SCARLET: Serverless Container Autoscaling with Reinforcement Learning
Environments

Alan Song* Nikita Lazarev’

Abstract—Serverless computing is a paradigm of
cloud computing that allows users to avoid challenging
server management and overprovisioning of resources.
In the serverless model, users submit functions to cloud
providers (e.g. Google or Amazon), who deploy and ex-
ecute instances of these workloads in short-lived con-
tainers before returning the output to the user. Cloud
providers are thus responsible for managing comput-
ing resources such that (1) user-provider agreements
on quality of service objectives are met, and (2) re-
sources (i.e. containers) are neither over- nor under-
provisioned. Current serverless systems in production
address resource management with naive autoscalers
that provide heuristic solutions at best. Recent re-
search has shown that using reinforcement learning
(RL) for serverless resource management is promis-
ing; however, the implementation of RL-based au-
toscalers in production-grade environments like Ku-
bernetes and the evaluation of these autoscalers us-
ing realistic serverless benchmarks have been lim-
ited. We present SCARLET, a framework for RL-
based autoscaling in Kubernetes clusters. In our de-
sign, users only need to provide standard Kubernetes
YAML manifests and service-level agreement (SLA)
configurations for each function. SCARLET also al-
lows developers to experiment with any RL agent im-
plemented with adherence to the standard OpenAl
Gym API Finally, we use SCARLET to implement
a Deep Q-Learning model. Our evaluation demon-
strates that, through implementation via SCARLET,
the model satisfies quality-of-service constraints for
multiple functions running concurrently.

1 Introduction

Motivation. Serverless computing is an emerging
paradigm of cloud computing that offers two key advan-
tages over the standard cloud execution model [2, 16].
First, the responsibilities associated with server manage-
ment are delegated from the user to the cloud provider,
leaving the user free to develop software without need-
ing to deal with complex infrastructure management.
Second, serverless offers a pay-per-use payment scheme
where users are charged per function invocation rather

*Wellesley High School
TMassachusetts Institute of Technology

Varun Gohil® Yueying Li'

than per machine, allowing users to pay only for appli-
cations that are actually running, rather than for the up-
time of machines that may be idle. Large commercial
cloud providers like Amazon, Microsoft, and Google are
already offering FaaS platforms such as AWS Lambda,
Azure Functions, and Google Cloud Functions, respec-
tively.

Challenges. Despite its advantages, serverless comes with
certain challenges and overheads. At present, one of the
greatest challenges faced by serverless is fine-grained re-
source management to accommodate varying and unpre-
dictable workloads, as cloud providers aim to allocate
more containers to heavier workloads and to tear them
down when they are no longer needed [22]. Current com-
mercial and open-source serverless systems [8,13,21] use
heuristic autoscalers to allocate resources; however, these
automata require the manual tuning of myriad parameters
and configurations, which is both complex and inexact.
Recently, the use of reinforcement learning (RL) for re-
source management has become an active area in systems
research. Unlike static rule-based autoscalers, an RL-
based autoscaler dynamically adapts its policy through
repeated interaction with the environment, allowing it to
learn optimal scaling configurations for unfamiliar work-
loads. Still, the challenge of implementing and evaluating
RL-based scalers in production-grade serverless environ-
ments remains.

Our work. We present SCARLET, a framework for
RL-based resource management via horizontal scaling in
Kubernetes-based environments. SCARLET’s design in-
corporates API layers between the RL learner and the
serverless environment to translate the RL learner’s de-
cisions into scaling actions in the environment, while also
collecting real-time resource utilization and performance
metrics that are used to train the learner online. SCAR-
LET allows for running concurrent workloads and allows
RL pipeline developers to easily evaluate other RL al-
gorithms for resource management in the environment.
The serverless environment is implemented as a cluster
deployment of Kubernetes. The API layers are imple-
mented using Python code and use the Kubernetes API
[6], Prometheus metrics monitoring [11], and vSwarm’s
Invoker [14] to interact with and sample metrics from the
environment. To evaluate SCARLET, we use PyTorch
[12] to implement an RL agent using the Deep Q-Learning
algorithm with experience replay, and we run vSwarm’s
open-source benchmarks concurrently and set quality-of-

service constraints for each one. Our experimental results
show that the model implemented in SCARLET meets
quality-of-service constraints for all concurrently running
serverless benchmarks.

