rigorous mathematical proof of its convergence, which is crucial to ensure that the
solution is robust.

• Build and test a complete SOCP solver: Implement theoretical ideas in practice by creat-
ing a new SOCP solver, producing a resource that can be readily employed by the research
community.

2Nesterov and Nemirovski’s work covers general convex programming, but they produced an O∗(
√
rnω) run time

for SOCP.
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• Explore applications: Identify and explore new applications in fields where our results can
provide significant benefits. With a more efficient SOCP algorithm, we aim to open up new
avenues for scientific exploration and practical problem-solving.

1.3 Main Theorems

We introduce a novel cone-splitting technique to reduce high-dimension second-order cones into
smaller ones, enabling each cone to be rewritten into roughly equal-sized dimensions. This is a
crucial step to overcome the high computational cost associated with high-dimension constraints.

Integrating cone-splitting along with vector approximation and inverse maintenance tech-
niques, we present a new deterministic algorithm based on IPM with a run time of O∗(nω +
n2.5−α/2 + n2r1/6), where ω is the exponent of matrix multiplication, and α is the dual expo-
nent of matrix multiplication3. Note that this simplifies to Õ((nω) log(1/ϵ)) for the current values
of ω ≈ 2.37 and α ≈ 0.31. To the best of our knowledge, this is the first improvement on the
computational complexity of solving SOCPs after the seminal work of [NN94] on general convex
programs.

Moreover, our approach is fairly general and can be extended to produce an algorithm with
runtime O∗(nω + n2.5−α/2 + n2r1/6) for any convex program where each convex set in the con-
straints has the property that the dimension is bounded by O(n/r) and there is an O(1)-self-
concordant barrier.

More formally, we prove the following results:

Theorem 1.2 (Main Theorem). Given a second-order cone program as specified in Definition 1.1 with
full-rank constraint matrix A ∈ Rm×n and m ≤ n, define the following parameters:

1. Outer radius R: Assume ∥A∥1 ≤ R, and ∥b∥2 ≤ R and any feasible solution x satisfies ∥x∥2 ≤ R.
2. Lipschitz constant L: ∥c∥2 ≤ L.

Then, for any 0 < ϵ ≤ 1/2, there is a deterministic algorithm which runs in time

Õ((nω + n2.5−α/2+o(1) + n2+o(1)r1/6) log(Rε ))

and outputs an approximate solution x ∈ L such that

∥Ax− b∥1 ≤ ϵ

and
c⊤x ≤ min

Ax=b,xi∈Li for all i∈[r]
c⊤x+ ϵL.

Theorem 1.3. Given the matrix A ∈ Rm×n, two vectors b ∈ Rm and c ∈ Rn, and r compact convex sets
K1, . . . ,Kr, let’s consider the following convex program:

min
Ax=b,xi∈Ki for all i∈[r]

c⊤x.

Assume the following:
1. A ∈ Rm×n is a full-rank matrix with m ≤ n.
2. Ki ∈ Rni where ni ≤ O(n/r) is a compact convex set with O(1)-self-concordant barrier such that

ϕi(xi),∇ϕi(xi),∇2ϕi(xi) can all be computed in O(nω
i ) time.

3. Outer radius R: Assume ∥A∥1 ≤ R, and ∥b∥2 ≤ R and any feasible solution x satisfies ∥x∥2 ≤ R.

3The dual exponent of matrix multiplication α is the supremum among all α ≥ 0 such that it takes n2+o(1) time to
multiply an n× n matrix by an n× nα matrix.
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4. Lipschitz constant L: ∥c∥2 ≤ L.
Then, for any 0 < ϵ ≤ 1/2, there is a deterministic algorithm which runs in time

Õ((nω + n2.5−α/2+o(1) + n2+o(1)r1/6) log(Rε ))

and outputs an approximate solution x ∈
∏r

i=1Ki such that

∥Ax− b∥1 ≤ ϵ

and
c⊤x ≤ min

Ax=b,xi∈Ki for all i∈[r]
c⊤x+ ϵL.

Report Organization This paper is organized as follows. In Section 2, we establish the notation
used throughout this report. In Section 3, we lay out our strategies for developing a faster SOCP
algorithm, utilizing cone-splitting and approximation techniques. In Section 4, we discuss the de-
tails of cone-splitting. In Section 5, we detail the approximation techniques used, including vector
approximation and inverse maintenance techniques, and we analyze the run time of each com-
ponent of the IPM. Putting everything together, in Section 6, we utilize results from the previous
sections to prove the convergence of the algorithm as stated in Theorems 1.2 and 1.3. In Section 7,
we provide empirical results confirming the convergence of the SOCP algorithm in O∗(nω) time,
as well as further explorations into factors affecting the run time. In Section 8, we explore how
the new SOCP solution facilitates advancements in various fields, including machine learning,
portfolio optimization, and energy management.

2 Notation

In this section, we introduce the notation used in our paper as well as the definitions and prior
known results that we rely on.

We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters
to denote matrices. We use xi to denote the ith block of coordinates in the vector x. For a vector
v ∈ Rn, we use ∥v∥2 to denote its Euclidean norm. Each block of vector x usually lives in a
second-order cone; we further use xi,◁ and xi,▷ to denote the coordinates of that block.

For a positive semi-definite matrix (PSD) A ∈ Rn×n, we use ∥v∥A to denote the induced norm√
v⊤Av. For a convex function f(x) clear from the context, we define the local norm ∥v∥x =
∥v∥∇2f(x) and ∥v∥∗x = ∥v∥(∇2f(x))−1 . We define the ℓ1-norm for a matrix as ∥A∥1 =

∑
ij |Ai,j |.

We use Lk to denote the second-order cone in Rk+1.

3 Overview

In this section, we provide a high-level overview of the algorithmic framework and technique
used. While our result extends to the product space of general convex sets in Theorem 1.3, for
simplicity, we focus on the SOCP here.

