Tensor Product Decompositions for Modules Over Subregular W-algebras

Brian Li

Mission San Jose High School

October 15, 2023

Introduction

Concept of symmetry is very important in mathematics and physics (e.g. gauge theory).

- Mathematically formalized by groups

Instead of a formal definition, we give some examples of groups:
(1) The symmetric group S_{n}, set of all permutations of n elements;

- A bijection of a set onto itself, definition of "symmetry"
- Symmetry group S_{4} is an isometric permutation of vertices for tetrahedron:

(2) The group of invertible matrices GL_{N} over a field F with matrix multiplication.

Introduction

Concept of symmetry is very important in mathematics and physics (e.g. gauge theory).

- Mathematically formalized by groups

Instead of a formal definition, we give some examples of groups:
(1) The symmetric group S_{n}, set of all permutations of n elements;

- A bijection of a set onto itself, definition of "symmetry"
- Symmetry group S_{4} is an isometric permutation of vertices for tetrahedron:

(2) The group of invertible matrices GL_{N} over a field F with matrix multiplication.

Introduction

Concept of symmetry is very important in mathematics and physics (e.g. gauge theory).

- Mathematically formalized by groups

Instead of a formal definition, we give some examples of groups:
(1) The symmetric group S_{n}, set of all permutations of n elements;

- A bijection of a set onto itself, definition of "symmetry"
- Symmetry group S_{4} is an isometric permutation of vertices for tetrahedron:

(2) The group of invertible matrices GL_{N} over a field F with matrix multiplication.

Introduction

Concept of symmetry is very important in mathematics and physics (e.g. gauge theory).

- Mathematically formalized by groups

Instead of a formal definition, we give some examples of groups:
(1) The symmetric group S_{n}, set of all permutations of n elements;

- A bijection of a set onto itself, definition of "symmetry"
- Symmetry group S_{4} is an isometric permutation of vertices for tetrahedron:

(2) The group of invertible matrices GL_{N} over a field F with matrix multiplication.

Introduction

When symmetries are continuous: Lie groups.
For example:

- Rotations of a sphere $\mathrm{SO}(3)$

- Special linear groups SL(2) given by

$$
\operatorname{SL}(2)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\}
$$

Slogan 1: groups are difficult, infinitesimal transformations are easier - Lie algebras.

Introduction

When symmetries are continuous: Lie groups.
For example:

- Rotations of a sphere $\mathrm{SO}(3)$

- Special linear groups SL(2) given by

$$
\operatorname{SL}(2)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\}
$$

Slogan 1: groups are difficult, infinitesimal transformations are easier - Lie algebras.

Introduction

When symmetries are continuous: Lie groups.
For example:

- Rotations of a sphere $\mathrm{SO}(3)$

- Special linear groups SL(2) given by

$$
\mathrm{SL}(2)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\}
$$

Slogan 1: groups are difficult, infinitesimal transformations are easier - Lie algebras.

Introduction

When symmetries are continuous: Lie groups.
For example:

- Rotations of a sphere $\mathrm{SO}(3)$

- Special linear groups SL(2) given by

$$
\mathrm{SL}(2)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\}
$$

Slogan 1: groups are difficult, infinitesimal transformations are easier - Lie algebras.

Introduction

Examples - derivations:

(1) $D_{1}=\frac{d}{d x}$, infinitesimal version of translations by Taylor's formula:

$$
f(x+t)=f(x)+t \cdot d f / d x+O\left(t^{2}\right)
$$

(2) $D_{2}=x \frac{d}{d x}$: infinitesimal version of dilations $f\left(e^{t} x\right)$.

Observe both D_{1}, D_{2} are derivations. However, they do not have an algebra structure:

- $D_{1} \circ D_{2}$ is not a derivation
- But $D_{1} \circ D_{2}-D_{2} \circ D_{1}=\frac{d}{d x}$ is

We denote $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ by $\left[D_{1}, D_{2}\right]$.

Definition

A Lie algebra is a vector space \mathfrak{g} equipped with the skew-symmetric bilinear map
$[-,-]$ satisfying the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, a, b, c \in \mathfrak{g}
$$

Examples:

- The set of derivations D
- $\mathfrak{g l}_{n}$: set of $n \times n$ matrices with commutator $[A, B]:=A \cdot B-B \cdot A$;

Introduction

Examples - derivations:
(1) $D_{1}=\frac{d}{d x}$, infinitesimal version of translations by Taylor's formula:

$$
f(x+t)=f(x)+t \cdot d f / d x+O\left(t^{2}\right)
$$

(2) $D_{2}=x \frac{d}{d x}$: infinitesimal version of dilations $f\left(e^{t} x\right)$.