Contributions. In summary, our main contributions are:

* SCARLET, a production-grade framework for RL-
based resource management in Kubernetes clusters.

* An implementation of SCARLET using a Deep Q-
Learning model.

* An evaluation of the Deep Q-Learning model us-
ing serverless benchmarks that demonstrates model
convergence and quality-of-service satisfaction when
implemented via SCARLET.

Our work is organized as follows. In Section 2, we pro-
vide background on serverless computing, quality of ser-
vice, and reinforcement learning, as well as an overview
of related work. Section 3 describes our proposed design
of SCARLET. In Section 4, we present details for SCAR-
LET’s implementation. Section 5 describes our evalua-
tion methodology and experimental results. Section 6 dis-
cusses limitations and potential future work. Finally, we
conclude this paper in Section 7.

2 Background & Motivation

2.1 Serverless

In serverless Function-as-a-Service (FaaS) architectures,
myriad responsibilities associated with server manage-
ment are delegated to cloud providers. Users only need to
submit code for their functions, which are deployed and
executed in lightweight and temporary containers along
with all necessary dependencies. Cloud providers can al-
locate either more or fewer resources to each function by
scaling its container instances up or down, respectively.

2.2 Quality of Service

Quality of service (QoS) measures the system’s perfor-
mance from users’ perspectives. QoS for cloud applica-
tions consists of two metrics: latency and throughput.

Latency refers to the response time of requests sent to
the provider, typically measured in milliseconds or mi-
croseconds. In particular, QoS is typically determined us-
ing tail latency, which is the slowest 90™, 951 or 99th
percentile of requests. This is because even if the majority
of requests are executed quickly, large lag spikes caused
by the occasional slow request disrupt QoS for the user.

Throughput is the rate at which requests are completed,
typically measured in Requests Per Second (RPS). By
meeting users’ throughput targets, cloud providers ensure
that users’ requests are executed quickly enough.

To guarantee that QoS constraints are met, users make
Service Level Agreements (SLAs) with providers that es-
tablish specific objectives for latency and throughput: for
instance, serverless users and a cloud provider may agree
that a particular function’s requests must be executed at
a throughput of 500 RPS with the 95™ percentile latency
remaining below 100 ms. Cloud providers must therefore
allocate resources efficiently such that both resource usage
is minimized and SLAs are met.

2.3 Reinforcement Learning

Overview. Reinforcement learning (RL) is an unsuper-
vised learning method in which the model “learns” via ex-
perience acquired through repeated interactions in a trial-
and-error manner. In RL models, an agent observes a state
from an environment and, based on this observation, takes
actions to maximize a numerical reward. The agent relies
on experience and feedback in the form of the reward to
deduce which actions are optimal in a given environment
state.

Formally, at each timestep ¢, the agent observes state
s; € S representing the environment and takes action a; €
A, where S and A are the set of all possible states and the
set of all possible actions, respectively. The agent receives
an instantaneous reward r; as feedback reflecting the de-
sirability of the action, and at timestep ¢ + 1, the environ-
ment transitions to a new state s;11. The training loop is
continued until some termination condition, such as a time
constraint, is met.
Q-Learning. Q-Learning is a model-free RL algorithm
that aims to learn a function Q(s,a) to estimate expected
cumulative reward, called the Q-value, given a (state, ac-
tion) pair. By learning this function, the agent can al-
ways select action « in state s such that Q(s,a) is maxi-
mized. The most basic Q-Learning algorithm uses a struc-
ture called a Q-table to keep track of expected cumulative
reward for (state, action) pairs. At each timestep #, each
entry in the Q-table corresponding to the pair (s;,a,) is
updated according to the rule:

O(st,ar) + (1 —a)Q(sr,a;) + afr: +ym§1xQ(s,+1,a)],

where r; is the instantaneous reward computed using the
reward function, and ¢ and 7y are hyperparameters repre-
senting the learning rate and the discount factor, respec-
tively. Q-Learning, however, struggles when the state or
action space is continuous, since the Q-table is only effec-
tive when the agent repeatedly observes a limited number
of states. In the serverless resource management problem,
the state space includes continuous variables such as re-
source utilization and target throughput values, so we em-
ploy a variant of Q-Learning called Deep Q-Learning to
address this.