3.1 Robust Interior Point Method

Consider the following second-order cone program in the standard form

min
Ax=b,x∈L

c⊤x (primal) and max
A⊤y+s=c,s∈L

b⊤y (dual). (SOCP)
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for some matrix A ∈ Rm×n. The interior point method follows the central path x(t) which it starts
at some interior point (t≫ 0) to the optimal solution (t = 0):

x(t) = arg min
Ax=b

c⊤x+ tϕ(x) with ϕ(x)
def
=

r∑
i=1

ϕi(xi),

where ϕi : Li → R are self-concordant barrier functions. The optimal condition of the path out-
lined above is defined by:

1

t
s+∇ϕ(x) = 0,

Ax = b,

A⊤y + s = c,

(x, s) ∈ L × L. (2)

Due to the computational cost, following the central path precisely is prohibitive. Instead,
the RIPM maintains a feasible solution pair (x, s) that serve as approximate minimizers. More

specifically, we define µi(t,xi, si)
def
= si/t+∇ϕi(xi). RIPM maintains (x, s) such that

∥γ(t,x, s)∥∞ =
1

poly log n
where γ(t,x, s)i

def
= ∥(∇2ϕi(xi))

−1/2µi(t,xi, si)∥2. (3)

In each iteration of the algorithm, t is decreased by some multiplicative factor, and then µ takes
a Newton-like step. The rate of decreasing t is determined by the self-concordance of the chosen
barrier function ϕ.

Definition 3.1 ([Nes89]). A function ϕ is a ν-self-concordant barrier for a non-empty open convex
set K if domϕ = K, ϕ(x)→ +∞ as x→ ∂K, and for any x ∈ K and for any u ∈ Rn

D3ϕ(x)[u, u, u] ≤ 2∥u∥∇2ϕ(x) and ∥∇ϕ(x)∥(∇2ϕ(x))−1 ≤
√
ν.

A function ϕ is a self-concordant barrier if the first condition holds.

Lemma 3.2 ([Nes03]). The self-concordance ν is at least 1 for any self-concordant barrier function.

Nesterov and Nemirovski [NN94] proved that one can decrease t by 1 − 1√
ν

factor in each
iteration, implying that the IPM converges in O(

√
ν log(1/ϵ)) iterations. For any open convex set

K ∈ Rn, there are n-self-concordant barriers [LY21, BE14, Che21]. For linear constraint x ∈ [l, u],
one can use the log-barrier− log(u−x)−log(x−l). Notably, the barrier− log(x2◁−∥x▷∥2)−log(x◁)
is O(1)-self-concordant for second-order cone [Nem04].

After decreasing t by 1 − 1√
ν

factor, the centrality measure ∥(∇2ϕ(x))−1/2µ∥∞ may increase.
Therefore, we let µ take a Newton-like step. To move (x, s,y)← (x+ δx, s+ δs,y+ δy), it suffices
to solve the following linear system:

1

t
δs +∇2ϕ(x)δx = δµ,

Aδx = 0,

A⊤δy + δs = 0. (4)
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Recently, it has been observed that one can use an approximation to replace ∇2ϕ(x) and δµ in
the aforementioned linear system. Instead of computing them exactly, we maintain some block-
wise approximation, denoted as x and s, and use them to compute ∇2ϕ and δµ. We only update
(x, s) when they change significantly to ensure they have sparse updates. We refer to this IPM as
a robust interior point method (RIPM). In this paper, we follow the RIPM framework developed
in [DLY20] in a black-box manner, maintaining ∥xi − xi∥xi ≤ 1

poly log(n) for all i ∈ [r].

Lemma 3.3 ([DLY20]). Consider the convex program

min
Ax=b,xi∈Ki for all i∈[r]

c⊤x,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, where K ∈ Rni with νi-self-concordant barrier ϕi. Given an

initial central path parameter (tstart,x, s) such that Φ(tstart,x, s) ≤ cosh(λ/128) where Φ(t,x, s)
def
=∑r

i=1 cosh(λγi(t,x, s)), and a target tend such that tstart/tend = Ω(1), the procedure CENTERING in
Algorithm 1 outputs a central path parameter (tend,x′, s′) in O(

√
ν log(tstart/tend)) many iterations such

that
c⊤x′ ≤ min

Ax=b,xi∈Ki for all i∈[r]
c⊤x+ 4tendν,

where ν =
∑r

i=1 νi.

3.2 Rewriting Second-order Cone Constraint

The RIPM itself is insufficient for obtaining an efficient algorithm. Given our goal is to get an
algorithm that runs in nω time, amortized cost per iteration is constrained to be roughly nωr−1/2,
which is sub-quadratic for moderately large r.

A key obstacle within the RIPM is our lack of control over which cone needs to be updated.
Even when updating just one cone per iteration, there may be some cones with dimension Ω(n),
necessitating n2 time even to write down∇2ϕi(xi). To handle this issue, we present a novel reduc-
tion that enables us to express second-order cone constraints in a smaller dimension. Specifically,
we can transform a second-order cone constraint L2k = {(x◁,x▷) : x◁ ≥ ∥x▷∥2} ⊂ R2k+1 into the
intersection of three cones with an affine space as follows:

{x(1) ∈ Lk,x(2) ∈ Lk, (c, a, b) ∈ L2 : a = x
(1)
◁ , b = x

(2)
◁ }.

This reduction directly leads to a O∗(nω+n2.5−α/2+n2+1/6) time algorithm, by iteratively applying
the rewriting until the largest cone has constant size and then utilizing the algorithm from [LSZ19].
We refer readers to Theorem 4.3 and Appendix A for the details.

3.3 Inverse Maintenance

Rewriting cones into constant dimensions and applying the algorithm of [LSZ19] gives us a ran-
domized algorithm with iteration complexity O∗(

√
n) and run time O∗(nω + n2.5−α/2 + n2+1/6).

In this subsection, we show to obtain a simple deterministic algorithm that retains
√
r iteration

complexity, with total run time is O∗(nω + n2.5−α/2 + n2r1/6).
We observe that instead of rewriting the largest cone into constant dimension, it suffices to

make sure all the cones have size O(n/r). Note that we will at most introduce O(r) many new
cones. Since each cone has a O(1)-self-concordance barrier, this directly implies an IPM with
O∗(
√
r) iterations.
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Algorithm 1 Robust Interior Point Method for SOCP

1: procedure SOCPSOLVE(A ∈ Rm×n, b, c, R, ε)
2: Rewrite the new SOCP accoridng to Theorem 4.1 with d = n/r.