Observe both D_{1}, D_{2} are derivations. However, they do not have an algebra structure:

- $D_{1} \circ D_{2}$ is not a derivation
- But $D_{1} \circ D_{2}-D_{2} \circ D_{1}=\frac{d}{d x}$ is

We denote $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ by $\left[D_{1}, D_{2}\right]$.

Definition

A Lie algebra is a vector space \mathfrak{g} equipped with the skew-symmetric bilinear map
$[-,-]$ satisfying the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, a, b, c \in \mathfrak{g} .
$$

Examples:

- The set of derivations D
- $\mathfrak{g l}_{n}$: set of $n \times n$ matrices with commutator $[A, B]:=A \cdot B-B \cdot A$;

Introduction

Examples - derivations:
(1) $D_{1}=\frac{d}{d x}$, infinitesimal version of translations by Taylor's formula:

$$
f(x+t)=f(x)+t \cdot d f / d x+O\left(t^{2}\right)
$$

(2) $D_{2}=x \frac{d}{d x}$: infinitesimal version of dilations $f\left(e^{t} x\right)$.

Observe both D_{1}, D_{2} are derivations. However, they do not have an algebra structure:

- $D_{1} \circ D_{2}$ is not a derivation
- But $D_{1} \circ D_{2}-D_{2} \circ D_{1}=\frac{d}{d x}$ is

We denote $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ by $\left[D_{1}, D_{2}\right]$.

Definition

A Lie algebra is a vector space \mathfrak{g} equipped with the skew-symmetric bilinear map
$[-,-]$ satisfying the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, a, b, c \in \mathfrak{g} .
$$

Examples:

- The set of derivations D
- $\mathfrak{g l}_{n}$: set of $n \times n$ matrices with commutator $[A, B]:=A \cdot B-B \cdot A$;

Introduction

Examples - derivations:
(1) $D_{1}=\frac{d}{d x}$, infinitesimal version of translations by Taylor's formula:

$$
f(x+t)=f(x)+t \cdot d f / d x+O\left(t^{2}\right)
$$

(2) $D_{2}=x \frac{d}{d x}$: infinitesimal version of dilations $f\left(e^{t} x\right)$.

Observe both D_{1}, D_{2} are derivations. However, they do not have an algebra structure:

- $D_{1} \circ D_{2}$ is not a derivation
- But $D_{1} \circ D_{2}-D_{2} \circ D_{1}=\frac{d}{d x}$ is

We denote $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ by $\left[D_{1}, D_{2}\right]$.

Definition

A Lie algebra is a vector space \mathfrak{g} equipped with the skew-symmetric bilinear map
$[-,-]$ satisfying the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, a, b, c \in \mathfrak{g}
$$

Examples:

- The set of derivations D
- $\mathfrak{g l}_{n}$: set of $n \times n$ matrices with commutator $[A, B]:=A \cdot B-B \cdot A$;

Introduction

Examples - derivations:
(1) $D_{1}=\frac{d}{d x}$, infinitesimal version of translations by Taylor's formula:

$$
f(x+t)=f(x)+t \cdot d f / d x+O\left(t^{2}\right)
$$

(2) $D_{2}=x \frac{d}{d x}$: infinitesimal version of dilations $f\left(e^{t} x\right)$.

Observe both D_{1}, D_{2} are derivations. However, they do not have an algebra structure:

- $D_{1} \circ D_{2}$ is not a derivation
- But $D_{1} \circ D_{2}-D_{2} \circ D_{1}=\frac{d}{d x}$ is

We denote $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ by $\left[D_{1}, D_{2}\right]$.

Definition

A Lie algebra is a vector space \mathfrak{g} equipped with the skew-symmetric bilinear map
$[-,-]$ satisfying the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, a, b, c \in \mathfrak{g}
$$

Examples:

- The set of derivations D
- $\mathfrak{g l}_{n}$: set of $n \times n$ matrices with commutator $[A, B]:=A \cdot B-B \cdot A$;

Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence: study groups via linear algebra - representation theory. E.g., representations correspond to particles in physics.

Definition

A representation of \mathfrak{g} is a vector space \mathbb{C}^{n} with a map of Lie algebras $\mathfrak{g} \rightarrow \mathfrak{g l}_{n}$.
This map represents each element in g as a matrix.
Examples:

- Tautologically, \mathbb{C}^{n} for $\mathfrak{g l}_{n}$

Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence: study groups via linear algebra - representation theory. E.g., representations correspond to particles in physics.