Deep Q-Learning. In Deep Q-Learning, the Q-table is
approximated by a deep neural network called a Deep Q-
Network (DQN) that effectively mimics the functionality

of the Q-table: mapping (state, action) pairs to a Q-value.
During each timestep ¢, the DQN takes the current state s,
as input and outputs a Q-value for each action in the action
space. The learner can then select the action correspond-
ing to the highest Q-value. Over many training iterations,
the DQN adjusts its weights to form a mapping that ap-
proximates the function Q(s,a).

In order to do this, two copies of the DQN are used: a
target network and a policy network. The target network
is updated with a soft update (i.e. less dynamically) and
outputs Q-values that are used as targets for the policy
network: at each timestep, the weights of the policy net-
work are adjusted to minimize the Temporal Difference
(TD) error, i.e. the difference between its Q-values and
the target network’s Q-values. As TD error is minimized,
the model’s training will stabilize and converge, since
both dynamic and soft updates to the DQN will have
minimal impact on the model’s learned behavior.
Experience Replay. Even though the use of neural
networks allows for learning in a continuous state space,
neural networks are data-hungry: many experiences (i.e.
state, action, reward tuples) are needed to effectively train
them. Large quantities of open-source serverless data
from production are not widely available, so the networks
must be trained using collected experience; however, each
of the agent’s interactions with the environment incurs a
significant temporal cost—at each timestep, time is spent
creating and terminating containers, running functions,
and, occasionally, cleaning up crashed containers.

To address these challenges, we use experience replay,
a technique in which the model trains using experiences
randomly sampled from past experiences collected in a
replay buffer. By storing experiences and reusing them,
data efficiency is significantly improved. In addition,
the model is trained with randomly sampled batches of
prior experience instead of relying on the model’s most
recent experience at each timestep, removing temporal
correlations in consecutive experiences that can lead to
unstable training and slow convergence.

2.4 Related Work

To the best of our knowledge, there are no open-source
frameworks for reinforcement learning-based autoscaling
in production-grade serverless environments. As an im-
provement over prior work, SCARLET (1) is integrated
and evaluated with a production-grade system and real
serverless benchmarks, (2) allows for a continuous state
space to more precisely capture differences in resource uti-
lization, and (3) follows the standard RL API advocated
by OpenAl, allowing for adaptability to a variety of RL
models. These differences are summarized in Table 1.

Rule-based Autoscaling. Serverless platforms currently
in production manage resources using rule-based au-
toscalers [1,4,7]. These automata read metrics such as
CPU and memory utilization and scale up or down to keep

resource utilization within pre-defined, fixed limits. Since
workloads vary greatly with respect to expected resource
usage, different limits must be manually defined for differ-
ent serverless functions. For instance, if a rule-based au-
toscaler encounters an unfamiliar workload, resources will
be either overprovisioned or underprovisioned to the new
workload. Defining accurate rules for individual work-
loads, however, can be both time-consuming and challeng-
ing, often demanding significant technical expertise.
RL-driven Autoscaling. To address the inflexibility of
rule-based autoscalers, many recent works in resource
management have used reinforcement learning to auto-
matically allocate resources.

Schuler et al. [20] use Q-Learning for horizontal scal-
ing in the Kubernetes-based Knative serverless platform.
They propose a model in which the agent observes an en-
vironment state consisting of three features: the system’s
concurrency limit, the average CPU utilization per user-
container, and the average memory utilization per user-
container. The agent then chooses between the actions
of increasing, decreasing, or maintaining the concurrency
limit, after which it receives an immediate reward based
on the ratio between the measured throughput resulting
from the action and an artificial reference value defined
by the best throughput value obtained to date. Although
they demonstrate the viability of an RL-based approach
to optimizing Knative configurations, they discretize the
continuous state variables using binning, which limits the
precision of the agent’s observations. Also, they evaluate
their model using a synthetic workload, rather than with
production-grade serverless benchmarks.

Agarwal et al. [15] explore the possibility of using
model free Q-Learning to reduce cold starts by learning
function invocation patterns for a specific workload, thus
determining in advance the optimal number of function
instances. The researchers in this work define the state of
the agent’s environment as a combination of the number of
function instances available and per-instance CPU utiliza-
tion of the function. The agent’s action space consists of
either scaling up or scaling down the number of instances
without scaling to 0 or exceeding a given upper bound.
The immediate reward is determined by a weighted sum of
CPU utilization, function instance count, and request suc-
cess or failure rate during the observed time span. Like
in [20], the authors use binning, and their evaluation is
limited to the use of a simulated workload rather than of
real serverless benchmarks.