3: Define ϕi(xi)
def
= − log(xi,◁)− log(x2

i,◁ − ∥xi,▷∥22)− log(R− xi,◁).
4: Modify the SOCP and obtain an initial (x, s) for modified convex program according to

Lemma B.1.
5: Let tstart = 1, tend = ε2/(210n3R4).
6: x, s← CENTERING(tstart, tend,x, s, ϕ).
7: Let x′, s′ be the approximate solution of the new SOCP according to Lemma B.1.
8: Return the approximate solution of the original SOCP using Lemma 4.2.
9: end procedure

10: procedure CENTERING(tstart, tend,x, s, ϕ) ▷ See the implementation in Algorithm 2.
11: Let ε̄ = 1

212λ
and λ = 64 log(256r2).

12: Let t← tstart, x← x, s← s, t← t.
13: while t ≥ tend do
14: Set t← max((1− ε̄

128
√
r
)t, tend).

15: Maintain x, s such that ∥xi − xi∥xi ≤ ε̄, ∥si − si∥xi ≤ tε̄ for all i ∈ [r].
16: Compute δµ(t,x, s), where

δµ(t,x, s)i
def
= − ε̄

2
· sinh(λγ(t,x, s)i)

∥ cosh(λγ(t,x, s))∥2
· µi(t,x, s). (5)

17: Find (δx, δs, δy) such that these three equations hold:

1

t
δs +∇2ϕ(x)δx = δµ(t,x, s),

Aδx = 0,

A⊤δy + δs = 0.

(6)

18: x← x+ δx, s← s+ δs.
19: Update t← t if |t− t| ≥ ε̄t/4.
20: end while
21: return (tend,x, s).
22: end procedure
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Recall from Eq. (4) that each step of the robust interior point method solves the following linear
system:  ∇2ϕ(x) I/t̄ 0

A 0 0
0 I A⊤

 δx
δs
δy

 =

 δµ
0
0

 . (7)

Using the techniques from [LV21, Bra21], we can reduce the dynamic linear system problem
into an inverse maintenance problem.

Lemma 3.4 ([Bra21]). For any invertible matrix M ∈ Rn×n and any vector v ∈ Rn, we have[
M v
0 −1

]−1

=

[
M−1 M−1v
0 −1

]
.

Then the question reduces to maintaining the last column of inverse of M(t,x, s) where

M(t,x, s)
def
=


∇2ϕ(x) I/t 0 δµ(t,x, s)

A 0 0 0
0 I A⊤ 0
0 0 0 −1

 . (8)

Finally, we use the Sherman-Morison-Woodbury matrix identity and fast rectangular matrix
multiplication to maintain the inverse above.

4 Reformulating Second-Order Cone Constraints

In this section, we show how to break down large cone constraints in the SOCP into smaller ones.
This is a key step to reduce computational cost.

Theorem 4.1. Consider a SOCP in the standard form

min
Ax=b,x∈L

c⊤x,

where L = Ln1 × · · · × Lnr and A ∈ Rm×n.
Given a dimension threshold d > 10, we can construct an equivalent SOCP with the dimension of the

largest cone bounded by d+ 1:
min

Ax=b,x∈L
c⊤x,

in O(nnz(A) + n) time, which satisfies the following:

1. Cone Dimension : ni ≤ d+ 1 for all i.

2. Total Dimension : n =
∑r

i=1 ni ≤ 2n.

3. Cone Number : r ≤ 2n/d.

4. Number of Rows in A: m ≤ m+ r.

The new SOCP is equivalent to the original in the following sense: given a feasible solution to either of these
two SOCPs, one can construct a feasible solution for the other with the same objective function value in
O(n) time.
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Proof. It suffices to show how to rewrite a single second-order cone constraint xi ∈ Li for some i
such that ni > d. For the simplicity of the proof, we drop the subscript and consider x ∈ L ⊂ Rn

instead. Moreover, we assume n = kd + 1 for some integer k; note one can just pad dummy
variables if n− 1 is not a multiple of d.

We split L into product of k+ 1 many second-order cones, where the j-th cone L(j) ∈ Rd+1 for
j ≤ k and L(k+1) ∈ Rk+1. Denote this product of new cones as L′. We note that L′ ⊂ Rkd+2k+1. To
make the new cone equivalent to the original one, we need to add some equality constraints: for
x′ ∈ L′, we add x′i,◁ = x′k+1,i for all i ∈ [k].

Let c be the corresponding cost vector. We define the new cost vector c′ as follows: set c′i,◁ = 0
and c′i,j = c(i−1)d+j for i ∈ [k]. We set c′k+1 = (c◁,0).

Now, we demonstrate how to convert the solution from the modified SOCP to the original one.
Given x′ ∈ L′, we set x = (x′k+1,◁,x

′
1,▷, . . . ,x

′
k,▷). First, we check x ∈ L. Since x′ ∈ L′, we have

(x′k+1,◁)
2 ≥ ∥x′

k+1,▷∥22 =
k∑

i=1

(x′
i,◁)

2 ≥
k∑

i=1

∥x′
i,◁∥22,

where the first inequality follows by x′
k+1 ∈ L(k+1), the second step follows by the equality con-

straints above, and the last inequality follows by xi ∈ L(i). This shows x ∈ L. Then, for the
objective function value, we have

⟨c′,x′⟩ =
k+1∑
i=1

⟨c′i,x′
i⟩

= c◁ · x◁ +
k∑

i=1

⟨c′i,x′
i⟩

= c◁ · x◁ + ⟨c▷,x▷⟩ = ⟨c,x⟩,

where the first step follows by c′k+1 = (c◁,0) and x◁ = x′k+1,◁, and the second step follows by the
definition of c′ and x▷ = (x′

1,▷, . . . ,x
′
k,▷).

Similarly, one can convert the solution from the original SOCP to the new one. Given x ∈ L,
we construct x′ by setting x′i,j = x(i−1)d+j for i ∈ [k], j ∈ [d]. Then, we set x′i,◁ = x′k+1,i = ∥x′i,▷∥2.
Finally, let x′k+1,◁ = x◁. It is easy to verify x′ ∈ L′ and ⟨c′, x′⟩ = ⟨c, x⟩.

