Cyclic Base Orderings and Equitability of Matroids

Raymond Luo

MIT PRIMES-USA, Mentor: Yuchong Pan

October 14, 2023

Table of Contents

(1) Graph Theory Review
(2) Matroids
(3) Research and Open Questions
(9) Acknowledgements

Opening Question

There are 4 train stations connected by 4 train tracks.

Opening Question

Can you order the 4 train tracks in a circle such that every 3 consecutive train tracks "connects" the 4 train stations (i.e. with only the 3 train tracks, any two stations are connected)?

Quick Review of Graph Theory...

A graph G is an ordered pair (V, E).

- V is called the vertex set, whose elements are called vertices.
- E is called the edge set and is comprised of paired vertices, which are called edges.

Example

Let G be the graph shown below.

Example

Let G be the graph shown below.

- $V=\{1,2,3,4,5,6\}$
- $E=\{(4,6),(4,3),(4,5),(3,2),(5,2),(5,1),(2,1)\}$.

Cycles

A cycle C is a path (sequence of consecutive edges) that starts and ends at the same vertex.

Cycles

A cycle C is a path (sequence of consecutive edges) that starts and ends at the same vertex.

A graph with no cycles is said to be acyclic.

Example

Let G be the graph shown below.

Example

Let G be the graph shown below.

Examples of cycles in G

- $(5,1),(1,2),(2,5)$.
- $(4,3),(3,2),(2,5),(5,4)$.

Subgraphs

A subgraph of a graph $G=(V, E)$ is another graph formed from a subset of V and all of the edges from G that connect vertices in the subset.

Example

Let G be the graph shown below.

Example

Let G be the graph shown below.

Examples of subgraphs of G

- $V=\{1,2,5\}, E=\{(1,2),(2,5),(5,1)\}$.
- $V=\{2,3,4,5\}, E=\{(2,5),(5,4),(4,3),(3,2)\}$.

Spanning Trees

A spanning tree of a graph G is an acyclic subgraph with $|V|$ vertices and $|V|-1$ edges.

Example

Let G be the graph shown below.

Example

Let G be the graph shown below.

Examples of spanning trees of G

- $V=\{1,2,3,4,5,6\}, E=\{(6,4),(4,3),(3,2),(2,5),(5,1)\}$
- $V=\{1,2,3,4,5,6\}, E=\{(6,4),(4,5),(5,1),(1,2),(2,3)\}$.

Opening Question Reformulated

Can you create a cyclic ordering of the edges such that each three consecutive edges forms a spanning tree?

Opening Question

Yes...in fact, every cyclic ordering of the edges works!

Opening Question

Yes...in fact, every cyclic ordering of the edges works!

Which graphs have this property?

Opening Question

Yes...in fact, every cyclic ordering of the edges works!

Which graphs have this property?
That is, for which graphs $G=(V, E)$ can we order the edges of G in a circle such that every $|V|-1$ consecutive edges induce a spanning tree?

Table of Contents

(1) Graph Theory Review
(2) Matroids
(3) Research and Open Questions
(9) Acknowledgements

Matroids

It turns out that we can generalize this question even more with a combinatorial structure known as a matroid.

Matroids

It turns out that we can generalize this question even more with a combinatorial structure known as a matroid.

Matroids are structures that generalize the notion of spanning trees in graph theory and linear independence in linear algebra.

Matroids

It turns out that we can generalize this question even more with a combinatorial structure known as a matroid.

Matroids are structures that generalize the notion of spanning trees in graph theory and linear independence in linear algebra.

Formally...a matroid is an ordered pair $M=(E, \mathcal{I})$, where E is a set called the ground set and \mathcal{I} is a family of subsets of E known as the independent sets.

Matroids

It turns out that we can generalize this question even more with a combinatorial structure known as a matroid.

Matroids are structures that generalize the notion of spanning trees in graph theory and linear independence in linear algebra.

Formally...a matroid is an ordered pair $M=(E, \mathcal{I})$, where E is a set called the ground set and \mathcal{I} is a family of subsets of E known as the independent sets.
M must satisfy the following axioms as well:

Matroids

It turns out that we can generalize this question even more with a combinatorial structure known as a matroid.

Matroids are structures that generalize the notion of spanning trees in graph theory and linear independence in linear algebra.

Formally...a matroid is an ordered pair $M=(E, \mathcal{I})$, where E is a set called the ground set and \mathcal{I} is a family of subsets of E known as the independent sets.
M must satisfy the following axioms as well:

- If $A \in \mathcal{I}$, then any subset of A is in \mathcal{I} as well. That is, if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- If $A, B \in \mathcal{I}$ and $|A|>|B|$, then there exists an element $e \in A \backslash B$ such that $B \cup\{e\} \in \mathcal{I}$ as well.
Note: If $A \in \mathcal{I}$, then A is said to be independent.