Variations on RL-driven Autoscaling. Qiu er al. [18]
propose SIMPPO, an online learning framework that uses
multi-agent reinforcement learning to manage resources
in multi-tenant serverless FaaS platforms, i.e. platforms
in which resources are shared by multiple users. In their
work, the researchers suggest using multiple agents in a
shared environment, each with its own Proximal Policy
Optimization (PPO)-trained policy, and each managing its
own function. During training, other agents are treated as

Category [4] [20] [15] [18] [19] SCARLET
Serverless Benchmarks v v X v X v
Kubernetes v X v X v v
RL X v v v v v
Continuous State Space | - X X v v v
Follows RL API - X X X v v
Table 1: Comparison of Related Works
State Space S

o)

Configs (functions,
throughput targets,
SLA latencies)

RL Environment
(Kubernetes)

Client APT
Deploy
functions

Environment metrics
& latencies

Scaling actions &

function invocation

Throughput targets,
SLA latencies

Actuator API

Environment metrics
& latencies

Actions

Replay Buffer Experience
Replay
o Actions
—_—
RL Agent

State, Reward

Environment

Controller o

Figure 1: Overview of SCARLET system design.

part of the environment, and reward is calculated as the
average of all agents’ rewards, which the authors justify
using mean-field theory. The work achieves a significant
improvement over single-agent reinforcement learning in
multi-tenant cases with reasonable resource overhead.
Finally, AWARE integrates RL in a Kubernetes envi-
ronment for microservice resource management [19]. It
is compatible with different types of RL models thanks
to its following of the OpenAl standard API; however, it
is designed for and evaluated with microservices rather
than with serverless benchmarks. In contrast, we design
SCARLET specifically for serverless workloads.

3 System Design

3.1 Overview

We now discuss the design of SCARLET. First, we present
our choices for the state space, action space, and reward
function. Then, we describe the four core components of
our design: the RL Environment, the Actuator API, the En-
vironment Controller, and the RL Agent. In addition, we
include a Client API to parse users’ workload configura-
tions, as well as a Replay Buffer to facilitate experience
replay for the RL Agent. The system allows users to run
workloads easily by submitting a JSON configuration file
consisting of the workload functions, as well as each func-
tion’s throughput target and SLA latencies, following the
definition template. The configurations are then passed
into the Client API, which deploys the functions and trig-
gers the RL Agent to begin learning. A complete overview
of the system’s design is depicted in Figure 1.

Number of Containers, Resource Utilization
(CPU, Memory, Network), Target Throughputs
Action Space A
For each function, increase the
number of containers by -1, 0, or 1
Reward Function r;
if SLA violation, r, = —1,

. 0.4
1 Tail Latency
elser, =1 (Mean (7SLA))

Table 2: RL-based autoscaling characterization.

3.2 Autoscaling with RL

Instead of relying on rule-based heuristics, an RL-based
autoscaler learns to make scaling decisions directly from
the characteristics of specific workloads and the state of
its operating environment. The scaler’s RL agent inter-
prets the environment by reading key metrics, including
the current number of containers, resource utilization val-
ues, and the target throughput values for each of the func-
tions. Based on these conditions, the agent makes a deci-
sion on whether an increase, a decrease, or no change in
the number of containers is needed. Once it selects and
executes an action, the functions are invoked with the new
scaling configurations, and the resulting tail latency val-
ues are collected. If any of these values exceeds the SLA
value, the agent is heavily punished. Otherwise, the agent
receives a reward based on the mean ratio between the
measured latency and the SLA latency across of all the
functions, with ratios closer to O yielding higher reward
and ratios closer to 1 yielding lower reward. Thus, the
lower the measured tail latency values relative to their re-
spective SLA values, the higher the reward received by the
agent. Table 2 summarizes the model’s state space, action
space, and reward function.

3.3 RL Environment

The RL Environment (denoted by o in Figure 1) con-
sists of a Kubernetes cluster deployment. Kubernetes is a
production-grade cloud platform used widely in industry,
so we use it to run the autoscaler in a realistic production
cloud environment.

