On Modular Categories With Frobenius-Perron Dimension Congruent to 2 Modulo 4

Akshaya Chakravarthy Mentors: Agustina Czenky and Julia Plavnik

Thomas Jefferson High School for Science and Technology

October 14, 2023 MIT PRIMES Conference

イロト 不得 トイヨト イヨト

1/27

1 Introduction

2 Preliminaries

- 3 Previous Results
- Our Project
- 5 Our Results
- 6 Acknowledgments

Modular tensor categories (MTCs) are related to a variety of fields:

- topological quantum field theory
- topological quantum computation
- topological phases of matter
- quantum groups

Introduction

2 Preliminaries

- 3 Previous Results
- Our Project
- 5 Our Results
- 6 Acknowledgments

Category I

Definition

A category $\mathcal C$ consists of

- objects
- Image of the second second
- Operation of morphisms

such that every object has an identity morphism, and the composition of morphisms is associative.

Definition

A nonzero object X in C is *simple* if its only subobjects are itself and the zero object.

Category II

Let \mathbf{k} be a field.

Examples

Set

- Objects: sets
- Morphisms: total functions

2 Vec

- Objects: vector spaces over **k**
- Morphisms: k-linear maps
- Simple Objects: 1-dimensional vector spaces

Grp

- Objects: groups
- Morphisms: group homomorphisms

Let ${\bf k}$ be an algebraically closed field of characteristic zero.

Definition (Vague)

- A tensor category ${\mathcal C}$ is one with
 - $\textcircled{0} \hspace{0.1 cm} \text{an abelian structure for} \hspace{0.1 cm} \oplus \hspace{0.1 cm}$
 - 2) a monoidal structure for \otimes
 - End_{\mathcal{C}}(1) \cong k

Examples

2 $\operatorname{Rep}(G)$ for any group G

Definition (Vague)

A fusion category ${\mathcal C}$ is a tensor category such that

- every object is semisimple
- there are finitely many simple objects

Examples

2 $\operatorname{Rep}(G)$ for a finite group G

The *Deligne product* of two fusion categories A and B is the fusion category $A \boxtimes B$ whose simple objects are $X \otimes Y$ for $X \in \mathcal{O}(A)$ and $Y \in \mathcal{O}(B)$.

Notation

The set of isomorphism classes of simple objects in a fusion category C will be denoted as $\mathcal{O}(C)$, whose size is the *rank* of C.

For each object X in a fusion category C, there is a corresponding real number called the *Frobenius-Perron dimension*, which is denoted by FPdim(X).

Definition

The Frobenius-Perron dimension $\mathsf{FPdim}(\mathcal{C})$ of a fusion category \mathcal{C} is defined as

$$\mathsf{FPdim}(\mathcal{C}) := \sum_{X \in \mathcal{O}(\mathcal{C})} \mathsf{FPdim}(X)^2.$$

The category C is said to be *weakly-integral* if $FPdim(C) \in \mathbb{Z}$ and *integral* if $FPdim(X) \in \mathbb{Z}$ for all $X \in O(C)$.

Let X be an object in a fusion category C.

Remark

X is invertible if and only if FPdim(X) = 1.

Notation

Isomorphism classes of invertible objects in ${\cal C}$ as a group will be denoted as ${\cal G}({\cal C}).$

Remark

A fusion category is *pointed* if all of its simple objects are invertible. All fusion pointed categories are classified by group data.

A braiding on a fusion category ${\mathcal C}$ is a natural isomorphism

$$c_{X,Y}: X \otimes Y \xrightarrow{\cong} Y \otimes X,$$

for all $X, Y \in C$, satisfying the hexagonal axioms.

Definition

A *modular category* is a braided fusion category equipped with a spherical structure satisfying an additional non-degeneracy condition.

Let \mathcal{C} be a braided fusion category with braiding $c_{X,Y} : X \otimes Y \xrightarrow{\cong} Y \otimes X$. The *Müger centralizer* of a fusion subcategory \mathcal{K} is the fusion subcategory \mathcal{K}' of \mathcal{C} with objects Y in \mathcal{C} satisfying

$$c_{Y,X} \circ c_{X,Y} = \operatorname{id}_{X \otimes Y}, \text{ for all } X \in \mathcal{K}.$$

Let C be a modular category and \mathcal{K} be a fusion subcategory of C. Then, we say that \mathcal{K} is a *modular subcategory* of C if and only if $\mathcal{K} \cap \mathcal{K}' =$ **Vec**.