If k ≤ d, then we are done. Otherwise, we repeat the procedure above on L(k+1).
Note that each time we repeat the procedure above, the dimension of the largest cone is de-

creased by a factor of d. Then, using the sum of a geometric series, this procedure at most intro-
duces 2n/d many variables, and the number of cones can also be bounded by 2n/d. Moreover, we
notice that for L(j) for j ∈ [k], there will be at most 1 corresponding constraint.

Since we only need to add O(r) many constraints, and each of them touches two variables, this
gives the bound on the running time.

However, the result obtained by RIPM may not satisfy Ax = b exactly; we need the following
lemma to bound the error.

Lemma 4.2. Consider an original SOCP with standard form minAx=b,x∈L c⊤x with a modified SOCP
minAx=b,x∈L c⊤x, obtained by Theorem 4.1. Given an x such that x ∈ L, and ∥Ax − b∥1 < δ, we can
find a x ∈ L such that ∥Ax− b∥1 ≤ δ(1 + ∥A∥1) and c⊤x+ δ∥c∥2 ≤ c⊤x.
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Proof. Let x′ be the solution converted from x, then x′ = (xk+1,◁,x1,▷, . . . ,xk,▷). Since x ∈ L, we
have

x2k+1,◁ ≥ ∥xk+1,▷∥22 =
k∑

i=1

(xi,◁ + ξi)
2 and

k∑
i=1

(xi,◁)
2 ≥

k∑
i=1

∥xi,◁∥22

for some ξ such that ∥ξ∥1 ≤ δ. We define

x = (xk+1,◁ + δ,x1,▷, . . . ,xk,▷).

Because |∥a∥2−∥b∥2| ≤ ∥a−b∥2 for any a, b and ∥ξ∥2 ≤ ∥ξ∥1, one can check that x ∈ L. The bound
on ∥Ax− b∥ and c⊤x follows directly from x− x′ = δe1.

A direct corollary of the theorems above is that we get an O∗(nω + n2.5−α + n2+1/6) time algo-
rithm using [LSZ19].

Theorem 4.3. Consider a second-order cone program as specified in Definition 1.1 with no redundant
constraints. Define the following parameters:

1. Radius R: Assume ∥A∥F ≤ R, and ∥b∥2 ≤ R and any feasible solution x satisfies ∥x∥2 ≤ R.

2. Lipschitz constant L: ∥c∥2 ≤ L.

Then, for any 0 < ϵ ≤ 1/2, there is a deterministic algorithm which runs in time

Õ((nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) log(Rε ))

and outputs an approximate solution x ∈ L such that

c⊤x ≤ min
Ax=b,x∈L

c⊤x+ εL

and
∥Ax− b∥1 ≤ ε.

We defer the proof to Appendix A.

5 Robust IPM Made Efficient

In this section, we present our implementation for the RIPM. Since the modified convex program
is not necessarily a SOCP, we prove a slightly more general version here.

Theorem 5.1. Consider the convex program

min
Ax=b,xi∈Ki for all i∈[r]

c⊤x,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, where K ∈ Rni and ni = O(n/r). Given O(1)-self-concordant
barrier functions ϕi for each Ki, a feasible central path parameter (tstart,x, s) such that Φ(tstart,x, s) ≤
cosh(λ/128), where Φ(t,x, s) =

∑r
i=1 cosh(λγi(t,x, s)), and a target tend such that t/tend = Ω(1), the

Algorithm 2 outputs a feasible central path parameter (tend,x′, s′) such that

c⊤x ≤ min
Ax=b,xi∈Ki for all i∈[r]

c⊤x+ 4νtend,

where ν is the self-concordance parameter of ϕ =
∑r

i=1 ϕi.
Assuming ϕi(xi),∇ϕi(xi),∇2ϕi(xi) can be computed in O(nω

i ) time for any xi ∈ Rni and i ∈ [r],
the algorithm runs in time Õ((nω + n2+o(1)r1/6 + n2.5−α/2+o(1)) log(tstart/tend)).

11



We split the proof into two parts: vector approximation maintenance (Theorem 5.2) and matrix
inverse maintenance (Theorem 5.8), and we combine them together in Section 5.3.

Algorithm 2 implementation of CENTERING in Algorithm 1

1: procedure CENTERINGIMPL(tstart, tend,x, s)
2: Let ε̄ = 1

212λ
and λ = 64 log(256n2).

3: Let ℓ∗ be the smallest integer such that 22ℓ∗ ≥ min{r2/3,max(1, r · nα−1)}.
4: Let approxSolution be an instance of APPROXSOLUTION in Algorithm 3.
5: Let k ← 0, t← tstart, x← x, s← s, t← t.
6: Let T← (M(t,x, s))−1 and u← Te2n+m+1.
7: approxSolution.INITIALIZE(x, s, t, α)
8: while t ≥ tend do
9: Set t← max((1− ε̄

128
√
r
)t, tend).

10: Set k ← k + 1.
11: (x, s)← approxSolution.APPROXIMATE(x, s, t, ε̄).
12: Compute δµ(t,x, s), where

δµ(t,x, s)i
def
= − ε̄

2
· sinh(λγ(t,x, s)i)

∥ cosh(λγ(t,x, s))∥2
· µi(t,x, s). (9)

13: if k mod 2ℓ∗ ≡ 0 then
14: Update T to (M(t,x, s))−1 using Theorem 5.8.
15: u← Te2n+m+1,v ← u.
16: else
17: Update v to (M(t,x, s))−1e2n+m+1 using Theorem 5.8.
18: end if
19: Let (δx, δs) be the first 2n coordinates of v.
20: x← x+ δx, s← s+ δs.
21: if |t− t| ≥ ε̄t/4 then ▷ Restart
22: Update t← t,x← x, s← s,T← (M(t,x, s))−1.
23: approxSolution.INITIALIZE(x, s, t, ε̄).
24: end if
25: end while
26: return (tend,x, s).
27: end procedure

5.1 Vector Approximation Maintenance

In this subsection, we present a data structure to maintain x and s. The algorithm is similar to the
corresponding algorithm in [DLY20, Section 6.3] and [DGG+22, Section 6.1]. Here, we present a
slightly simpler version, since we have explicit access to (x, s) throughout the algorithm.