3.4 Actuator API

The Actuator API (denoted by e in Figure 1) is a shim
layer that facilitates interaction between the RL Environ-
ment and the RL learner. To allow the RL Agent to take
actions in the environment, observe its state, and receive
feedback, the Actuator API is designed with three key
functionalities. First, it translates scaling actions received
from the RL Agent via the Environment Controller into
scaling commands that accordingly update the number of
containers in the Kubernetes cluster. Second, it samples
resource utilization metrics from the RL Environment in
real time. Finally, it invokes the user-submitted functions
with the target throughput value for a short duration and
collects the latency values from each invocation. Specific
implementation details will be further discussed in Section
5.

3.5 Environment Controller

The Environment Controller (denoted by e in Figure 1)
is a multipurpose API layer between the RL Agent and the
Actuator API. It acts primarily as an API gateway for the
RL Agent: it unpacks environment metrics returned from
the Actuator API and combines them with other environ-
ment conditions such as the number of containers and the
functions’ throughput targets to form a state vector that
is fed to the RL Agent. Likewise, it aggregates the tail
latency values received from the Actuator API and feeds
them into a reward function to obtain a numerical reward,
which is also returned to the RL Agent. The Environment
Controller also translates the RL. Agent’s scaling actions
into invocations of the Actuator API to interact with the
RL Environment. Lastly, the Environment Controller sup-
ports the stability of the RL Environment by removing and
replacing crashed containers that may potentially bottle-
neck the system while the RL Agent is training.

3.6 RL Agent

The RL Agent (denoted by o in Figure 1) interacts with
the RL Environment through the Environment Controller.
At each timestep, based on a state s; it receives from the
Environment Controller, the RL. Agent makes a scaling de-
cision represented by an N-dimensional vector a, with ele-
ments a; € {—1,0,1}, where N is the number of functions
submitted by the user. The action a; is then fed to the En-
vironment Controller, which eventually returns a reward
r¢ based on the action’s impact on QoS. The learner stores
the tuple (s;,a,,r;) into the Replay Buffer, allowing this
experience to be used for experience replay in the future.
Notably, in SCARLET’s design, the RL Agent can be
easily instantiated using any RL algorithm, provided that
the implementation follows the OpenAl Gym API stan-
dard described in Section 4.3. No matter through which
algorithm the RL Agent learns, our design allows it to
observe a state, take actions, and receive feedback via a

reward. This feature makes SCARLET compatible for
experimentation in serverless resource management using
any RL algorithm, which is highly beneficial for further
research.

4 Implementation

4.1 RL Environment

The RL Environment is automatically set up in a clus-
ter using a Python script. The script installs Kubernetes
onto each of the nodes in the cluster, as well as the
Prometheus Metrics API [11] and vSwarm onto the master
node, which acts as a controller for the cluster.

4.2 System Actuation

To actuate the system, we implement the Actuator API
shim layer using Python code. Specifically, we implement
three functionalities: scaling, real-time metrics collection,
and function invocation.

Horizontal Scaling. We use the open-source Kubernetes
API [6] to perform horizontal scaling in the RL Environ-
ment. The Kubernetes API allows us to run commands to
quickly and reliably deploy, scale, and terminate contain-
ers in the Kubernetes cluster. When the Actuator API re-
ceives a scaling decision from the Environment Controller,
it triggers a Kubernetes API call to obtain the current num-
ber of containers for each function in the RL Environment.
Then, these values are updated according to the scaling
decision: they are either increased by 1, decreased by 1,
or maintained. The new configurations are then passed
through another call to the Kubernetes API that scales the
functions to the updated replica counts. Scaling requests
for separate functions are made in parallel through multi-
processing.

Real-time Metrics Collection. To collect node-level met-
rics such as CPU utilization, memory usage, and net-
work transmission rate that constitute the environment
state, we implement real-time metrics monitoring us-
ing Prometheus, the standard monitoring service for Ku-
bernetes clusters [11]. The Actuator API contains a
sample_env(interval) method that uses Prometheus
service queries to collects each node’s average CPU uti-
lization, available memory, and total network traffic over
the past interval seconds. The metrics are compiled into
a Python dictionary to be unpacked by the Environment
Controller.

