The Action of the Cactus Group on Arc Diagrams

Matvey Borodin
Mentor: Leonid Rybnikov
Brookline High School
October 14-15, 2023
MIT PRIMES Conference

Arc Diagram

Definition (Arc Diagram)

- Place $n+1$ points on a circle and label them $z_{1}, z_{2}, \ldots, z_{n}, z_{\infty}$
- $z_{1}, z_{2}, \ldots, z_{n}$ can be in any order
- Connect points with non-intersecting arcs
- Valence of z_{i} is called ℓ_{i}

The Set of Arc Diagrams

$\square X\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}, \ell_{\infty}\right)$ is the set of all arc diagrams with valences $\ell_{1}, \ell_{2}, \ldots, \ell_{n}, \ell_{\infty}$ for all orderings of the corresponding $z_{1}, z_{2}, \ldots, z_{n}$.

- Here is $X(2,2,2,2)$ (for all choices of distinct $\left.i_{1}, i_{2}, i_{3} \in\{1,2,3\}\right):$

Group

Definition (Group)

A group is a set G with an operation $\times: G \times G \rightarrow G$ satisfying:

- Associativity: $a \times(b \times c)=(a \times b) \times c$
- Identity: $a \times e=e \times a=a$
- Inverses: $a \times a^{-1}=a^{-1} \times a=e$

Note that $a \times b$ is often written as $a b$.

Example

Symmetric Group

S_{3} (permutations of 3 elements) under composition (0) is a group:

- The set is $(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)$
- Operation is composition: apply permutations one after the other from right to left.
- $(1,2,3)$ is the identity.
- $(1,3,2) \circ(2,1,3)=(2,3,1)$

Group Action

Definition (Group Action)

Given a group G and a set X, a group action is a function $\alpha: G \times X \rightarrow X$. Notationally $\alpha(g, x)=g \cdot x$.

■ Identity: $e \cdot x=x$
■ Compatibility: $g \cdot(h \cdot x)=(g h) \cdot x$
Essentially each $g \in G$ is assigned some transformation of X such that it is compatible with the group structure.

Example

S_{3} acts on a set of 3 ordered points

- Permute the points according to the element of S_{3}.
$(2,1,3)(\bullet \bullet \circ)=(\bullet \bullet)$
$(1,3,2)(\bullet \bullet \circ)=(\bullet \circ \bullet)$
$(1,3,2)(2,1,3)(\bullet \bullet \circ)=(2,3,1)(\bullet \bullet)=(\bullet \circ \bullet)$

Generators and Relations

■ Generators are a set of group elements which can be multiplied to make elements in the group

Free Group

- Example: $\langle a, b\rangle$ is the set of strings consisting of a, b, a^{-1} and b^{-1} (\times is concatenation)
- Thus $a b a \times a^{-1} b a=a b a a^{-1} b a=a b b a$

Generators and Relations

- Relations are imposed on the generators

Relations

- Example: $\left\langle a, b \mid a^{2}=b^{2}=e\right\rangle$ is the set of strings consisting of a, b, a^{-1} and b^{-1} except we declare that $a a=b b=e$
- Thus $a b a \times a^{-1} b a=a b a a^{-1} b b=a b b a=a a=e$
- Groups are often defined in this way

The Cactus Group

Definition (Cactus Group J_{n})

The cactus group is defined by the set of generators
$\left\{s_{p, q} \mid 1 \leq p<q \leq n\right\}$ and relations:
$\square s_{p, q}^{2}=e$ where e is the identity for any $s_{p, q}$.

- $s_{p, q} s_{p^{\prime}, q^{\prime}}=s_{p^{\prime}, q^{\prime}} s_{p, q}$ if $q^{\prime}<p$ or $q<p^{\prime}$, that is, the intervals [$p, q]$ and $\left[p^{\prime}, q^{\prime}\right]$ are disjoint.
■ $s_{p, q} s_{p^{\prime}, q^{\prime}} s_{p, q}=s_{p+q-q^{\prime}, p+q-p^{\prime}}$ if $p \leq p^{\prime}<q^{\prime} \leq q$, that is, the interval $\left[p^{\prime}, q^{\prime}\right]$ falls inside the interval $[p, q]$.

Action of the Cactus Group on Arc Diagrams

For the action of a generator $s_{p, q}$:

- Isolate the smallest section of the diagram containing points p through q.
- Reflect this section to reverse the order of the points.

■ Broken connecting lines are reconnected in opposite order

Example

Operation extended by composition:

Proof that it's a Group Action

- $s_{p, q}^{2}=e$ where e is the identity for any $s_{p, q}$.

Proof that it's a Group Action

■ $s_{p, q} s_{p^{\prime}, q^{\prime}}=s_{p^{\prime}, q^{\prime}} s_{p, q}$ if $q^{\prime}<p$ or $q<p^{\prime}$, that is the intervals $[p, q]$ and $\left[p^{\prime}, q^{\prime}\right]$ are disjoint.

Proof that it's a Group Action

■ $s_{p, q} s_{p^{\prime}, q^{\prime}} s_{p, q}=s_{p+q-q^{\prime}, p+q-p^{\prime}}$ if $p \leq p^{\prime}<q^{\prime} \leq q$, that is the interval $\left[p^{\prime}, q^{\prime}\right]$ falls inside the interval $[p, q]$.

Results

Theorem (Borodin 2023)

Border thickness is an invariant of this group action. When $n=3$, border thickness is the only invariant so all diagrams with the same border thickness lie in the same orbit.

Border thiczuess $=1$

Border thickness $=2$

Results

Theorem (Borodin 2023)

The orbits over the set $X(2,2, \ldots, 2)$ are completely characterized by the number of components. That is, there is exactly one orbit for every possible number of components. In particular, there is a total of $\lfloor n / 2\rfloor$ orbits.

Number of components $=3$

Results

Theorem (Borodin 2023)

The cactus group J_{n} acts transitively on the set $X\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}, \ell_{\infty}\right)$ when there exists some $\ell_{i}=1$ (or $\ell_{\infty}=1$).

Theorem (Borodin 2023)

When the cactus group J_{n} acts on the set $X\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}, \ell_{\infty}\right)$, the braid relation $s_{i, i+1} s_{i-1, i} s_{i, i+1}=s_{i-1, i} s_{i, i+1} s_{i-1, i}$ is always satisfied.

Acknowledgements

■ I would like to thank my mentor, Prof. Leonid Rybnikov for suggesting this topic and guiding me in my exploration of it.
■ I would also like to thank the MIT PRIMES Program for making this project possible.
■ Finally, I would like to thank my parents supporting me throughout my endeavors.