Theorem 5.2. The data structure APPROXSOLUTION in Algorithm 3 maintains approximate solution
(x, s) of (x, s) with the following procedures:

• INITIALIZE(x ∈ Rn, s ∈ Rn, ϕ, t, δ > 0): Initialize the data structure at step 0 with initial solution
pair (x, s), a barrier function ϕ : Rn → R, and the target additive approximation error δ.

12



• APPROXIMATE(x(new), s(new)): Increment the step counter, and update solution pair (x, s). Output
an approximation (x, s) such that ∥xi − xi∥xi ≤ δ, ∥si − si∥xi ≤ tδ for all i ∈ [r].

Moreover, if ∥x(k) − x(k−1)∥x ≤ β and ∥s(k) − s(k−1)∥∗x ≤ tβ for all k, then at the k-th step, the data
structure updates (xi, si)← (xi, si) for O(22ℓk(β/δ)2 log2 n) many blocks, where ℓk is the largest integer
ℓ with k ≡ 0 mod 2ℓ. Moreover, if ni ≤ d for all i ∈ [r], and suppose we can compute∇2ϕi(xi) in time T ,
then the total run time for this algorithm after K steps is

Õ
(
K2(β/δ)2(dω + T ) +Krd2

)
.

Remark 5.3. For our usage, (β/δ) = poly log n, k = Õ(
√
r), T = O(d2), and r · d = O(n), so we have

Õ
(
K2(β/δ)2(dω + T ) +Krd2

)
= Õ(n2r−1/2 + nωr1−ω).

Proof of Theorem 5.2. We first show the correctness of the algorithm by using dyadic intervals. Sup-
pose the last time xi get updated at step k′. Then, we note that the corresponding induced norm
did not change for all k ≥ k′. Since we reset all the coordinates every 2⌈logn⌉ steps, we have
k − 2⌈logn⌉ < k′ ≤ k. Using dyadic intervals, we can k′ = k0 < k1 < · · · < ks = k where kj+1 − kj
is a power of 2, kj+1 − kj divides kj+1, and |s| ≤ 2⌈log n⌉. Then, we have

∥x(k)
i − x

(k)
i ∥x(k)

i

= ∥x(k0)
i − x

(k)
i ∥x(k0)

i

≤
s∑

i=1

∥x(ki)
i − x

(ki−1)
i ∥

x
(k0)
i

≤ δ

2⌈log n⌉
· s ≤ δ.

The proof for s is similar; we omit it here.
Now, we bound the number of blocks which change.
Let ℓk be the largest integer ℓ with k ≡ 0 mod 2ℓ. We claim that at the k-th step, the data

structure updates (xi, si)← (xi, si) for O(22ℓk(β/δ)2 log2 n) many blocks.
Fix some ℓ with k ≡ 0 mod 2ℓ. By our definition of I(k)ℓ , we have for any i, we know that the

induced norm does not change for all j > k − 2ℓ. Then, we have∑
i∈I(k)ℓ

∥x(k)
i − x

(k−2ℓ)
i ∥2xi

≤
∑
i∈[r]

∥x(k)
i − x

(k−2ℓ)
i ∥2xi

≤ 22ℓβ2.

Note that for any i in I
(k)
ℓ , we have ∥x(k)

i − x
(k−2ℓ)
i ∥2xi

≤ δ2. This gives the bound on size of

I
(k)
ℓ :

|I(k)ℓ | ≤
22ℓβ2

δ2
≤ 22ℓ(β/δ)2.

Summing over all ℓ < ℓk, we get the desired bound.

Lemma 5.4. Given the solution (δx, δs, δy) for the following linear system

1

t
δs +∇2ϕ(x)δx = v,

Aδx = 0,

A⊤δy + δs = 0,

we have ∥δx∥x = 1
t
∥δs∥∗x = ∥v∥∗x.
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Proof. For simplicity of notation, we use H to denote ∇2ϕ(x) in this proof. Multiplying AH−1 on
both sides of the first equation and Aδx = 0, we have

1

t
AH−1δs = AH−1v.

Replacing δs with −A⊤δy, we get

−1

t
AH−1A⊤δy = AH−1v.

Since A has full column rank, (AH−1A⊤) is invertible, and we have

δy = −t(AH−1A⊤)−1v.

Then, we have

δs = tA⊤(AH−1A⊤)−1v,

δx = H−1v −H−1A⊤(AH−1A⊤)−1v.

Then, we can check that

∥δx∥x =
1

t
∥δs∥∗x = ∥v∥∗x

by direct calculation.

5.2 Inverse Maintenance

In this subsection, we show how to maintain the inverse of M(t,x, s) under sparse block changes.
Before we proceed, we need several ingredients. The first one is the Sherman-Morison-Woodbury
matrix identity.

Lemma 5.5 (Sherman-Morison-Woodbury matrix identity [Woo50]). The Sherman-Morison-Woodbury
matrix identity is given by

(M+UCV)−1 = M−1 −M−1U
(
C−1 +VM−1U

)−1
VM−1.

where A ∈ Rn×n,U ∈ Rn×k,C ∈ Rk×k,V ∈ Rk×n.

To bound the run time for computing the matrix identity above, we need the following two
lemmas.

Lemma 5.6 (Rectangular matrix multiplication [CLS21]). For any r < n, multiplying an n × r with
an r × n matrix or n× n with n× r takes time

n2+o(1) + r
ω−2
1−αn2−α(ω−2)

1−α
+o(1).

Lemma 5.7 ([CGLZ20]). ω ≤ 3− 1
2ωα.

Now, we can state our result for maintaining the inverse of M(t,x, s).

Theorem 5.8. Given x(prev), s(prev) in the previous IPM iteration and x, s, suppose x and s differ from
x(prev) and s(prev) in at most q blocks, i.e., |{i ∈ [r] : xi ̸= x

(prev)
i or si ̸= s

(prev)
i }| = q. Let k be the total

dimension of these blocks. Given (M(t,x(prev), s(prev)))−1 and some vector v, we can

14



Algorithm 3 Data Structure Approximate Solution Maintenance

1: data structure APPROXSOLUTION

2: private : member
3: δ > 0: additive approximation error
4: k: current IPM step
5: (x, s) ∈ Rn × Rn: current valid approximate solution pair
6: {x(j), s(j) ∈ Rn × Rn}kj=0: list of previous inputs
7:
8: procedure INITIALIZE(x, s, t, δ)
9: k ← 0.