Function Invocation. The open-source vSwarm Invoker
[14] is used to invoke functions for specified RPS and
duration via HTTP requests. Prior to each function in-
vocation, a call is made to the Kubernetes API to col-
lect the IP address and port of the containerized func-
tion to be invoked. These parameters, along with the
function’s user-submitted RPS target and a pre-defined
per-timestep invocation duration, are then passed to the

invoke_service() method in the Actuator API, which
makes the appropriate call to the vSwarm Invoker. When
the invocation duration expires, the invoker returns a CSV
file containing the latencies of each request, which is
passed to the Environment Controller. Function invoca-
tion, like scaling, is done in parallel with multiprocessing.

4.3 Integration with RL

We have integrated system actuation with the RL learner
by implementing the Environment Controller API layer
described in Section 3. In the Environment Controller
layer, Python dictionaries containing Prometheus metrics
received from the Actuator API are unpacked, and the re-
sulting metrics are combined with target RPS and the total
number of containers to form the environment state.

The Environment Controller also takes the latency val-
ues from function invocation and uses them to compile
statistics such as the 50™, 90", 95% and 99.91" per-
centile latencies for each function. These statistics are
then passed into the reward function, which computes the
instantaneous reward based on the formula defined in Ta-
ble 2. At the conclusion of each timestep ¢, the environ-
ment state s; 1 and the instantaneous reward r; are com-
puted and are returned to the RL Agent.

Our implementation of the request-response pattern be-
tween the RL Agent and the Environment Controller fol-
lows the OpenAl Gym API model, which has become the
standard for RL implementations [9]. As a result, other
RL algorithms implemented with compliance to the Ope-
nAI Gym API can easily be tested in the RL Environment
by substituting them in for the Deep Q-Learning Agent we
have implemented.

4.4 Deep Q-Learning Agent

We implement a Deep Q-Learning RL Agent (described in
Section 3.5) using PyTorch [12]. The Deep Q-Network is
implemented as a feed-forward network consisting of an
input layer with ny; neurons, two fully-connected hidden
layers with 128 neurons each, and an output layer with ng
neurons, where n, is the dimension of each environment
state, and ny is the size of the action space. The ReLU
activation function is applied to the first and second layers.
Huber loss is used to minimize the TD error (see Section
2), and the Adam optimizer is used for parameter updates.

To balance exploration and exploitation, we use an &-
greedy algorithm. At each timestep, the agent explores
(i.e. takes a random action) with probability € and ex-
ploits (i.e. takes its best known action) with probability
1 —&. We use the e-decay technique to decrease € through-
out training in order to facilitate convergence as the agent
learns the optimal policy.

Servers (5x) ProLiant XL170r Gen9
Processor E5-2640 v4
Architecture x86-64

Memory 65.73 GB

Ethernet NIC Intel E810 10 GbE NIC

Operating system UBUNTU22-64-X86

Table 3: Testbed hardware and software configuration.

Parameter Value
Replay Buffer Size 106
Optimizer Learning Rate ~ 10~*
Discount Factor 0.99
Soft Update Coefficient 0.005

Exploration Factor €(0.9), e-decay(150)

Table 4: Deep Q-Learning hyperparameters.

5 Evaluation

5.1 Experimental Setup

Hardware. We use Cloudlab to remotely provision hard-
ware on which to run our experiments. For our experi-
ments, we use five ProLiant XLL170r Gen9 machines; the
exact hardware specifications are shown in Table 3.
Serverless Benchmarks. To test the model in sce-
narios that are as realistic as possible, we conduct
system evaluation using applications from the vSwarm
Benchmarking Suite [14]. The vSwarm Benchmark-
ing Suite is a collection of ready-to-run serverless
benchmarks, each typically containing a number of in-
terconnected serverless functions. vSwarm includes
benchmarks such as fibonacci-python, online-shop,
and DeathStarBench’s [3] hotel-app, and these func-
tions are designed to be realistic data-intensive work-
loads. Because the benchmarks’ default manifest YAML
files were written for deployment with Knative [5]
rather than for direct Kubernetes cluster deployment,
we modified the benchmarks’ manifests to fit stan-
dards established by the Kubernetes API documenta-
tion [6]. In the model evaluation, we use one in-
stance each of fibonacci-python, hotel-app-geo,
and hotel-app-profile from vSwarm.

Model Hyperparameters. The Deep Q-Learning algo-
rithm features many hyperparameters pertaining to vari-
ous aspects of the algorithm. In our evaluation, we use
the hyperparameters summarized in Table 4. The specific
optimal tuning of these hyperparameters will be subject
future research.

