An Extension of Benson's Conjecture to Finite 3-Groups for Monomial Modules with Null Inner Partition

Justin Zhang
Mentor: Dr. Kent B. Vashaw
MIT PRIMES USA

October 15, 2023
PRIMES Conference

Introduction to Representation Theory

Representation Theory focuses on using linear algebra tools to study abstract algebraic objects.

Introduction to Representation Theory

Representation Theory focuses on using linear algebra tools to study abstract algebraic objects.

Definition (Representation)

A representation (or module) of a finite group G is a vector space V (over a base field k) with a group action ρ, a map from G to the set of bijective linear transformations from V to itself. In particular, for all $g_{1}, g_{2} \in G$,

$$
\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)
$$

Introduction to Representation Theory

Representation Theory focuses on using linear algebra tools to study abstract algebraic objects.

Definition (Representation)

A representation (or module) of a finite group G is a vector space V (over a base field k) with a group action ρ, a map from G to the set of bijective linear transformations from V to itself. In particular, for all $g_{1}, g_{2} \in G$,

$$
\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)
$$

For $g \in G$ and $v \in V$, we denote $\rho(g)(v)$ with $g v$.

Introduction to Representation Theory

Example (180° rotation)

For $G=\mathbb{Z}_{2}=\{e, a\}$ with $a^{2}=e$, a representation of G over $V=\mathbb{R}^{2}$ could have ρ with $\rho(e)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right], \rho(a)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-x \\ -y\end{array}\right]$.

Introduction to Representation Theory

Example (180° rotation)

For $G=\mathbb{Z}_{2}=\{e, a\}$ with $a^{2}=e$, a representation of G over $V=\mathbb{R}^{2}$ could have ρ with $\rho(e)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right], \rho(a)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-x \\ -y\end{array}\right]$. $\rho(a)$ geometric interpretation:

Introduction to Representation Theory

Example (Roots of unity)

For $G=\mathbb{Z}_{n}=\left\{e, a, \ldots, a^{n-1}\right\}$ with $a^{n}=e$, a representation over \mathbb{C} has group action ρ given by

$$
\rho\left(a^{k}\right)=e^{\frac{2 \pi i k}{n}},
$$

for $k=0,1, \ldots, n-1$.

Introduction to Representation Theory

Definition (Subrepresentation)

Let W denote a subspace of a representation V. Then we say W is a subrepresentation of V if and only if it is closed under all actions of V.

Introduction to Representation Theory

Definition (Subrepresentation)

Let W denote a subspace of a representation V. Then we say W is a subrepresentation of V if and only if it is closed under all actions of V.

Example

For the " 180° rotation" representation described previously, a subrepresentation would be the subspace of all vectors $\left[\begin{array}{l}x \\ 0\end{array}\right]$.

Introduction to Representation Theory

Definition (Direct Sum)

For two representations V_{α} and V_{β} over group G, the direct sum of V_{α} and V_{β} has vector space $V_{\alpha} \oplus V_{\beta}$ (direct sum as vector spaces) and group action defined by

$$
g\left(v_{\alpha} \oplus v_{\beta}\right)=g\left(v_{\alpha}\right) \oplus g\left(v_{\beta}\right) .
$$

Introduction to Representation Theory

Definition (Direct Sum)

For two representations V_{α} and V_{β} over group G, the direct sum of V_{α} and V_{β} has vector space $V_{\alpha} \oplus V_{\beta}$ (direct sum as vector spaces) and group action defined by

$$
g\left(v_{\alpha} \oplus v_{\beta}\right)=g\left(v_{\alpha}\right) \oplus g\left(v_{\beta}\right) .
$$

Example

Let $V=k$ be a 1-dimensional representation over the base field. Then, for all $v \in V=k, V \oplus V$ has group action

$$
\rho: v \rightarrow\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) .
$$

Introduction to Representation Theory

Just like how integers can be factored, representations can be "factored" into their subrepresentations.

Introduction to Representation Theory

Just like how integers can be factored, representations can be "factored" into their subrepresentations.

Definition (Indecomposable/Irreducible)

For a representation V of group G, V is said to be indecomposable if it cannot be expressed as a direct sum of two nonzero subrepresentations.

Tensor Product

Definition (Tensor Product)

The tensor product $V \otimes W$ is a "multiplication" operation for two vector spaces V and W over a common field k. The following properties hold for all $v \in V$ and $w \in W$ and scalar $a \in k$:

$$
\begin{aligned}
\left(v_{1}+v_{2}\right) \otimes w & =v_{1} \otimes w+v_{2} \otimes w . \\
v \otimes\left(w_{1}+w_{2}\right) & =v \otimes w_{1}+v \otimes w_{2} \\
a v \otimes w & =a(v \otimes w) \\
v \otimes a w & =a(v \otimes w)
\end{aligned}
$$

Monomial Representations

Let k denote a closed field of characteristic 3 and define $G:=\mathbb{Z} / 3^{r} \mathbb{Z} \times \mathbb{Z} / 3^{s} \mathbb{Z}$, (a finite 3-group) for integers r and s, with two generators, called x and y.