Remark (Müger)

If ${\cal C}$ is a modular category and ${\cal K}$ is a modular subcategory of ${\cal C},$ then we have the ribbon equivalence

$$\mathcal{C}\simeq\mathcal{K}\boxtimes\mathcal{K}'.$$

Introduction

2 Preliminaries

- 3 Previous Results
 - 4 Our Project
- 5 Our Results
- 6 Acknowledgments

Many efforts have been made to classify MTCs of a given rank because of the following theorem.

Theorem (Bruillard, Ng, Rowell, Wang)

There are finitely many MTCs of a fixed rank (up to equivalence).

Theorem (Bruillard, Plavnik, Rowell)

MTCs of Frobenius-Perron dimension not divisible by 4 are integral.

Theorem (Bruillard, Czenky, Rowell, Gvozdjak, Plavnik)

Odd-dimensional MTCs of rank up to 23 are pointed.

Theorem (Alekseyev, Bruns, Palcoux, Petrov)

MTCs of Frobenius-Perron dimension congruent to 2 modulo 4 and rank up to 10 are pointed.

Introduction

2 Preliminaries

3 Previous Results

Our Project

- 5 Our Results
- 6 Acknowledgments

Question

Can we advance the classification of MTCs of Frobenius-Perron dimension congruent to 2 modulo 4 by rank?

However, we later noticed a connection between odd-dimensional MTCs and those of Frobenius-Perron dimension congruent to 2 modulo 4.

Question

Can we find a relationship between odd-dimensional MTCs and those of Frobenius-Perron dimension congruent to 2 modulo 4?

Introduction

2 Preliminaries

3 Previous Results

Our Project

6 Acknowledgments

The following is our main result.

Theorem

Let C be an MTC with $FPdim(C) \equiv 2 \pmod{4}$. Then, $C \cong \widetilde{C} \boxtimes$ semion, where \widetilde{C} is an odd-dimensional modular category and semion is the rank 2 pointed modular category.

From the low rank classification of odd-dimensional MTCs, we have:

Corollary

MTCs with Frobenius-Perron dimension congruent to 2 modulo 4 and rank up to 46 are pointed.

We were able to generalize the previous theorem to the following.

Theorem

Let C be a weakly-integral MTC and p be an odd prime dividing $|\mathcal{G}(C)|$. If p has multiplicity 1 in FPdim(C), then $C \cong \tilde{C} \boxtimes \mathcal{P}$ for \tilde{C} an MTC of Frobenius-Perron dimension not divisible by p and \mathcal{P} a pointed MTC of rank p.

Introduction

2 Preliminaries

3 Previous Results

Our Project

5 Our Results

6 Acknowledgments

The following people have helped make this research possible.

- Implementation of the second state of the s
- the MIT PRIMES-USA program and its directors
- C. Galindo
- O C. Jones
- My family

Introduction

2 Preliminaries

- 3 Previous Results
- Our Project
- 5 Our Results
- 6 Acknowledgments

- Alekseyev M., Bruns W., Palcoux S., Petrov F., Classification of Modular Data of Integral Modular Fusion Categories up to Rank 12. Preprint arXiv:2302.01613, (2023).
- Bruillard P., Ng S., Rowell E., Wang Z., Rank-Finiteness for Modular Categories, Journal of the American Mathematical Society 29, no. 3, (2016), 857-81.
- Bruillard P., Plavnik J., Rowell E., Modular Categories of Dimension p³m with m Square-Free, Proceedings of the American Mathematical Society 147, no. 1, (2019), 21-34.
- Bruillard P., Rowell E., Modular categories, integrality and Egyptian fractions, Proceedings of the American Mathematical Society 140, no. 4, (2012), 1141-1150.
- Czenky A., Gvozdjak W., Plavnik J., Classification of low-rank odd-dimensional modular categories. Preprint arXiv:2305.14542 (2023).

- Czenky A., Plavnik J., On odd-dimensional modular tensor categories, Algebra & Number Theory 16, no. 8, (2022), 1919-1939.
- Gelaki S., Nikshych D., Nilpotent fusion categories, Advances in Mathematics 217, no. 3, (2008), 1053-1071.
 - Müger M., On the Structure of Modular Categories, Proceedings of the London Mathematical Society 87, (2003), 291-308.