5.2 Results

We show that SCARLET allows a Deep Q-Learning
agent to achieve quality-of-service. We evaluated the
agent in SCARLET using the aforementioned implemen-
tation and experimental setup. Figure 2 shows the 90"

90th Percentile Latency for fibonacci-python, hotel-app-geo, and hotel-app-profile

4e+6

3e+6

2e+6

entile latency (ms)

le+6

T\'mestep’

0 10 20 30 40

Figure 2: Tail latency from Deep Q-Learning experiment.

N

Timestep

Reward

Reward

0.5

0 10 20 30 40

Figure 3: Reward from Deep Q-Learning experiment.

percentile tail latency for fibonacci-python (orange),
hotel-app-geo (blue), and hotel-app-profile (red)
over each of the learner’s training iterations. The instanta-
neous reward computed at each step is also plotted and is
shown in Figure 3. Notably, the reward begins converging
at around the ¢t = 6th iteration. The performance suffers
a sudden degradation in a later timestep, likely due to a
poor exploration decision, before converging again. Ac-
cordingly, latencies beyond the ¢ = 30th timestep are min-
imized, demonstrating that quality-of-service is achieved
and showing that the agent has learned an optimal scaling
configuration for this set of functions.

6 Discussion & Future Work

6.1 Offline Learning

Currently, the RL agent faces a training overhead when
it is initially exploring the environment and still learn-
ing, which leads to subpar performance. One solution
is to rely on the rule-based autoscaler until the RL agent
has accumulated sufficient experience to make good de-
cisions. [19] During this initial phase, the rule-based au-
toscaler would make scaling decisions in the serverless en-
vironment (online); meanwhile, the RL Agent will train its
policy offline by sampling data collected by the rule-based
scaler. Eventually, the RL Agent’s performance will equal
or surpass that of the rule-based scaler, at which point the
RL Agent would be deployed for online learning directly
in the serverless environment, as it is in the current imple-
mentation.

6.2 Multi-Tenancy

SCARLET’s design accounts for the presence of multiple
functions running simultaneously in the serverless envi-
ronment, and the agent learns to scale optimally in these
multi-tenant situations. However, one of SCARLET’s lim-
itations is that the total number of functions running in the
serverless environment is predetermined and fixed, which
limits its flexibility. Also, because the action space con-
sists of all possible combinations of actions for each indi-
vidual function, its size grows exponentially with respect
to the number of functions present. To make SCARLET
more comprehensive and adaptive to dynamic situations, a
multi-agent design could be used. In a multi-agent RL sys-
tem, each function would have its own agent, so changes
in the number of functions running would be addressed by
the assignment of either more or fewer agents.

6.3 Chained Functions

Some workloads, such as vSwarm’s video-analytics
benchmark, involve chained functions that are dependent
on one another. SCARLET’s current design does not ac-
count for chained functions. This is because each function
in the chain has its own optimal scaling configuration with
respect to its dependent functions; however, the RL. Agent
in the current implementation cannot learn to optimize
quality-of-service because it does so by invoking individ-
ual functions separately. In future work, the inter-service
dependencies could potentially be modeled by using criti-
cal service localization, as described in FIRM [17].

7 Conclusion

We design and implement SCARLET, a framework for
serverless resource management in a production-grade
cloud environment using reinforcement learning. SCAR-
LET is open-sourced and is accessible via our project
GitHub [10] and offers compatibility with other RL mod-
els. We use SCARLET to implement a Deep Q-Learning
model and evaluate it using open-source serverless bench-
marks. Our experimental results demonstrate that SCAR-
LET allows the model to converge to an scaling optimal
policy that maintains throughput while also minimizing
tail latency, thereby satisfying quality-of-service.

References

[1] Application auto scaling. https://docs.aws.
amazon.com/autoscaling/.

[2] Cloud native computing foundation serverless
whitepaper. https://github.com/cncf/
wg-serverless/blob/master/whitepapers/
serverless-overview/cncf_serverless_

whitepaper_v1.0.pdf.

https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/autoscaling/
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf

(8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Deathstarbench. https://github.com/
delimitrou/DeathStarBench.

Horizontal pod autoscaler. https://kubernetes.
io/docs/tasks/run-application/
horizontal-pod-autoscale/.

Knative. https://knative.dev/.

The kubernetes api. https://kubernetes.io/
docs/concepts/overview/kubernetes-api/.