Bases

We call the maximal independent sets of a matroid bases.

Bases

We call the maximal independent sets of a matroid bases.
It can be shown from the matroid axioms that all bases have equal cardinality, call it r.

Examples of Matroids

- Free Matroid: Let E be a set and let \mathcal{I} contain all subsets of E. Then, (E, \mathcal{I}) is a matroid.

Examples of Matroids

- Free Matroid: Let E be a set and let \mathcal{I} contain all subsets of E. Then, (E, \mathcal{I}) is a matroid.
- Uniform Matroid: Let E be a set, $k \leq|E|$ be a positive integer. Define

$$
\mathcal{I}=\{S \subseteq E:|S| \leq k\}
$$

Then, (E, \mathcal{I}) is a matroid.

Examples of Matroids

- Free Matroid: Let E be a set and let \mathcal{I} contain all subsets of E. Then, (E, \mathcal{I}) is a matroid.
- Uniform Matroid: Let E be a set, $k \leq|E|$ be a positive integer. Define

$$
\mathcal{I}=\{S \subseteq E:|S| \leq k\}
$$

Then, (E, \mathcal{I}) is a matroid.

- Graphic Matroid: Let $G=(V, E)$ be a graph. Define
$\mathcal{I}=\{S \subseteq E:$ the subgraph induced by S does not induce a cycle $\}$.
Then, (E, \mathcal{I}) is a matroid.

Examples of Matroids

- Free Matroid: Let E be a set and let \mathcal{I} contain all subsets of E. Then, (E, \mathcal{I}) is a matroid.
- Uniform Matroid: Let E be a set, $k \leq|E|$ be a positive integer. Define

$$
\mathcal{I}=\{S \subseteq E:|S| \leq k\}
$$

Then, (E, \mathcal{I}) is a matroid.

- Graphic Matroid: Let $G=(V, E)$ be a graph. Define
$\mathcal{I}=\{S \subseteq E:$ the subgraph induced by S does not induce a cycle $\}$.
Then, (E, \mathcal{I}) is a matroid.
- Linear Matroid: Let A be a $m \times n$ matrix, $E=\{1, \ldots, n\}$. Define
$\mathcal{I}=\{S \subseteq E:$ the columns indexed by S are linearly independent $\}$.
Then, (E, \mathcal{I}) is a matroid.

Table of Contents

(1) Graph Theory Review
(2) Matroids
(3) Research and Open Questions
(9) Acknowledgements

Cyclic Base Orderings

A cyclic base ordering of a matroid $M=(E, \mathcal{I})$ is a cyclic ordering of the elements of E such that every r consecutive elements in the ordering form a base.

Cyclic Base Orderings

A cyclic base ordering of a matroid $M=(E, \mathcal{I})$ is a cyclic ordering of the elements of E such that every r consecutive elements in the ordering form a base.

Conjecture (Kajitani et al. [1], 1988)
Let $M=(E, \mathcal{I})$ be a matroid. Suppose we can partition the ground set E into $k=\frac{|E|}{r}$ bases. Then, there exists a cyclic base ordering of M.

Cyclic Base Orderings

A cyclic base ordering of a matroid $M=(E, \mathcal{I})$ is a cyclic ordering of the elements of E such that every r consecutive elements in the ordering form a base.

Conjecture (Kajitani et al. [1], 1988)
Let $M=(E, \mathcal{I})$ be a matroid. Suppose we can partition the ground set E into $k=\frac{|E|}{r}$ bases. Then, there exists a cyclic base ordering of M.

Note: this is the same as the cyclic ordering in the opening question!

Cyclic Base Orderings

A cyclic base ordering of a matroid $M=(E, \mathcal{I})$ is a cyclic ordering of the elements of E such that every r consecutive elements in the ordering form a base.

Conjecture (Kajitani et al. [1], 1988)
Let $M=(E, \mathcal{I})$ be a matroid. Suppose we can partition the ground set E into $k=\frac{|E|}{r}$ bases. Then, there exists a cyclic base ordering of M.

Note: this is the same as the cyclic ordering in the opening question!

- Kajitani et al. proved the conjecture for the $k=2$ case of graphic matroids.
- The graphic matroids of 2-trees, 3-trees, complete bipartite graphs, and other graph classes have been shown to exhibit cyclic base orderings.
- Unsolved for graphic matroids when $k \geq 3$ and linear matroids when $k \geq 2$

Extension of $k=2$ case for Graphic Matroids

Kajitani et al. only proved the existence of a cyclic ordering for the $k=2$ case. We provide an extension on the structure of that ordering.