10: x(k) ← x, s(k) ← s.
11: x← x, s← s.
12: t← t, δ ← δ.
13: end procedure
14:
15: procedure APPROXIMATE(x(new), s(new)).
16: k ← k + 1,x(k) ← x(new), s(k) ← s(new).
17: I ← ∅.
18: for all 0 ≤ ℓ < ⌈log k⌉ such that k ≡ 0 mod 2ℓ do
19: Compute I

(k)
ℓ , where

I
(k)
ℓ

def
= {i ∈ [r] : max{∥x(k)

i − x
(k−2ℓ)
i ∥xi , ∥s

(k)
i − s

(k−2ℓ)
i ∥∗xi

/t} ≥ δ

2 ⌈log n⌉
and (xi, si) has not been updated since the (k − 2ℓ)-th step}.

20: I ← I ∪ I
(k)
ℓ .

21: end for
22: if k ≡ 0 mod 2⌈logn⌉ then
23: I ← [r].
24: end if
25: xi ← x

(k)
i , si ← s

(k)
i for all i ∈ I .

26: return (x, s).
27: end procedure
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• Compute (M(t,x, s))−1 in time O(T (n, k, n))

• Compute (M(t,x, s))−1v in time O(T (k, k, k) + nk)

where T (a, b, c) is the time required for multiplying an a× b matrix with a b× c matrix.

Proof. The proof is similar to Lemma 21 in [LV21]; we include it for completeness. First, we note
that sparses updates on x and s do not directly translate to sparse update on M. Recall the defini-
tion of δµ:

δµ(t,x, s)i
def
= −α · sinh(λγ(t,x, s)i)

∥ cosh(λγ(t,x, s))∥2
· µi(t,x, s),

where we rescale by α/∥ cosh(λγ(t,x, s))∥2 to make sure its norm is bounded by α. We can decou-

ple δµ by let δµ = h · δ̂µ where h = −α/∥ cosh(λγ(t,x, s))∥2 and δ̂µ(t,x, s)i
def
= sinh(λγ(t,x, s)i) ·

µi(t,x, s).
Moreover, we note that by plugging v = hu in Lemma 3.4, we get[

M hu
0 −1

]−1

=

[
M−1 hM−1u
0 −1

]
.

Then, we define M̂ by

M̂(t,x, s)
def
=


∇2ϕ(x) I/t 0 δ̂µ(t,x, s)

A 0 0 0
0 I A⊤ 0
0 0 0 −1

 .

Then, it suffices to show that we can maintain M̂ under sparse changes of blocks. Since the total di-
mension of the updating blocks can be bounded by k, then we have M̂(t,x, s)−M̂(t,x(prev), s(prev))

lives in a (k+1)×(k+1) submatrix. For simplicity of notation, we denote M0 = M̂(t,x(prev), s(prev))

and M1 = M̂(t,x, s).
Hence, we can rewrite

M1 = M0 +UCV,

where U ∈ Rn×k+1 is k + 1 column of identity matrix, V is k + 1 row of identity matrix, and C is
a (k + 1)× (k + 1) matrix.

Using Sherman-Morrison-Woodbury identity (Lemma 5.5), we have

(M1)
−1 = M−1

0 −M−1
0 U

(
C−1 +VM−1

0 U
)−1

VM−1
0 .

Since U and V are just submatrices of the identity matrix, we can directly read M−1
0 U,VM−1

0 U,VM−1
0

from M−1
0 . Hence, computing

(
C−1 +VM−1

0 U
)−1 takes O(T (k, k, k)) time. The rest of the for-

mula we can compute in O(T (n, k, n)) time. The total time is O(T (n, k, n)).
To compute M−1

1 v, we note that

(M1)
−1v = M−1

0 v −M−1
0 U

(
C−1 +VM−1

0 U
)−1

VM−1
0 v.

We can compute the formula above in O(T (k, k, k) + nk) time since M−1
0 v is given.
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5.3 Proof of Theorem 5.1

Proof. The correctness of the algorithm directly follows by Lemma 3.3.
Now, we prove the run time. Since t is decreasing by a multiplicative factor 1 − 1√

r log(r)
, the

total number of iterations is Õ(
√
r log(tstart/tend)), and the data structure restarts every O(

√
r)

iterations.
By our choice of β = ε̄/2 and δ = ε̄ and Theorem 5.2, the data structure at most updates

O(22ℓk log2 n) blocks, where ℓk is largest integer ℓ with k mod 2ℓ = 0. Thus the run time for the
data structure approxSolution can be bounded by Õ(nω log(tstart/tend)).

Cost of updating v: We update u every 2ℓ∗ steps; hence we can ignore the case where 22ℓ∗ = 1.
By guarantee of Theorem 5.2, the total number of blocks updated can be bound by

q =

ℓ∗−1∑
ℓ=0

2ℓ∗

2ℓ
· (22ℓ log2 n) = O(22ℓ∗ log2 n).

Then, we can bound the total dimension of these blocks by d̄ = min(nα, nr−1/3) · O(log2 n).
Using Theorem 5.8, we can update v in time Õ(d̄ω + nd̄). Note that for any d < nα, we have

dω < d3−α < d · d2−α < d · (nα)2−α ≤ dn,

where we used ω ≤ 3− 1
2ωα ≤ 3−α in Lemma 5.7. Hence, we can bound the cost for each update

by Õ(nd̄) = Õ(n2r−1/3). Then, the total cost for updating v is Õ(n2r1/6 log(tstart/tend)).

Cost of updating T and u: We note the data structure restarts every O(
√
r) many steps. Here,

we calculate the total cost for updating T during O(
√
r) steps:

Õ

log(
√
r)∑

ℓ=ℓ∗

√
r

2ℓ
T (n, 22ℓn/r, n)

 = Õ(nω +
√
r2−ℓ∗T (n, d̄, n))

= Õ(nω) + Õ(
√
r2−ℓ∗) · Õ(n2+o(1) + nω−ω−2

1−α
+o(1)d̄

ω−2
1−α ),

where the first step follows by the fact that T (n, x, n) is a convex function for x, so the largest term
of the sum must be either the first or last one, and the second step follows by Lemma 5.6.