Monomial Representations

Let k denote a closed field of characteristic 3 and define $G:=\mathbb{Z} / 3^{r} \mathbb{Z} \times \mathbb{Z} / 3^{s} \mathbb{Z}$, (a finite 3-group) for integers r and s, with two generators, called x and y.

Let $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ denote the partition $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with the sub-partition $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ "carved out."

Monomial Representations

Let k denote a closed field of characteristic 3 and define $G:=\mathbb{Z} / 3^{r} \mathbb{Z} \times \mathbb{Z} / 3^{s} \mathbb{Z}$, (a finite 3-group) for integers r and s, with two generators, called x and y.

Let $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ denote the partition [$a_{1}, a_{2}, \ldots, a_{n}$] with the sub-partition $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ "carved out."

Example

The monomial diagram below corresponds to $[4,3,2] /[2,1,0]$.

1		
1	1	
	1	1
		1

Monomial Representations

Let k denote a closed field of characteristic 3 and define $G:=\mathbb{Z} / 3^{r} \mathbb{Z} \times \mathbb{Z} / 3^{s} \mathbb{Z}$, (a finite 3-group) for integers r and s, with two generators, called x and y.

Let $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ denote the partition [$a_{1}, a_{2}, \ldots, a_{n}$] with the sub-partition $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ "carved out."

Example

The monomial diagram below corresponds to $[4,3,2] /[2,1,0]$.

1		
1	1	
	1	1
		1

Monomial Representations

In a monomial representation V :

- Each cell is a one-dimensional vector space generated by a basis element of the representation V.
- For a cell in position (a, b), we denote its basis element by $v_{a-1, b-1}$.
- Actions of x and y take basis element $v_{a-1, b-1}$ to cells immediately to the right and above, respectively.

Monomial Representations

In a monomial representation V :

- Each cell is a one-dimensional vector space generated by a basis element of the representation V.
- For a cell in position (a, b), we denote its basis element by $v_{a-1, b-1}$.
- Actions of x and y take basis element $v_{a-1, b-1}$ to cells immediately to the right and above, respectively.

Example

For $[4,3,2] /[2,1,0], x \cdot\left(v_{1,1}\right)=v_{2,1}$ and $y \cdot\left(v_{1,1}\right)=v_{1,2}$.

Indecomposable Monomial Representations

Definition (Connected)

A monomial diagram is connected if it is "one piece."

Indecomposable Monomial Representations

Definition (Connected)

A monomial diagram is connected if it is "one piece."

Example

$[4,3,2] /[2,1,0]$ is connected, while $[3,1,1,1] /[1,0,0,0]$ is not.

Indecomposable Monomial Representations

Definition (Connected)

A monomial diagram is connected if it is "one piece."

Example

$[4,3,2] /[2,1,0]$ is connected, while $[3,1,1,1] /[1,0,0,0]$ is not.

Theorem (Well-known)

The monomial diagram of a monomial representation is connected if and only if it is indecomposable.

Motivation for Research Problem

For finite 2-groups (k a field with characteristic 2 and $\left.G:=\mathbb{Z} / 2^{r} \mathbb{Z} \times \mathbb{Z} / 2^{s} \mathbb{Z}\right)$, Benson conjectured the following:

Conjecture (Benson, 2020)

The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique odd dimensional indecomposable summand in all its tensor powers if and only if the dimension of V is odd.

Motivation for Research Problem

For finite 2-groups (k a field with characteristic 2 and $\left.G:=\mathbb{Z} / 2^{r} \mathbb{Z} \times \mathbb{Z} / 2^{s} \mathbb{Z}\right)$, Benson conjectured the following:

Conjecture (Benson, 2020)

The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique odd dimensional indecomposable summand in all its tensor powers if and only if the dimension of V is odd.

We ask an analogous question for finite 3 groups:

Question

- For what monomial representations V does $V^{\otimes n}$ have a unique indecomposable summand with dimension nondivisible by 3 ?

Uniqueness of Summand

Definition (Dual Representation)

The dual V^{*} of a monomial representation V can be intuitively visualized as a 180° rotation of its monomial diagram.

Uniqueness of Summand

Definition (Dual Representation)

The dual V^{*} of a monomial representation V can be intuitively visualized as a 180° rotation of its monomial diagram.

Example

The red and orange monomial diagrams below are duals of each other.

Uniqueness of Summand

Theorem (Well-known)

$V^{\otimes n}$, for all positive integers n, has a unique indecomposable summand with dimension nondivisible by p if $V \otimes V^{*}$ can be decomposed into a direct sum of k and other indecomposable subrepresentations whose dimensions are divisible by p.

Uniqueness of Summand

Theorem (Well-known)

$V^{\otimes n}$, for all positive integers n, has a unique indecomposable summand with dimension nondivisible by p if $V \otimes V^{*}$ can be decomposed into a direct sum of k and other indecomposable subrepresentations whose dimensions are divisible by p.

