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Motivation

Modular tensor categories (MTCs) are related to a variety of fields:

1 topological quantum field theory

2 topological quantum computation

3 topological phases of matter

4 quantum groups
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Category I

Definition

A category C consists of

1 objects

2 morphisms (maps from objects to each other)

3 composition of morphisms

such that every object has an identity morphism, and the composition of
morphisms is associative.

Definition

A nonzero object X in C is simple if its only subobjects are itself and the
zero object.
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Category II

Let k be a field.

Examples

1 Set
Objects: sets
Morphisms: total functions

2 Vec
Objects: vector spaces over k
Morphisms: k-linear maps
Simple Objects: 1-dimensional vector spaces

3 Grp
Objects: groups
Morphisms: group homomorphisms
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Tensor Categories

Let k be an algebraically closed field of characteristic zero.

Definition (Vague)

A tensor category C is one with

1 an abelian structure for ⊕
2 a monoidal structure for ⊗
3 EndC(1) ∼= k

Examples

1 Vec

2 Rep(G ) for any group G
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Fusion Categories I

Definition (Vague)

A fusion category C is a tensor category such that

1 every object is semisimple

2 there are finitely many simple objects

Examples

1 Vec

2 Rep(G ) for a finite group G
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Fusion Categories II

Definition

The Deligne product of two fusion categories A and B is the fusion
category A⊠ B whose simple objects are X ⊗ Y for X ∈ O(A) and
Y ∈ O(B).

Notation

The set of isomorphism classes of simple objects in a fusion category C will
be denoted as O(C), whose size is the rank of C.
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Frobenius-Perron Dimension

Definition

For each object X in a fusion category C, there is a corresponding real
number called the Frobenius-Perron dimension, which is denoted by
FPdim(X ).

Definition

The Frobenius-Perron dimension FPdim(C) of a fusion category C is
defined as

FPdim(C) :=
∑

X∈O(C)

FPdim(X )2.

The category C is said to be weakly-integral if FPdim(C) ∈ Z and integral
if FPdim(X ) ∈ Z for all X ∈ O(C).
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Invertible Objects

Let X be an object in a fusion category C.

Remark

X is invertible if and only if FPdim(X ) = 1.

Notation

Isomorphism classes of invertible objects in C as a group will be denoted as
G(C).

Remark

A fusion category is pointed if all of its simple objects are invertible. All
fusion pointed categories are classified by group data.
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Modular Categories

Definition

A braiding on a fusion category C is a natural isomorphism

cX ,Y : X ⊗ Y
∼=−→ Y ⊗ X ,

for all X ,Y ∈ C, satisfying the hexagonal axioms.

Definition

A modular category is a braided fusion category equipped with a spherical
structure satisfying an additional non-degeneracy condition.
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Müger centralizer

Definition

Let C be a braided fusion category with braiding cX ,Y : X ⊗ Y
∼=−→ Y ⊗ X .

The Müger centralizer of a fusion subcategory K is the fusion subcategory
K′ of C with objects Y in C satisfying

cY ,X ◦ cX ,Y = idX⊗Y , for all X ∈ K.
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Modular Subcategory

Definition

Let C be a modular category and K be a fusion subcategory of C. Then,
we say that K is a modular subcategory of C if and only if K ∩ K′ = Vec.

Remark (Müger)

If C is a modular category and K is a modular subcategory of C, then we
have the ribbon equivalence

C ≃ K ⊠K′
.
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Classification Technique

Many efforts have been made to classify MTCs of a given rank because of
the following theorem.

Theorem (Bruillard, Ng, Rowell, Wang)

There are finitely many MTCs of a fixed rank (up to equivalence).
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Past Results

Theorem (Bruillard, Plavnik, Rowell)

MTCs of Frobenius-Perron dimension not divisible by 4 are integral.

Theorem (Bruillard, Czenky, Rowell, Gvozdjak, Plavnik)

Odd-dimensional MTCs of rank up to 23 are pointed.

Theorem (Alekseyev, Bruns, Palcoux, Petrov)

MTCs of Frobenius-Perron dimension congruent to 2 modulo 4 and rank
up to 10 are pointed.
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Research Question

Question

Can we advance the classification of MTCs of Frobenius-Perron dimension
congruent to 2 modulo 4 by rank?

However, we later noticed a connection between odd-dimensional MTCs
and those of Frobenius-Perron dimension congruent to 2 modulo 4.

Question

Can we find a relationship between odd-dimensional MTCs and those of
Frobenius-Perron dimension congruent to 2 modulo 4?
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Factorization Result I

The following is our main result.

Theorem

Let C be an MTC with FPdim(C) ≡ 2 (mod 4). Then, C ∼= C̃ ⊠ semion,
where C̃ is an odd-dimensional modular category and semion is the rank 2
pointed modular category.

From the low rank classification of odd-dimensional MTCs, we have:

Corollary

MTCs with Frobenius-Perron dimension congruent to 2 modulo 4 and rank
up to 46 are pointed.

21 / 27



Factorization Result II

We were able to generalize the previous theorem to the following.

Theorem

Let C be a weakly-integral MTC and p be an odd prime dividing |G(C)|. If
p has multiplicity 1 in FPdim(C), then C ∼= C̃ ⊠ P for C̃ an MTC of
Frobenius-Perron dimension not divisible by p and P a pointed MTC of
rank p.
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