Simple Racks over the Alternating Groups

Joseph Vulakh
Under the mentorship of Prof. Julia Plavnik and Dr. Héctor Peña Pollastri

October 14, 2023
MIT PRIMES Conference

Permutations

- $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$
- $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4\end{array}\right)$

- $\sigma \pi=\sigma \circ \pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3\end{array}\right)$
- $\pi \sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5\end{array}\right) \neq \sigma \pi$
- $\pi^{-1}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4\end{array}\right)$

The Symmetric Group

\mathbb{S}_{n} denotes the set of permutations of $\{1, \ldots, n\}$.

Properties of Permutations

For all π, σ, τ in \mathbb{S}_{n} :

- $\pi \circ(\sigma \circ \tau)=(\pi \circ \sigma) \circ \tau$
- $\pi \circ \mathrm{id}=\mathrm{id} \circ \pi=\pi$
- There exists π^{-1} with $\pi \circ \pi^{-1}=\pi^{-1} \circ \pi=$ id

Any set with a operation satisfying these properties is called a group.

Parity of Permutations

- Every permutation can be written as a product of transpositions
- $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)=\tau_{12} \tau_{23} \tau_{45}$
$\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1\end{array}\right)=\tau_{12} \tau_{25}$
- The parity of the permutation is the parity of the number of transpositions
- $\pi=\tau_{12} \tau_{23} \tau_{45}=\tau_{13} \tau_{12} \tau_{45}=\tau_{13} \tau_{12} \tau_{34} \tau_{34} \tau_{45}$
- π is odd, σ is even
- The product of even permutations is even

The Alternating Group

- \mathbb{A}_{n} denotes the set of even permutations of $\{1, \ldots, n\}$
- \mathbb{A}_{n} is a group!
- For $n \geq 5$, the group \mathbb{A}_{n} is simple
- A simple group is a group with no nontrivial quotients
- No nontrivial subgroup of \mathbb{A}_{n} is preserved by conjugation

Conjugation

- $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right), \quad \sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5\end{array}\right)$
- $\pi^{\prime}(\sigma(x))=\sigma(\pi(x))$
- $\pi^{\prime}=\sigma \pi \sigma^{-1}$
- Elements of this form are conjugates of π

Conjugation Rack

Let $\sigma \triangleright \pi=\sigma \pi \sigma^{-1}$. Then $\tau \triangleright(\sigma \triangleright \pi)=\tau \sigma \pi \sigma^{-1} \tau^{-1}$

$$
\begin{aligned}
& =\tau \sigma \tau^{-1} \tau \pi \tau^{-1} \tau \sigma^{-1} \tau^{-1} \\
& =\tau \sigma \tau^{-1} \tau \pi \tau^{-1} \tau \sigma^{-1} \tau^{-1} \\
& =(\tau \triangleright \sigma) \triangleright(\tau \triangleright \pi) .
\end{aligned}
$$

Properties of \triangleright

- For all $\pi, \sigma, \tau, \quad \tau \triangleright(\sigma \triangleright \pi)=(\tau \triangleright \sigma) \triangleright(\tau \triangleright \pi)$
- For all σ, τ, there is a unique π such that $\sigma \triangleright \pi=\tau$

Any set with a operation satisfying these properties is called a rack.
Conjugacy classes of a group form racks.

Racks in Research

- Pointed Hopf algebras are important algebraic structures
- Research aims to classify finite-dimensional pointed Hopf algebras
- Racks are important!
- Pointed Hopf algebras can be constructed from finite racks

Question

Can we easily determine whether a pointed Hopf algebra constructed from a rack is finite-dimensional?

Type D

- If a rack is of type D, pointed Hopf algebras constructed from it are infinite-dimensional
- It makes sense to attempt to classify finite racks of type D
- Simple racks are "building blocks" for racks
- A simple rack is a rack with no nontrivial quotients
- Simple racks can be constructed from simple groups

Question

Can we determine whether a simple rack constructed from \mathbb{A}_{n} is of type D ?

Previously Unsolved Cases

n	ℓ	Cycle type of ℓ	t
any	id	$\left(1^{n}\right)$	odd, $\operatorname{gcd}(t, n!)=1$
5		$\left(1^{5}\right)$	4
5	involution	$\left(1,2^{2}\right)$	4 , odd
6		$\left(1^{2}, 2^{2}\right)$	odd
8		$\left(2^{4}\right)$	odd
any	order 4	$\left(1^{r_{1}}, 2^{r_{2}}, 4^{r_{4}}\right)$ with $r_{4}>0, r_{2}+r_{4}$ even	2

$\left.\begin{array}{|c|c|c|}\hline n & \text { Cycle type of } \ell(12) & t \\ \hline \text { any } & \left(1^{s_{1}}, 2^{s_{2}}, \ldots, n^{s_{n}}\right) \text { with } s_{1} \leq 1, s_{2}=0, & \text { any } \\ & s_{h} \geq 1 \text { for some } h \text { with } 3 \leq h \leq n & \\ & \left(1^{s_{1}}, 2^{s_{2}}, 4^{s_{4}}\right) \text { with } s_{1} \leq 2 \text { or } s_{2} \geq 1, & 2 \\ & s_{2}+s_{4} \text { odd, } s_{4} \geq 1\end{array}\right]$

Our Results

n	ℓ	Cycle type of ℓ	t
any	id	$\left(1^{n}\right)$	odd, $\operatorname{gcd}(t, n!)=1$
5		$\left(1^{5}\right)$	4
5	involution	$\left(1,2^{2}\right)$	4, odd
6		$\left(1^{2}, 2^{2}\right)$	odd
8		$\left(2^{4}\right)$	odd
any	order 4	$\left(1^{r_{1}}, 2^{r_{2}}, 4^{r_{4}}\right)$ with $r_{4}>0, r_{2}+r_{4}$ even	2

n	Cycle type of $\ell(12)$	t
any	$\left(1^{s_{1}}, 2^{s_{2}}, \ldots, n^{s_{n}}\right)$ with $s_{1} \leq 1, s_{2}=0$, $s_{h} \geq 1$ for some h with $3 \leq h \leq n$	any
	 $\left(1^{s_{1}}, 2^{s_{2}}, 4^{s_{4}}\right)$ with $s_{1} \leq 2$ or $s_{2} \geq 1$, $s_{2}+s_{4}$ odd, $s_{4} \geq 1$	2
5	$\left(1^{3}, 2\right)$	2,4
6	$\left(1^{4}, 2\right)$	2
	$\left(2^{3}\right)$	2
7	$\left(1,2^{3}\right)$	2 odd
8	$\left(1^{2}, 2^{3}\right)$	odd
10	$\left(2^{5}\right)$	odd

Acknowledgements

- Prof. Julia Plavnik and Dr. Héctor Peña Pollastri
- MIT PRIMES
- My family

References

[1] Nicolás Andruskiewitsch and Hans-Jürgen Schneider. "Pointed Hopf Algebras". In: New Directions in Hopf Algebras. Cambridge University Press. 2002, pp. 1-68.
[2] Nicolás Andruskiewitsch et al. "Finite-dimensional pointed Hopf algebras with alternating groups are trivial". In: Annali di Matematica Pura ed Applicata 190.2 (2011), pp. 225-245.
[3] Nicolás Andruskiewitsch et al. "On twisted homogeneous racks of type D". In: Revista de la Union Matematica Argentina 51.2 (2010), pp. 1-16.
[4] Joseph Vulakh. "Twisted homogeneous racks over the alternating groups". In: AMS Contemporary Mathematics (to appear). URL: https://arxiv.org/abs/2305.19136.

