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Introduction to Representation Theory

Representation Theory focuses on using linear algebra tools to
study abstract algebraic objects.

Definition (Representation)

A representation (or module) of a finite group G is a vector
space V (over a base field k) with a group action ρ, a map from G
to the set of bijective linear transformations from V to itself. In
particular, for all g1, g2 ∈ G ,

ρ(g1g2) = ρ(g1)ρ(g2).

For g ∈ G and v ∈ V , we denote ρ(g)(v) with gv .
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Introduction to Representation Theory

Example (180◦ rotation)

For G = Z2 = {e, a} with a2 = e, a representation of G over

V = R2 could have ρ with ρ(e)

[
x
y

]
=

[
x
y

]
, ρ(a)

[
x
y

]
=

[
−x
−y

]
.

ρ(a) geometric interpretation:
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Introduction to Representation Theory

Example (Roots of unity)

For G = Zn = {e, a, . . . , an−1} with an = e, a representation over
C has group action ρ given by

ρ(ak) = e
2πik
n ,

for k = 0, 1, . . . , n − 1.
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Introduction to Representation Theory

Definition (Subrepresentation)

Let W denote a subspace of a representation V . Then we say W
is a subrepresentation of V if and only if it is closed under all
actions of V .

Example

For the “180◦ rotation” representation described previously, a

subrepresentation would be the subspace of all vectors

[
x
0

]
.
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Introduction to Representation Theory

Definition (Direct Sum)

For two representations Vα and Vβ over group G , the direct sum
of Vα and Vβ has vector space Vα ⊕ Vβ (direct sum as vector
spaces) and group action defined by

g(vα ⊕ vβ) = g(vα)⊕ g(vβ).

Example

Let V = k be a 1-dimensional representation over the base field.
Then, for all v ∈ V = k, V ⊕ V has group action

ρ : v →
(
v 0
0 v

)
.
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Introduction to Representation Theory

Just like how integers can be factored, representations can be
“factored” into their subrepresentations.

Definition (Indecomposable/Irreducible)

For a representation V of group G , V is said to be
indecomposable if it cannot be expressed as a direct sum of two
nonzero subrepresentations.
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Tensor Product

Definition (Tensor Product)

The tensor product V ⊗W is a “multiplication” operation for two
vector spaces V and W over a common field k . The following properties
hold for all v ∈ V and w ∈ W and scalar a ∈ k :

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w .

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

av ⊗ w = a(v ⊗ w).

v ⊗ aw = a(v ⊗ w).
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Monomial Representations

Let k denote a closed field of characteristic 3 and define
G := Z/3rZ× Z/3sZ, (a finite 3-group) for integers r and s, with
two generators, called x and y .

Let [a1, a2, . . . , an]/[b1, b2, . . . , bn] denote the partition
[a1, a2, . . . , an] with the sub-partition [b1, b2, . . . , bn] “carved out.”

Example

The monomial diagram below corresponds to [4, 3, 2]/[2, 1, 0].
1

1 1

1 1

1
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Monomial Representations

In a monomial representation V :

Each cell is a one-dimensional vector space generated by a
basis element of the representation V .

For a cell in position (a, b), we denote its basis element by
va−1,b−1.

Actions of x and y take basis element va−1,b−1 to cells
immediately to the right and above, respectively.

Example

For [4, 3, 2]/[2, 1, 0], x · (v1,1) = v2,1 and y · (v1,1) = v1,2.

1

1 1

1 1

1
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Indecomposable Monomial Representations

Definition (Connected)

A monomial diagram is connected if it is “one piece.”

Example

[4, 3, 2]/[2, 1, 0] is connected, while [3, 1, 1, 1]/[1, 0, 0, 0] is not.

1

1 1

1 1

1

1

1

1 1 1

Theorem (Well-known)

The monomial diagram of a monomial representation is connected
if and only if it is indecomposable.
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Motivation for Research Problem

For finite 2-groups (k a field with characteristic 2 and
G := Z/2rZ× Z/2sZ), Benson conjectured the following:

Conjecture (Benson, 2020)

The monomial representation V corresponding to
[a1, a2, . . . , an]/[b1, b2, . . . , bn] has a unique odd dimensional
indecomposable summand in all its tensor powers if and only if the
dimension of V is odd.

We ask an analogous question for finite 3 groups:

Question

For what monomial representations V does V⊗n have a
unique indecomposable summand with dimension nondivisible
by 3?
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Uniqueness of Summand

Definition (Dual Representation)

The dual V ∗ of a monomial representation V can be intuitively
visualized as a 180◦ rotation of its monomial diagram.

Example

The red and orange monomial diagrams below are duals of each
other.

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1
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Uniqueness of Summand

Theorem (Well-known)

V⊗n, for all positive integers n, has a unique indecomposable
summand with dimension nondivisible by p if V ⊗ V ∗ can be
decomposed into a direct sum of k and other indecomposable
subrepresentations whose dimensions are divisible by p.

Using MAGMA, we can use this theorem to our advantage! We
use this condition to test whether V has this unique summand as
the above are all operations that can be performed in MAGMA
(tensor product, decomposition, etc).
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Recall:
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The monomial representation V corresponding to
[a1, a2, . . . , an]/[b1, b2, . . . , bn] has a unique odd dimensional
indecomposable summand in all its tensor powers if and only if the
dimension of V is odd.

It seems sensible that an extension of Benson’s conjecture might hold for
finite 3-groups, and potentially, finite p-groups.

Conjecture (Proposed Extension of Benson’s Conjecture to Finite
3-Groups)

The monomial representation V corresponding to
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Uniqueness of Summand

The problem with this conjecture? It is false!

Question

Can we characterize all counterexamples to this extension of
Benson’s Conjecture? For what monomial representations
[a1, a2, . . . , an]/[b1, b2, . . . , bn] with dimension nondivisible by 3
does there not exist a unique indecomposable summand with
dimension nondivisible by 3 in all its tensor powers?

We focus on the case where b1 = b2 = · · · = bn = 0 (a null inner
partition).
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Uniqueness of Summand

From computational evidence, we propose the following:

Conjecture (Characterization of Counterexamples to Benson’s
Extension to Finite 3-Groups)

In the case of null inner partition, the monomial representation
corresponding to [a1, a2, . . . , an] with dimension nondivisible by 3
(equivalently,

∑n
i=1 ai ≡ 1, 2 (mod 3)) is a counterexample to the

proposed extension of Benson’s Conjecture if and only if one of the
following is true:

For 1 ≤ i ≤ n, ai ≡ 0, 5 (mod 9).

For 1 ≤ i ≤ n, ai ≡ 0, 4 (mod 9).
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Recall:

Theorem (Well-known)
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Uniqueness of Summand

In fact, we propose the following even stronger result, which shows
one side of the conjecture.

Theorem (Stronger)

Let V4 denote the monomial representation corresponding to [4],
and let V denote a monomial representation corresopnding to an
inner-null partition [a1, a2, . . . , an] satisfying either

for 1 ≤ i ≤ n, ai ≡ 0, 5 (mod 9).

for 1 ≤ i ≤ n, ai ≡ 0, 4 (mod 9).

Then V4 ⊗ V ∗
4
∼= k ⊕M3 ⊕M5 ⊕M7, where M3,M5,M7 denote

subrepresentations of dimension 3, 5, 7 corresponding to the
monomial diagrams shown on the next slide. Furthermore,
V4 ⊗ V ∗

4 is in the decomposition of V ⊗ V ∗ (and thus specifically
M5 and M7 are in the decomposition as well).
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Uniqueness of Summand

k M3 M5 M7

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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