Load balancing and scaling.
//cloud.google.com/compute/docs/
load-balancing-and-autoscaling.

https:

Open source serverless cloud platform. https://
openwhisk.apache.org/.

Openai gym. https://www.gymlibrary.dev/.

Project github repo. https://github.com/
barabanshek/MIT_PRIMEs/tree/main.

Prometheus - monitoring system & time series
database. https://prometheus.io/.

Pytorch. https://pytorch.org/.

Serverless functions, made simple. https://www.
openfaas.com/.

vswarm - serverless benchmarking suite. https://
github.com/vhive-serverless/vSwarm.

AGARWAL, S., RODRIGUEZ, M. A., AND BUYYA,
R. A reinforcement learning approach to reduce
serverless function cold start frequency. In 2021
IEEE/ACM 21st International Symposium on Clus-
ter, Cloud and Internet Computing (CCGrid) (2021),
pp- 797-803.

JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V.,
TsAI, C., KHANDELWAL, A., PU, Q., SHANKAR,
V., CARREIRA, J., KRAUTH, K., YADWADKAR,
N. J., GONZALEZ, J. E., POPA, R. A., STOICA,
I., AND PATTERSON, D. A. Cloud programming
simplified: A berkeley view on serverless comput-
ing. CoRR abs/1902.03383 (2019).

Qiu, H., BANERJEE, S. S., JHA, S., KALBAR-
CZYK, Z. T., AND IYER, R. K. FIRM: An intel-
ligent fine-grained resource management framework
for SLO-Oriented microservices. In I4th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 20) (Nov. 2020), USENIX As-
sociation, pp. 805-825.

Qiu, H., Mao, W., PATKE, A., WANG, C.,
FRANKE, H., KALBARCZYK, Z. T., BASAR, T.,

(19]

(20]

(21]

(22]

AND IYER, R. K. Simppo: A scalable and incre-
mental online learning framework for serverless re-
source management. In Proceedings of the 13th Sym-
posium on Cloud Computing (New York, NY, USA,
2022), SoCC ’22, Association for Computing Ma-
chinery, p. 306-322.

Qru, H., MAo, W., WANG, C., FRANKE, H.,
KALBARCZYK, Z. T., BASAR, T., AND IYER,
R. K. AWARE: Automate workload autoscaling
with reinforcement learning in production cloud sys-
tems. In 2023 USENIX Annual Technical Confer-
ence (USENIX ATC 23) (Boston, MA, July 2023),
USENIX Association, pp. 1-17.

SCHULER, L., JAMIL, S., AND KUHL, N. Ai-
based resource allocation: Reinforcement learning
for adaptive auto-scaling in serverless environments.
In 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid)
(2021), pp. 804-811.

Ustiugov, D., PETROV, P., KoGIAS, M.,
BUGNION, E., AND GROT, B. Benchmarking, anal-
ysis, and optimization of serverless function snap-
shots. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New
York, NY, USA, 2021), ASPLOS ’21, Association
for Computing Machinery, p. 559-572.

Yu, T, Liu, Q., Du, D, XIA, Y., ZANG, B., LU,
Z., YANG, P., QIN, C., AND CHEN, H. Character-
izing serverless platforms with serverlessbench. In
Proceedings of the 11th ACM Symposium on Cloud
Computing (New York, NY, USA, 2020), SoCC 20,
Association for Computing Machinery, p. 30-44.

https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://knative.dev/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.gymlibrary.dev/
https://github.com/barabanshek/MIT_PRIMEs/tree/main
https://github.com/barabanshek/MIT_PRIMEs/tree/main
https://prometheus.io/
https://pytorch.org/
https://www.openfaas.com/
https://www.openfaas.com/
https://github.com/vhive-serverless/vSwarm
https://github.com/vhive-serverless/vSwarm

	Introduction
	Background & Motivation
	Serverless
	Quality of Service
	Reinforcement Learning
	Related Work

	System Design
	Overview
	Autoscaling with RL
	RL Environment
	Actuator API
	Environment Controller
	RL Agent

	Implementation
	RL Environment
	System Actuation
	Integration with RL
	Deep Q-Learning Agent

	Evaluation
	Experimental Setup
	Results

	Discussion & Future Work
	Offline Learning
	Multi-Tenancy
	Chained Functions

	Conclusion