Now, we bound the cases r ≤ n1−α and r > n1−α separately.
For the case where r ≤ n1−α, we have 22ℓ∗ = min{r2/3,max(1, r · nα−1)} = 1. Then, d̄ = n/r,

and

Õ(
√
r2−ℓ∗) · Õ(n2+o(1) + nω−ω−2

1−α
+o(1)d̄

ω−2
1−α ) = Õ(

√
r · n2+o(1) + nω+o(1)r0.5−

ω−2
1−α )

= Õ(n2.5−α/2+o(1)),

where the second step follows by r ≤ n1−α.
For the case where r > n1−α, we have min{r2/3,max(1, r · nα−1)} = min{r2/3, r · nα−1}. Then,

Õ(
√
r2−ℓ∗) · Õ(n2+o(1) + nω−ω−2

1−α
+o(1)d̄

ω−2
1−α ) = Õ(

√
r2−ℓ∗) · Õ(n2+o(1))

= Õ(n2.5−α/2+o(1) + n2+o(1)r1/6),

where the first step follows by d̄ < nα, and the second step follows by the our choice of ℓ∗.
Hence, we can bound the cost of updating T and u for O(

√
r) steps by Õ(nω + n2.5−α/2+o(1) +

n2+o(1)r1/6).
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Cost of restarting: We note that the data structure restarts for every O(
√
r) many steps. During

each restart, we need to compute M(t,x, s)−1, which takes O(nω) time.

6 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. We first invoke Theorem 4.1 to reduce the maximum dimension of the cones
to be n/r, then we use Lemma B.1 with δ = ε

10nR2 to reduce the SOCP into the convex problem with
known initial feasible point x, s with t = 1. We note that this requires that xc = argminx

∑
i ϕi(xi).

Since the barrier function ϕi is given explicitly as

ϕi(xi)
def
= − log(xi,◁)− log(x2

i,◁ − ∥xi,▷∥22)− log(R− xi,◁),

the problem has the closed-form solution xc,i = (3R/4,0) for all i. We note that each ϕi is a
4-self-concordant barrier, and the gradient and hessian of ϕi can be computed in O(n2

i ) time.
Since we have ∥s+∇ϕ(x)∥∗x ≤ δ, we have γi ≤ 1

n . Hence we have Φ(t,x, s) =
∑r

i=1 cosh(λ/(10n)) ≤
cosh(λ/128). Then, we can use Theorem 5.1, we get x

c⊤x ≤ min
Ax=b,xi∈Ki for all i∈[r]

c⊤x+ 4νtend.

By our choice of tend = 1
4δ2n

, we have

c⊤x ≤ min
Ax=b,xi∈Ki for all i∈[r]

c⊤x+ δ2.

We finish the proof by invoking Lemma B.1 with δ = ε
10nR2 and Lemma 4.2 with δ = ε

2R .

Proof of Theorem 1.3. Since ∇2ϕi(xi) can be computed in O(nω
i ) time, then we can find xc using

Newton’s Method in time

Õ(r · (n/r)ω log(R/ε)) = Õ(nω log(R/ε)).

Then, it directly follows by Lemma B.1 and Theorem 5.1 with choosing δ = ε
10nR2 .

7 Building and Testing a SOCP Solver

We implemented our theoretical results in practice by building a SOCP solver in MATLAB. Through
empirical tests, we found that in practice, our algorithm has O(n1.82) time complexity, which is
faster than the worst case theoretical bound of O∗(nω).

7.1 Generating a Dataset of SOCP Problems and Solutions

To evaluate our implementation of the algorithm over a comprehensive range of problem sce-
narios, we created a dataset of SOCP problems and solutions. We first randomly generated the
constraint sizes. For each value of r from 6 to 75 and k from 6 to 20, we set ni = rand · k and
m = rand · n for each i ∈ [r], where k is a parameter used to generate the cone sizes and rand
is a random scalar in the interval (0, 1). Then, we randomly generated the values in A ∈ Rm×n,
b ∈ Rm, and c ∈ Rn accordingly. We then filtered out invalid SOCPs by running them through
MATLAB’s built-in SOCP solver, coneprog, repeating this process until 10 valid SOCP problems
are generated for each combination of r and k. We created a total of 10,500 SOCP problems, and
we have made this dataset of problems available to future researchers.
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7.2 Algorithm Testing Results

To evaluate the performance of the algorithm, we tested it on the dataset we created. This dataset
contained SOCP problems with n up to about 500, and the results showed that our algorithm
successfully and efficiently converged to a solution for a wide range of n.

Figure 7.1 shows graphs of the run time of the algorithm with respect to n, where the run time
is computed as the time it takes to reach within 0.001 of the optimal solution. For consistency, the
parameter k, which is used to scale the cone sizes, is set to 10.

(a) Log-Log Plot. An upper bound line for the run
time is drawn.

(b) Linear Plot. An upper bound curve for the run
time is drawn.

Figure 7.1: Run time vs. Total Dimension of the SOCP

The log-log plot in Figure 7.1a is approximately linear, indicating that the time complexity of
the algorithm is polynomial in n. The upper bound line has slope 1.82, which means the in-practice
run time of the algorithm is bounded by O(n1.82).

In 7.1b, the points lie below a O(n1.82) curve. As n increases, the run time becomes increasingly
scattered, with some SOCP instances converging much faster than O(n1.82). For these cases, it is
likely that the initial point in the IPM derived using B.1, which serves as an initial guess of the
optimal solution, was close to the minimum point.

8 Applications

Building on the theoretical foundations of this research, we have extended its results to several
applications and demonstrated significant improvements in solving problems in these areas.

8.1 Portfolio Optimization

Since Markowitz’s invention of the minimum variance portfolio model, SOCPs have been widely
used to solve a variety of financial portfolio optimization problems, such as risk parity portfolios,
maximum diversification portfolios, liquidity-constrained portfolios, etc. The original Markowitz
minimum variance portfolio finds a portfolio that meets a given desired level of return rmin and
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has the lowest variance possible. Its standard formulation is as follows [Ahm21]:

min
x∈Rn

x⊤Σx

s.t. x⊤µ ≥ rmin, x ≥ 0, and
n∑

i=1

xi = 1

where µ ∈ Rn is the estimated mean return and Σ is the estimated covariance of return. This
is a QP problem, and it can solved by a SOCP solver. As the investment market requires more
and more sophisticated portfolios that consider various types of risk constraints, for example, the
value at risk constraints, the diversification constraints, etc., the resulting SOCP usually contains
a large number of second-order cones. This represents an ideal opportunity for our algorithm to
outperform the classical IPM by O(

√
r) times.