Definition

A representation of \mathfrak{g} is a vector space \mathbb{C}^{n} with a map of Lie algebras $\mathfrak{g} \rightarrow \mathfrak{g l}_{n}$.
This map represents each element in \mathfrak{g} as a matrix.
Examples:

- Tautologically, \mathbb{C}^{n} for $\mathfrak{g l}_{n}$

Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence: study groups via linear algebra - representation theory. E.g., representations correspond to particles in physics.

Definition

A representation of \mathfrak{g} is a vector space \mathbb{C}^{n} with a map of Lie algebras $\mathfrak{g} \rightarrow \mathfrak{g l}_{n}$.
This map represents each element in \mathfrak{g} as a matrix.
Examples:

- Tautologically, \mathbb{C}^{n} for $\mathfrak{g l}_{n}$

Representations of $\mathfrak{s l}_{2}$

Main object for today: $\mathfrak{s l}_{2}$.

$$
\mathfrak{s l}_{2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+d=0\right\}
$$

Over complex numbers: same as the Lie algebra of $S O(3)$.
For representations, take

$$
E \mapsto\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F \mapsto\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

More abstractly: spanned by E, F, H with relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

How to study representations? Basic building block - irreducibles:

Definition

A representation V is irreducible if it does not contain a non-trivial subrepresentation.

Representations of $\mathfrak{s l}_{2}$

Main object for today: $\mathfrak{s l}_{2}$.

$$
\mathfrak{s l}_{2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+d=0\right\}
$$

Over complex numbers: same as the Lie algebra of $S O$ (3).
For representations, take

$$
E \mapsto\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F \mapsto\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

More abstractly: spanned by E, F, H with relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

How to study representations? Basic building block - irreducibles:

Definition

A representation V is irreducible if it does not contain a non-trivial subrepresentation.

Representations of $\mathfrak{s l}_{2}$

Main object for today: $\mathfrak{s l}_{2}$.

$$
\mathfrak{s l}_{2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+d=0\right\}
$$

Over complex numbers: same as the Lie algebra of $S O$ (3).
For representations, take

$$
E \mapsto\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F \mapsto\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

More abstractly: spanned by E, F, H with relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

How to study representations? Basic building block - irreducibles:

Definition

A representation V is irreducible if it does not contain a non-trivial subrepresentation.

Irreducible representations

For $\mathfrak{s l}_{2}$ - complete classification:

Theorem

Irreducible finite-dimensional representations V_{n} of $\mathfrak{s l}_{2}$ are classified by a natural number n and are of the form $V_{n}:=\operatorname{span}\left(v, F v, F^{2} v, \ldots, F^{n} v\right)$, where the vector v satisfies $E v=0$ (highest-weight vector).

Natural operation on representations: tensor product (for instance, corresponds to combined system of particles)

- Decomposition of tensor products are actually completely determined by highest weight vectors

Theorem (Clebsch-Gordan)

For irreducible representations V_{n}, V_{m}, we have $V_{n} \otimes V_{m} \cong \bigoplus_{k=0}^{\min (n, m)} V_{n+m-2 k}$. For instance, let $\mathbb{C}^{2}=\operatorname{span}\left(v_{1}, v_{2}\right)$ where $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then, highest-weight vectors of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ are

$$
\left(v_{1} \otimes v_{1}, v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \in V_{2} \oplus V_{0} .
$$

Irreducible representations

For $\mathfrak{s l}_{2}$ - complete classification:

Theorem

Irreducible finite-dimensional representations V_{n} of $\mathfrak{s l}_{2}$ are classified by a natural number n and are of the form $V_{n}:=\operatorname{span}\left(v, F v, F^{2} v, \ldots, F^{n} v\right)$, where the vector v satisfies $E v=0$ (highest-weight vector).

Natural operation on representations: tensor product (for instance, corresponds to combined system of particles)

- Decomposition of tensor products are actually completely determined by highest weight vectors

Theorem (Clebsch-Gordan)

For irreducible representations V_{n}, V_{m}, we have $V_{n} \otimes V_{m} \cong \bigoplus_{k=0}^{\min (n, m)} V_{n+m-2 k}$.
For instance, let $\mathbb{C}^{2}=\operatorname{span}\left(v_{1}, v_{2}\right)$ where $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then, highest-weight vectors of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ are

$$
\left(v_{1} \otimes v_{1}, v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \in V_{2} \oplus V_{0} .
$$

Irreducible representations

For $\mathfrak{s l}_{2}$ - complete classification:

Theorem

Irreducible finite-dimensional representations V_{n} of $\mathfrak{s l}_{2}$ are classified by a natural number n and are of the form $V_{n}:=\operatorname{span}\left(v, F v, F^{2} v, \ldots, F^{n} v\right)$, where the vector v satisfies $E v=0$ (highest-weight vector).

