Hyperoctahedral Schur Algebra and the Hyperoctahedral Web Algebra

> Razzi Masroor Mentor: Dr. Elijah Bodish

October 15, 2023 MIT PRIMES Conference

Razzi Masroor

Hyperoctahedral Schur Algebra and Hyper W

October 2023

Introduction

Question

What does the hit video game Among Us have to do with my project?

Razzi Masroor

Hyperoctahedral Schur Algebra and Hyper W

Symmetric Group

Definition

The symmetric group of degree n, denoted as S_n , is the set of bijective functions on $\{1, \ldots, n\}$ with function composition as the group operation.

Example (Read Bottom-To-Top)

$$\begin{pmatrix} 2 & 3 & 1 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

Example (Read Bottom-To-Top)

 $\left| \right\rangle = \left| \right\rangle, \qquad \left(X = X \right),$

 $\bigwedge \bigcup = \bigcup \bigwedge.$

Theorem (Coxeter)

$$S_n \cong \left\langle \left\langle s_1, s_2, \ldots, s_{n-1} \middle| \begin{array}{c} s_i^2 = 1 \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \\ s_i s_j = s_j s_i, |i-j| > 1 \end{array} \right\rangle \right\rangle.$$

Key Idea

Coxeter used visual observations to deduce structure.

Remark

It's non-trivial to see that these relations are sufficient.

< (17) > < (17) > <

э

Subgroups of S_n

Definition

We say
$$\lambda = (\lambda_1, \dots, \lambda_d)$$
 is a composition of S_n if $\sum \lambda_i = n$.

Definition

For composition λ , define $S_{\lambda} \subset S_n$ by

$$S_{\lambda} := S_{\lambda_1} \times \cdots \times S_{\lambda_d}.$$

Example (of $S_{\lambda} \subset \overline{S_n}$)

< A > <

∃ →

Double Cosets of S_n

Definition

For subgroups H, K of $G, g \in G$, define a double coset

$$HgK := \{hgk | h \in H, k \in K\} \in H \setminus G/K.$$

Example (of $S_{\mu} \setminus S_n / S_{\lambda}$)

.∃⇒ ⇒

< 1[™] >

Thick String Diagrams

Example

< 47 ▶

æ

∃ →

Definition

$$\mathbb{F}[S_n/S_\lambda] \text{ has basis } \{e_{gS_\lambda} | gS_\lambda \in S_n/S_\lambda\} \text{ and group action } g \cdot e_x = e_{g \cdot x}.$$

Definition

 $\operatorname{Hom}_{S_n}(\mathbb{F}[S_n/S_{\lambda}],\mathbb{F}[S_n/S_{\mu}])$ is the set of linear maps that commute with the S_n -action, namely

$$h(g\cdot x)=g\cdot h(x).$$

Remark

Homomorphisms, with respect to a fixed basis, are matrices.

Definition

The Schur Algebra of degree *n* is $\operatorname{End}_{S_n}(\bigoplus_{\lambda} \mathbb{F}[S_n/S_{\lambda}])$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Remark

A general result tells us there is an isomorphism of vector spaces,

$$\mathbb{F}[K \setminus G/H] \cong \operatorname{Hom}_{G}(\mathbb{F}[G/H], \mathbb{F}[G/K]).$$

Proposition

We have a bijection:

Diagrams from λ to $\mu \leftrightarrow$ Basis of Hom_{*S_n*($\mathbb{F}[S_n/S_{\lambda}], \mathbb{F}[S_n/S_{\mu}]$).}

Goal

Make string diagrams work like homomorphisms.

Definition

The Polynomial Web Algebra is generated by thick string diagrams,

$$\bigwedge_{a} (a,b) \to (a+b), \ \stackrel{a}{\bigvee}^{b} : (a+b) \to (a,b), \ \bigwedge_{a} (a,b) \to (b,a).$$

Question

What relations do the Polynomial Web Algebra need to be like the Schur Algebra?

How do we use structure to deduce visual observations?