8.2 Support Vector Machines

Support Vector Machines (SVMs) are a versatile class of machine learning algorithms with wide
applications. Its solid theoretical foundation makes it a model of choice for solving medium-
sized machine learning problems even after deep learning models became popular. Given training
samples xi ∈ Rn, i = 1, . . . , l, and class indicators yi ∈ {−1, 1}, a C-support vector classifier (also
called soft-margin SVM) is represented by its dual quadratic programming problem:

min
ω,b,ξ
∥ω∥2 + C

l∑
i=1

ξi

s.t. yi(ω
⊤ϕ(xi) + b) ≥ 1− ξi, and ξi ≥ 0, i = 1, . . . , l

where C is a penalty parameter, and ϕ(xi) is a nonlinear mapping of xi in a high-dimensional
space. Its dual is a convex quadratic programming problem:

min
αi

1

2
α⊤Qα−

l∑
i=1

αi

s.t.

l∑
i=1

yiαi = 0, and 0 ≤ αi ≤ C, i = 1, . . . , l

where each αi is a Lagrange multiplier, α = [α1, . . . ,αl]
⊤, Q is a positive semi-definite matrix,

Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ ⟨ϕ(xi) · ϕ(xj)⟩ is the inner product kernel. The input data xi
corresponding to non-zero αi are called support vectors.

The above is an SVM in its simplest form. Real-world problems often require more complex
and robust models to deal with noises in data and to avoid overfitting. By reformulating a SVM
as a SOCP and applying our algorithm, the efficiency can be improved.

8.3 AC Optimal Power Flow

AC optimal power flow (ACOPF) is a fundamental tool for decision-making in electric power
system analysis with applications in power system planning, operational planning, control, elec-
tricity exchange markets, etc. In [YCMS18], it is shown that ACOPF can be formulated as a
SOCP with a single (g + 1)-dimension cone, and n 4-dimensional cones, where g is the number of
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power generators and n is the number of transmission lines, easily reaching 100 or 1000. With our
dimension reduction techniques, the single large cone is easily decomposed into a collection of
low-dimensional cones. Thus, our algorithm outperforms the classical IPM by a factor of O(

√
n).

9 Conclusion

Our work presents a significant advancement in second-order cone programming. Achieving
O∗(nω) time complexity, our algorithm is more efficient than the previous fastest solution by a
factor of O∗(

√
r), and it matches the time complexity of solving the linear sub-problem Ax = b.

Our novel approach to decompose large constraints into smaller ones not only is crucial to reduce
run time for SOCP but also is an academically significant contribution that can be applied to other
kinds of conic programming. Additionally, we developed and tested a SOCP solver software,
laying the groundwork for researchers to build upon theoretical advancements. The new solu-
tion shows significant performance improvement across a variety of domains, such as machine
learning, operations research, energy, transportation, and finance.
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A Proof of Theorem 4.3

First, we state the main result of [LSZ19].

Theorem A.1 ([LSZ19, Theorem C.3]). Consider a convex problem minAx=b,x∈
∏r

i=1 Ki
c⊤x where A ∈

Rm×n and Ki’s are compact convex set lives in constant dimension. Define the following parameters:

1. Radius R: Assume ∥A∥F ≤ R, and ∥b∥2 ≤ R and any feasible solution x satisfies ∥x∥2 ≤ R.

2. Lipschitz constant of the program: ∥c∥2 ≤ L.

There is an algorithm outputs a vector x ∈
∏m

i=1Ki such that

c⊤x ≤ min
Ax=b,x∈

∏r
i=1 Ki

c⊤x+ εL,

∥Ax− b∥1 ≤ ϵ

in expected time

Õ

((
nω + n2.5−α/2+o(1) + n2+1/6+o(1)

)
· log

(
R

ϵ

))
.

Now, we are ready to prove the theorem.

Proof of Theorem 4.3. We first call Theorem 4.1 with d = 100 to break all the large cone constraints
into constant size. We denote the modified SOCP as minAx=b,x∈L⟨c,x⟩. We note that the Theo-
rem A.1 requires each Ki to be compact, it suffices to add an inequality constraint xi,◁ ≤ 2R to
make the set compact.

Then, we run the algorithm in Theorem A.1 with ε′ = ε/(10R) on minAx=b,x∈L c⊤x. The
runtime directly follows by the runtime of Theorem A.1.

We complete the proof by using Lemma 4.2 to show x recovered have ε relative accuracy.

B Initial Point Reduction

The RIPM requires an initial feasible point (x(0)), s(0)) close to the central path as input. We use
the reduction from [LSZ19].

Lemma B.1. Consider the convex program

min
Ax=b,xi∈Ki for all i∈[r]

c⊤x,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Given νi-self-concordant barrier ϕi for each Ki, and xc =
argminx

∑
i ϕi(xi), define the following parameters:

1. Outer radius R: Assume ∥A∥F ≤ R, and ∥b∥2 ≤ R, and any feasible solution x satisfies ∥x∥2 ≤ R

2. Lipschitz constant L: ∥c∥2 ≤ L.

For any δ > 0, the modified convex program

min
Ax=b,x∈

∏r
i=1 Ki×R+

c⊤x,

where
A = [A | b−Axc], b = b, c = [ δ

LRc | 1]
⊤,

satisfies the following:
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1. x = (xc, 1), s = ( δ
LRc, 1) is a feasible primal dual vector with ∥x +∇ϕ̄(x)∥∗x < δ to the modified

convex program, where ϕ̄(x) =
∑r

i=1 ϕi(xi)− log(xr+1).

2. For any feasible x to the modified convex program and c⊤x ≤ minAx=b,x∈
∏r

i=1 Ki×R+
c⊤x+δ2, the

vector x = x1:r is an approximate solution to the original convex program in the following sense:

c⊤x ≤ min
Ax=b,xi∈Ki for all i∈[r]

+LR · δ,

∥Ax− b∥1 ≤ 3δ(R∥A∥1 + ∥b∥1),
xi ∈ Ki for all i ∈ [r].
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