Using MAGMA, we can use this theorem to our advantage! We use this condition to test whether V has this unique summand as the above are all operations that can be performed in MAGMA (tensor product, decomposition, etc).

Uniqueness of Summand

Recall:
Conjecture (Benson, 2020)
The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique odd dimensional indecomposable summand in all its tensor powers if and only if the dimension of V is odd.

Uniqueness of Summand

Recall:

Conjecture (Benson, 2020)

The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique odd dimensional indecomposable summand in all its tensor powers if and only if the dimension of V is odd.

It seems sensible that an extension of Benson's conjecture might hold for finite 3 -groups, and potentially, finite p-groups.

Uniqueness of Summand

Recall:

Conjecture (Benson, 2020)

The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique odd dimensional indecomposable summand in all its tensor powers if and only if the dimension of V is odd.

It seems sensible that an extension of Benson's conjecture might hold for finite 3-groups, and potentially, finite p-groups.

Conjecture (Proposed Extension of Benson's Conjecture to Finite 3-Groups)

The monomial representation V corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ has a unique indecomposable summand with dimension nondivisible by 3 in all its tensor powers if and only if the dimension of V is nondivisible by 3 .

Uniqueness of Summand

The problem with this conjecture? It is false!

Uniqueness of Summand

The problem with this conjecture? It is false!

Question

Can we characterize all counterexamples to this extension of Benson's Conjecture? For what monomial representations $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ with dimension nondivisible by 3 does there not exist a unique indecomposable summand with dimension nondivisible by 3 in all its tensor powers?

Uniqueness of Summand

The problem with this conjecture? It is false!

Question

Can we characterize all counterexamples to this extension of Benson's Conjecture? For what monomial representations $\left[a_{1}, a_{2}, \ldots, a_{n}\right] /\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ with dimension nondivisible by 3 does there not exist a unique indecomposable summand with dimension nondivisible by 3 in all its tensor powers?

We focus on the case where $b_{1}=b_{2}=\cdots=b_{n}=0$ (a null inner partition).

Uniqueness of Summand

From computational evidence, we propose the following:

Conjecture (Characterization of Counterexamples to Benson's Extension to Finite 3-Groups)

In the case of null inner partition, the monomial representation corresponding to $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with dimension nondivisible by 3 (equivalently, $\left.\sum_{i=1}^{n} a_{i} \equiv 1,2(\bmod 3)\right)$ is a counterexample to the proposed extension of Benson's Conjecture if and only if one of the following is true:

- For $1 \leq i \leq n, a_{i} \equiv 0,5(\bmod 9)$.
- For $1 \leq i \leq n, a_{i} \equiv 0,4(\bmod 9)$.

Uniqueness of Summand

Recall:

Theorem (Well-known)

$V^{\otimes n}$, for all positive integers n, has a unique indecomposable summand with dimension nondivisible by p if $V \otimes V^{*}$ can be decomposed into a direct sum of k and other indecomposable subrepresentations whose dimensions are divisible by p.

Uniqueness of Summand

In fact, we propose the following even stronger result, which shows one side of the conjecture.

Theorem (Stronger)

Let V_{4} denote the monomial representation corresponding to [4], and let V denote a monomial representation corresopnding to an inner-null partition $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ satisfying either

- for $1 \leq i \leq n, a_{i} \equiv 0,5(\bmod 9)$.
- for $1 \leq i \leq n, a_{i} \equiv 0,4(\bmod 9)$.

Then $V_{4} \otimes V_{4}^{*} \cong k \oplus M_{3} \oplus M_{5} \oplus M_{7}$, where M_{3}, M_{5}, M_{7} denote subrepresentations of dimension 3, 5, 7 corresponding to the monomial diagrams shown on the next slide. Furthermore, $V_{4} \otimes V_{4}^{*}$ is in the decomposition of $V \otimes V^{*}$ (and thus specifically M_{5} and M_{7} are in the decomposition as well).

Uniqueness of Summand

k	M_{3}	M_{5}	M_{7}
1	$\boxed{1}$		
1			
1			
		1 1 1 1 1	1

Acknowledgements

I would like to thank:

- Dr. Kent Vashaw for his wonderful mentorship and guidance throughout this project.
- Prof. Etingof for proposing this project and giving valuable advice and insights.
- Prof. Benson for giving advice on further directions to pursue.
- Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES-USA program for making this project possible and hosting the PRIMES Conference.

References

[1] Dave Benson. "Some conjectures and their consequences for tensor products of modules over a finite p-group". In: Journal of Algebra 558 (2020). Special Issue in honor of Michel Broué, pp. 24-42.
[2] George Cao and Kent B. Vashaw. On the decomposition of tensor products of monomial modules for finite 2-groups. 2023. arXiv: 2301.04274 [math.RT].
[3] Pavel I Etingof et al. Introduction to representation theory. Student mathematical library. Providence, RI: American Mathematical Society, Aug. 2011.
[4] Christian Kassel. Quantum Groups. en. 1995th ed. Graduate Texts in Mathematics. New York, NY: Springer, Nov. 1994.