Required Relations of the Polynomial Web Algebra

Topological Relations

Double cosets only care about how inputs go to outputs. We expect that diagrams with inputs going to the same outputs will be equal.

Example

Required Relations of the Polynomial Web Algebra

Evaluative Relations

Basic homomorphism compositions (matrix multiplications) should be true.

Remark

$$|S_{a+b}/S_{(a,b)}| = rac{(a+b)!}{a! \cdot b!} = inom{a+b}{a}, \qquad |S_{a+b}/S_{a+b}| = 1.$$

Example

$$\begin{array}{c} a \swarrow b = \begin{pmatrix} a+b \\ a \end{pmatrix} \quad \left| \begin{array}{c} a+b \\ \leftrightarrow \end{array} \right| \left[\begin{array}{c} 1 & 1 \\ 1 \end{array} \right] \cdot \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] = \left[3 \right], \\ \\ b \swarrow c \quad \left[\begin{array}{c} b \\ s \end{array} \right] \left[\begin{array}{c} b \\ s \end{array} \right] \left[\begin{array}{c} c \end{array} \right] \left[\begin{array}{c} c \\ s \end{array} \right] \left[\begin{array}{c} c \end{array} \\\\ s \end{array} \\\\ s \end{array} \\\\ \left[\begin{array}{c} c \end{array} \\\\ s \end{array}$$

Hyperoctahedral Schur Algebra and Hyper W

Polynomial Web Presentation for Schur Algebra

Theorem (Brundan–(Entova–Aizenbud)–Etingof–Ostrik)

The Schur Algebra is isomorphic to the Polynomial Web Algebra with below relations,

Key Idea

All topological relations follow from the above three.

Razzi Masroor

Hyperoctahedral Schur Algebra and Hyper W

October 2023

14 / 23

Research Question

Can we create a Schur Algebra and a Polynomial Web Algebra for another group?

47 ▶

3. 3

Hyperoctahedral Group and Hyperoctahedral Schur Algebra

Definition

The hyperoctahedral group H_n is the subgroup of S_{2n} with a vertical line of symmetry.

Examples (in H_7)

→

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Definition

The Hyperoctahedral Web Algebra is generated by thick string diagrams,

$$\bigwedge_{a} \bigvee_{b} : (a,b,b,a) \to (a+b,a+b), \qquad \bigwedge_{a \ge b} : (a,2b,a) \to (2a+2b),$$

$$\stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow} : (a+b,a+b) \to (a,b,b,a), \qquad \stackrel{a \ge b}{\longrightarrow} : (2a+2b) \to (a,2b,a),$$

$$\bigwedge_{a} \bigvee_{b} : (a,b,b,a) \to (b,a,a,b), \qquad \stackrel{i}{\longrightarrow} : (a,2b,a) \to (a,2b,a).$$

$$t \text{ also has relations....}$$

Hyperoctahedral Web Algebra

Definition (Cont.)

Razzi Masroor

Hyperoctahedral Schur Algebra and Hyper W

Hyperoctahedral Schur Algebra and Hyperoctahedral Web Algebra

Definition

The Hyperoctahedral Schur Algebra of degree *n* is $\operatorname{End}_{H_n}(\bigoplus_{\lambda} \mathbb{F}[H_n/H_{\lambda}])$.

Conjecture

The Hyperoctahedral Schur Algebra and the Hyperoctahedral Web Algebra are isomorphic.

Conjectured Topological Relations

I want to thank the following for making my MIT-PRIMES experience possible.

- My mentor Dr. Elijah Bodish for showing me string diagrams and representation theory.
- The MIT Math Department and all of its resources and faculty for making the MIT-PRIMES program possible.

- P. Etingof, S. Gerovitch, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina: *Introduction to Representation Theory*, American Mathematical Society **113**, (2011).
- J. Brundan, I. Entova-Aizenbud, P. Etingof, V. Ostrik: Semisimplification of the category of tilting modules for GL_n, Advances Math **375**, 2020.