Natural operation on representations: tensor product (for instance, corresponds to combined system of particles)

- Decomposition of tensor products are actually completely determined by highest weight vectors

Theorem (Clebsch-Gordan)

For irreducible representations V_{n}, V_{m}, we have $V_{n} \otimes V_{m} \cong \bigoplus_{k=0}^{\min (n, m)} V_{n+m-2 k}$.
For instance, let $\mathbb{C}^{2}=\operatorname{span}\left(v_{1}, v_{2}\right)$ where $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then, highest-weight vectors of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ are

$$
\left(v_{1} \otimes v_{1}, v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \in V_{2} \oplus V_{0} .
$$

Whittaker Modules

To decompose $V_{n} \otimes V_{m}$, enough to find highest-weight vectors in this tensor product.

- What if $E v=v$? Called Whittaker vectors, generate Whittaker modules. Naturally arise in physics (Toda system).
- Decomposition of Whittaker modules: likewise, completely classified by Whittaker vectors Whit(W).

Theorem (Kalmykov, 2021)

For any Whittaker module \mathcal{W} and a finite-dimensional representation V of $\mathfrak{s l}_{2}$, we have Whit $(\mathcal{W} \otimes V) \cong$ Whit $(\mathcal{W}) \otimes V$ canonically.

Whittaker Modules

To decompose $V_{n} \otimes V_{m}$, enough to find highest-weight vectors in this tensor product.

- What if $E v=v$? Called Whittaker vectors, generate Whittaker modules. Naturally arise in physics (Toda system).
- Decomposition of Whittaker modules: likewise, completely classified by Whittaker vectors Whit(W).

Theorem (Kalmykov, 2021)

For any W hittaker module \mathcal{W} and a finite-dimensional representation V of $\mathfrak{s l}_{2}$, we have $W \operatorname{hit}(\mathcal{W} \otimes V) \cong$ Whit $(\mathcal{W}) \otimes V$ canonically.

Non-standard quantization

Application: non-standard quantization of SL_{2}. Two ways to compute Whittaker vectors in $\mathcal{W} \otimes U \otimes V$:

$$
\begin{gathered}
\operatorname{Whit}(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W} \otimes U) \otimes V \cong(\operatorname{Whit}(\mathcal{W}) \otimes U) \otimes V, \\
\operatorname{Whit}(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W}) \otimes(U \otimes V)
\end{gathered}
$$

Differ by the action on $U \otimes V$ of

$$
J=\sum_{k} J_{k}^{(1)} \otimes J_{k}^{(2)}=\sum_{k \geq 0} \frac{(-1)^{k}}{2^{k} k!} F^{k} \otimes \prod_{i=0}^{k-1}(H-2 i)
$$

Deforms multiplication on functions on SL_{2} :

$$
f * g:=\sum_{i} J_{k}^{(1)}(f) \cdot J_{k}^{(2)}(g), f, g \in \operatorname{Fun}\left(\mathrm{SL}_{2}\right)
$$

Non-standard quantization

Application: non-standard quantization of SL_{2}. Two ways to compute Whittaker vectors in $\mathcal{W} \otimes U \otimes V$:

$$
\text { Whit }(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W} \otimes U) \otimes V \cong(\operatorname{Whit}(\mathcal{W}) \otimes U) \otimes V,
$$

$$
\text { Whit }(\mathcal{W} \otimes U \otimes V) \cong W \operatorname{hit}(\mathcal{W}) \otimes(U \otimes V) .
$$

Differ by the action on $U \otimes V$ of

$$
J=\sum_{k} J_{k}^{(1)} \otimes J_{k}^{(2)}=\sum_{k \geq 0} \frac{(-1)^{k}}{2^{k} k!} F^{k} \otimes \prod_{i=0}^{k-1}(H-2 i) .
$$

Deforms multiplication on functions on SL_{2} :

$$
f * g:=\sum_{i} J_{k}^{(1)}(f) \cdot J_{k}^{(2)}(g), f, g \in \operatorname{Fun}\left(\mathrm{SL}_{2}\right)
$$

Non-standard quantization

Application: non-standard quantization of SL_{2}. Two ways to compute Whittaker vectors in $\mathcal{W} \otimes U \otimes V$:

$$
\begin{gathered}
\text { Whit }(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W} \otimes U) \otimes V \cong(\operatorname{Whit}(\mathcal{W}) \otimes U) \otimes V, \\
\operatorname{Whit}(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W}) \otimes(U \otimes V) .
\end{gathered}
$$