Extension of $k=2$ case for Graphic Matroids

Kajitani et al. only proved the existence of a cyclic ordering for the $k=2$ case. We provide an extension on the structure of that ordering.

Theorem (L., Pan)
Suppose a graph can be decomposed into two edge-disjoint spanning trees T_{1} and T_{2}. Then, its graphic matroid contains a cyclic base ordering where r consecutive elements are the edges of T_{1} and the other r consecutive elements are the edges of T_{2}.

Matchings

A matching M on a graph is a set of edges without common vertices.

Matchings

A matching M on a graph is a set of edges without common vertices.

Matchings

A matching M on a graph is a set of edges without common vertices.

- A maximum matching is a matching that contains the largest number of edges. The matching number, denoted $\nu(G)$, is the size of a maximum matching.

Matchings

A matching M on a graph is a set of edges without common vertices.

- A maximum matching is a matching that contains the largest number of edges. The matching number, denoted $\nu(G)$, is the size of a maximum matching.
- The above matching is maximum.

Two necessary conditions for cyclic base orderings

Let $G=(V, E)$ be a graph. Define

$$
\mathcal{I}=\{S \subseteq V: S \text { can be covered by a matching }\} .
$$

Then, $M=(V, \mathcal{I})$ is called the matching matroid of G.

Two necessary conditions for cyclic base orderings

Let $G=(V, E)$ be a graph. Define

$$
\mathcal{I}=\{S \subseteq V: S \text { can be covered by a matching }\}
$$

Then, $M=(V, \mathcal{I})$ is called the matching matroid of G.
Lemma (L., Pan)
Let G be a graph. The matching matroid of G has no cyclic base ordering if $4 \nu(G) \leq|V|$.

Two necessary conditions for cyclic base orderings

Let $G=(V, E)$ be a graph. Define

$$
\mathcal{I}=\{S \subseteq V: S \text { can be covered by a matching }\} .
$$

Then, $M=(V, \mathcal{I})$ is called the matching matroid of G.
Lemma (L., Pan)
Let G be a graph. The matching matroid of G has no cyclic base ordering if $4 \nu(G) \leq|V|$.

Lemma (L., Pan)
Let G be a bipartite graph with vertex partition A and B. If $|A| \neq|B|$, the matching matroid of G has no cyclic base ordering.

Equitability

Conjecture

Let $M=(E, \mathcal{I})$ be a matroid. If the ground set E can be partitioned into 2 bases, then for any set $X \subseteq E$, there is a basis B such that $E \backslash B$ is also a base and $\lfloor|X| / 2 \mid\rfloor \leq|B \cap X| \leq\lceil|X| / 2\rceil$.

Matroids that satisfy the conjecture are said to be equitable.

Equitability

Conjecture

Let $M=(E, \mathcal{I})$ be a matroid. If the ground set E can be partitioned into 2 bases, then for any set $X \subseteq E$, there is a basis B such that $E \backslash B$ is also a base and $\lfloor|X| / 2 \mid\rfloor \leq|B \cap X| \leq\lceil|X| / 2\rceil$.

Matroids that satisfy the conjecture are said to be equitable.
Note: If a matroid satisfies Kajitani's conjecture for $k=2 \ldots$ then it is equitable...can you see why?

Equitability

Conjecture

Let $M=(E, \mathcal{I})$ be a matroid. If the ground set E can be partitioned into 2 bases, then for any set $X \subseteq E$, there is a basis B such that $E \backslash B$ is also a base and $\lfloor|X| / 2 \mid\rfloor \leq|B \cap X| \leq\lceil|X| / 2\rceil$.

Matroids that satisfy the conjecture are said to be equitable.
Note: If a matroid satisfies Kajitani's conjecture for $k=2 \ldots$..then it is equitable...can you see why?

For any set $X \subseteq E$, there exists a base in the cyclic base ordering that satisfies the condition.

Table of Contents

(1) Graph Theory Review
(2) Matroids
(3) Research and Open Questions
(1) Acknowledgements

Acknowledgements

- I would like to express my deepest thanks to my PRIMES mentor, Yuchong Pan, for suggesting this research project and providing invaluable guidance throughout the past year.
- I would also like to thank Dr. Tanya Khovanava, the MIT mathematics department, and the MIT PRIMES-USA Program for providing me with this research opportunity.

References

[1] Y. Kajitani, S. Ueno, and H. Miyano, "Ordering of the elements of a matroid such that its consecutive w elements are independent," Discrete Mathematics, vol. 72, no. 1-3, pp. 187-194, 1988.

Thank you!

