Existence of Circle Packings on Certain Translation Surfaces

Anton Levonian

Mentored by Professor Sergiy Merenkov

MIT PRIMES Conference

October 15, 2023

2 Circle Packings

- The torus has *genus* 1, where the genus of a surface is the number of holes in the surface.
- A torus is an example of translation surface.

- A *translation surface* is formed by identifying opposite sides of \mathscr{P} , where \mathscr{P} is a collection of several polygon in the plane satisfying the following conditions:
 - \mathscr{P} has an even number of sides.
 - Opposite sides of \mathcal{P} are parallel and equal in length.

- A *translation surface* is formed by identifying opposite sides of \mathscr{P} , where \mathscr{P} is a collection of several polygon in the plane satisfying the following conditions:
 - \mathscr{P} has an even number of sides.
 - Opposite sides of \mathscr{P} are parallel and equal in length.

- A *translation surface* is formed by identifying opposite sides of \mathscr{P} , where \mathscr{P} is a collection of several polygon in the plane satisfying the following conditions:
 - \mathscr{P} has an even number of sides.
 - Opposite sides of ${\mathscr P}$ are parallel and equal in length.

- A *translation surface* is formed by identifying opposite sides of \mathscr{P} , where \mathscr{P} is a collection of several polygon in the plane satisfying the following conditions:
 - \mathscr{P} has an even number of sides.
 - Opposite sides of ${\mathscr P}$ are parallel and equal in length.

Square Tiled Surfaces

- A square-tiled surface is a translation surface for which \mathscr{P} is formed by joining opposite sides of congruent squares together.
- A torus is an example of a square-tiled surface.

Square Tiled Surfaces

- A square-tiled surface is a translation surface for which \mathscr{P} is formed by joining opposite sides of congruent squares together.
- A torus is an example of a square-tiled surface.

- A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.
- The angle at a singular point, or *cone angle*, is $2\pi(\delta+1)$, where δ is the *order* of the singular point.
- The above singular point has order $(5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} 1 = 2$.

- A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.
- The angle at a singular point, or *cone angle*, is $2\pi(\delta+1)$, where δ is the *order* of the singular point.
- The above singular point has order $(5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} 1 = 2$.

- A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.
- The angle at a singular point, or *cone angle*, is $2\pi(\delta+1)$, where δ is the *order* of the singular point.
- The above singular point has order $(5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} 1 = 2$.

- A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.
- The angle at a singular point, or *cone angle*, is $2\pi(\delta+1)$, where δ is the *order* of the singular point.
- The above singular point has order $(5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} 1 = 2.$

Theorem (Gauss-Bonnet)

Let X be a translation surface with k singular points v_i , each with order $\delta(v_i)$, and let $\chi(X)$ be the Euler characteristic of X. Then

$$\sum_{i=1}^k \delta(v_i) + \chi(X) = 0.$$

- $\chi(X) = 2 2g$.
- A stratum, denoted by $\mathscr{H}(\kappa)$, is determined by a partition of 2g-2.

• A circle packing is defined as a collection of interiorwise disjoint disks.

Circle Packings

• A circle packing is defined as a collection of interiorwise disjoint disks.

• A *contacts graph* G: circles corresponds to vertices of G and tangencies correspond to edges of G.

• Below is a circle with radius less than $\frac{1}{2}$ centered at a singular point.

Equivalence of Circle Packings

- Given a circle packing on a square tiled surface X ∈ ℋ(κ), is it generally possible to realize an equivalent circle packing on a square tiled surface Y ∈ ℋ(κ) with a different number of squares from X? If not, can an equivalent packing be realized on an affine transformation of Y?
- What are the "simplest" contacts graphs that cannot be realized on any surface in a certain stratum?

Realizability of C_3

Theorem

An equivalent packing to C_3 cannot be realized on any four-squared translation surface in $\mathscr{H}(2)$ without applying an affine transformation.

Packings on Distinct Surfaces in $\mathscr{H}(2)$

 C_3 realized on a four-squared surface stretched vertically by a factor of $\frac{4}{3}$.

Realizable Contacts Graphs in $\mathscr{H}(2)$

Theorem

A maximum of 9 multi-loops and 8 multi-edges are realizable on any contacts graph in $\mathcal{H}(2)$.

9 multi-loops in $\mathscr{H}(2)$

8 multi-edges in $\mathscr{H}(2)$

Demonstration of theorem in $\mathcal{H}(2)$.

Existence of Circle Packings

One Singular Point Theorem

Theorem

Given a genus g stratum $\mathscr{H}(2g-2)$, 4g multi-loops and 4g multi-edges can be realized on at least one surface of $\mathscr{H}(2g-2)$.

12 multi-loops in $\mathscr{H}(4)$

12 multi-edges in $\mathscr{H}(4)$

Demonstration of theorem in $\mathscr{H}(4)$.

Realizable Contacts Graphs in $\mathscr{H}(1,1)$

Theorem

Up to 5 multi-loops and 6 multi-edges are realizable on any contacts graph in $\mathscr{H}(1,1).$

5 multi-loops in $\mathscr{H}(1,1)$

6 multi-edges in $\mathscr{H}(1,1)$

Demonstration of theorem in $\mathscr{H}(1,1)$.

Existence of Circle Packings

Two Singular Points Theorem

Theorem

Given a genus g stratum $\mathscr{H}(g-1,g-1)$, 2g+1 multi-loops and 2g+2 multi-edges can be realized on at least one surface of $\mathscr{H}(g-1,g-1)$.

7 multi-loops in $\mathscr{H}(2,2)$

8 multi-edges in $\mathscr{H}(2,2)$

Demonstration of theorem in $\mathscr{H}(2,2)$.

Existence of Circle Packings

I would like to thank...

- My mentor, Professor Sergiy Merenkov, for his guidance during the research
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Professor Pavel Etingof and the PRIMES-USA program for this invaluable research opportunity
- My family, for their support

- Daniel Massart. "A Short Introduction to Translation Surfaces, Veech Surfaces, and Teichmüller Dynamics". In: Surveys in Geometry I. Springer International Publishing, 2022, pp. 343–388. DOI: 10.1007/978-3-030-86695-2_9.
- [2] Kenneth Stephenson. *Introduction to circle packing: The theory of discrete analytic functions.* Cambridge University Press, 2005.
- [3] William P Thurston. "Three-Dimensional Geometry and Topology, Volume 1". In: *Three-Dimensional Geometry and Topology, Volume 1*. Princeton university press, 2014.
- [4] Alex Wright. Translation surfaces and their orbit closures: An introduction for a broad audience. 2014. DOI: 10.48550/ARXIV.1411.1827.
- [5] Anton Zorich. "Flat Surfaces". In: (2006). DOI: 10.48550/ARXIV.MATH/0609392.