Differ by the action on $U \otimes V$ of

$$
J=\sum_{k} J_{k}^{(1)} \otimes J_{k}^{(2)}=\sum_{k \geq 0} \frac{(-1)^{k}}{2^{k} k!} F^{k} \otimes \prod_{i=0}^{k-1}(H-2 i) .
$$

Deforms multiplication on functions on SL_{2} :

$$
f * g:=\sum_{i} J_{k}^{(1)}(f) \cdot J_{k}^{(2)}(g), f, g \in \operatorname{Fun}\left(\mathrm{SL}_{2}\right) .
$$

Non-standard quantization

Application: non-standard quantization of SL_{2}. Two ways to compute Whittaker vectors in $\mathcal{W} \otimes U \otimes V$:

$$
\begin{gathered}
\text { Whit }(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W} \otimes U) \otimes V \cong(\operatorname{Whit}(\mathcal{W}) \otimes U) \otimes V, \\
\operatorname{Whit}(\mathcal{W} \otimes U \otimes V) \cong \operatorname{Whit}(\mathcal{W}) \otimes(U \otimes V)
\end{gathered}
$$

Differ by the action on $U \otimes V$ of

$$
J=\sum_{k} J_{k}^{(1)} \otimes J_{k}^{(2)}=\sum_{k \geq 0} \frac{(-1)^{k}}{2^{k} k!} F^{k} \otimes \prod_{i=0}^{k-1}(H-2 i)
$$

Deforms multiplication on functions on SL_{2} :

$$
f * g:=\sum_{i} J_{k}^{(1)}(f) \cdot J_{k}^{(2)}(g), f, g \in \operatorname{Fun}\left(\mathrm{SL}_{2}\right)
$$

Generalization

Generalization: W-algebras (Whittaker Modules for $\mathfrak{g l}_{n}$).
Our research: tensor product decomposition for subregular W-algebras.

Theorem (Kalmykov-L., 2023)

For any subregular Whittaker module \mathcal{W} and the vector representation V of $\mathfrak{g l}_{n}$, there is an explicit identification

$$
\operatorname{Whit}(\mathcal{W} \otimes V) \cong \operatorname{Whit}(\mathcal{W}) \otimes V
$$

In particular, allows to construct canonically Whittaker vectors in $\mathcal{W} \otimes U$ for any finite-dimensional representation U of $\mathfrak{g l}_{n}$.

Likewise, gives non-standard quantization of the group GL_{N}.

Acknowledgements

I would like to kindly thank:

- My mentor, Dr. Artem Kalmykov, for guiding me through the tough mathematical readings and being patient with me throughout the entire research process
- MIT PRIMES organizers, in particular Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova, for providing this wonderful opportunity for me to do math research
- My parents for always being so supportive.

References

- T. Arakawa. "Introduction to W-algebras and their representation theory". Perspectives in Lie theory. Vol. 19. Springer INdAM Ser. Springer, Cham, 2017, pp. 179-250.
- P. Etingof and O. Schiffmann. "Lectures on the dynamical Yang-Baxter equations". Quantum Groups and Lie Theory (Durham, 1999), London Math. Soc. Lecture Note Ser 290 (2001), pp. 89-129
- P. Etingof and O. Schiffmann. Lectures on quantum groups. Second. Lectures in Mathematical Physics. International Press, Somerville, MA, 2002, pp. xii+242.
- W. Fulton and J. Harris. Representation theory. Vol. 129. Graduate Texts in Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New York, 1991, pp. xvi+551. URL: https://doi.org/10.1007/978-1-4612-0979-9.
- S. M. Goodwin. "Translation for finite W -algebras". Represent. Theory 15 (2011), pp. 307-346. URL: https://doi.org/10.1090/S1088-4165-2011-00388-5.

References

- J. E. Humphreys. Introduction to Lie algebras and representation theory. Vol. 9. Graduate Texts in Mathematics. Second printing, revised. Springer-Verlag, New York-Berlin, 1978, pp. xii+171.
- A. Kalmykov. Geometric and categorical approaches to dynamical representation theory. eng. Zürich, 2021.
- B. Kostant. "On Whittaker vectors and representation theory". Invent. Math. 48.2 (1978), pp. 101-184. URL: https://doi.org/10.1007/BF01390249.
- I. Losev. "Finite W-algebras". Proceedings of the International Congress of Mathematicians. Volume III. Hindustan Book Agency, New Delhi, 2010, pp. 1281-1307.

