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Cutting up Surfaces

Overarching Question: How can you cut up a surface?

• What do we mean by surface?

• Riemannian 2-Manifolds.
• 2-Manifold: A surface that looks “2-dimensional”

around each point.
• Riemannian: The surface is smooth and has a

geometry: we can define length, angles, and area.
• Orientable.

• Just like polygons can be cut up into triangles,
Riemannian 2-Manifolds can be cut up into 3-holed
spheres (called pairs of pants).
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Pants Decompositions

Definition

A pants decomposition of a topological surface is a set of disjoint,
closed, and non-contractible curves that decompose the surface into
three-holed spheres.

• Every genus g ≥ 2 surface has a pants decomposition.

• Each such pants decomposition consists of 3g − 3 curves that cut
the surface into 2g − 2 pairs of pants.

Fact

Any 3g − 3 curves on a genus g surface that are disjoint, closed,
non-contractible, and not homotopic give a pants decomposition.
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Length of Decompositions

Definition

The length of a pants decomposition is the maximum length of a curve
in the pants decomposition.
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Length of Decompositions

Definition

The length of a pants decomposition is the maximum length of a curve
in the pants decomposition.

Definition

The Bers’ constant of a Riemannian surface S, denoted by BS , is the
smallest length of a pants decomposition of S.

• Describes how difficult it is to cut a surface S into simpler surfaces.

• Understanding BS is one the largest open problems in the
geometry of surfaces.
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Prior Results

Theorem (Buser, 1981)

A genus g ≥ 2 hyperbolic surface S with no boundary components
satisfies: g1/2 ≲ BS ≲ g log(g).

Theorem (Buser, 1992)

A genus g ≥ 2 closed Riemann surface S with no boundary components
satisfies: BS ≲ (gArea(S))1/2.

• Uses theoretical algorithm.

• Unknown optimal behavior.

a(S) ≲ b(S) =⇒ there exists universal constant C such that a(S) ≤ b(S)C.
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Motivating Questions

Question #1

What pants decompositions can we actually find?

Question #2

Does Buser’s algorithm give shorter pants decompositions for
“average” surfaces?

Question #3

What’s the length of the nth cut in the decomposition?
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Combinatorial Surfaces

How do we make a “discrete” surfaces?

• Glue together n triangles with side length one into an n-gon.

• Identify edges of the polygon.

• A combinatorial surface is a type of Riemannian 2-manifold that is
amenable to computation.

• Gives rise to random surfaces.
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Finding Short Curves: Algorithm #1

Two main ideas:

(1) Add together homotopically distinct curves.

(2) Find a new homotopically distinct curve on a surface with zero or
one boundary components.
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one boundary components.

Question #1

What pants decompositions can we actually find?

Theorem (H. 2023)

Let S be a genus g combinatorial surface. Algorithm #1 finds a length
≲ (gArea(S))1/2 pants decomposition of S in O(g3) time.
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Results of Algorithm #1

Question #2

Does Buser’s algorithm give shorter pants decompositions for
“average” surfaces?

No!

Question #3

What’s the length of the nth cut in the decomposition?
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Results of Algorithm #1

Question #3

What’s the length of the nth cut in the decomposition?

After a certain
point, every third
cut has length 4

3n.
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Finding Short Curves: Algorithm #2

New idea:

• Grow a ball around a random point until we find a loop that is in
a different homotopy class than previous loops.
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Results of Algorithm #2
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