On the Winning and Losing Conditions of Schmidt's Games

Eric Zhan
mentor: Vasiliy Nekrasov

10/14/2023
MIT PRIMES Conference

Schmidt's game in \mathbb{R}^{n}

Let $0<\alpha, \beta<1$, and let $S \subset \mathbb{R}^{n}$. The game is played by two players: Alice and Bob. Bob starts first, and picks any ball B_{0} with radius $r\left(B_{0}\right)$:

Schmidt's game in \mathbb{R}^{n}

Let $0<\alpha, \beta<1$, and let $S \subset \mathbb{R}^{n}$. The game is played by two players: Alice and Bob. Bob starts first, and picks any ball B_{0} with radius $r\left(B_{0}\right)$:

Schmidt's game in \mathbb{R}^{n}

Then, Alice will play a ball A_{0} such that $A_{0} \subset B_{0}$ and $r\left(A_{0}\right)=\alpha r\left(B_{0}\right):$

Schmidt's game in \mathbb{R}^{n}

Then, Bob will play a ball B_{1} such that $B_{1} \subset A_{0}$ and $r\left(B_{1}\right)=\beta r\left(A_{0}\right)$:

Schmidt's game in \mathbb{R}^{n}

Both players continue playing indefinitely, alternating balls, where

$$
r\left(A_{i}\right)=\alpha r\left(B_{i}\right), r\left(B_{i+1}\right)=\beta r\left(A_{i}\right) \text { for all } i=0,1, \ldots
$$

Schmidt's game in \mathbb{R}^{n}

Both players continue playing indefinitely, alternating balls, where

$$
r\left(A_{i}\right)=\alpha r\left(B_{i}\right), r\left(B_{i+1}\right)=\beta r\left(A_{i}\right) \text { for all } i=0,1, \ldots
$$

Schmidt's game in \mathbb{R}^{n}

If the limit point

$$
x=\bigcap_{i=0}^{\infty} A_{i}=\bigcap_{i=0}^{\infty} B_{i}
$$

is in S, then Alice wins. If not, Bob wins.

Schmidt's game in \mathbb{R}^{n}

We say S is (α, β)-winning if Alice is able to win no matter how Bob plays. Clearly, S in this example is not (α, β)-winning:

Schmidt's game in \mathbb{R}

Let $0<\alpha, \beta<1$. Suppose that two players Bob and Alice choose in turn a nested sequence of closed intervals in \mathbb{R} :

$$
B_{0} \supset A_{0} \supset B_{1} \supset \ldots
$$

with the property

$$
\left|A_{i}\right|=\alpha\left|B_{i}\right|,\left|B_{i+1}\right|=\beta\left|A_{i}\right| \text { for all } i=0,1, \ldots
$$

A set $S \subset \mathbb{R}$ is (α, β)-winning if Alice can pick intervals $\left\{A_{i}\right\}$ guaranteeing that the intersection

$$
x=\bigcap_{i=0}^{\infty} A_{i}=\bigcap_{i=0}^{\infty} B_{i}
$$

is in S no matter how Bob plays.

Trivial Example

Lemma
Let $S=(-\infty, P) \cup(P, \infty)$. If $1-2 \alpha+\alpha \beta \leq 0$, then S is (α, β)-losing.
Proof.
Bob selects B_{0} centered at $P \subset S$. For all future turns, no matter what Alice plays, it is always possible for Bob to play such that B_{i} is centered at P. Clearly, the limit point is P. Therefore, Bob wins.
\qquad

Trivial Example

Lemma
Let $S=(-\infty, P) \cup(P, \infty)$. If $1-2 \alpha+\alpha \beta \leq 0$, then S is (α, β)-losing.
Proof.
Bob selects B_{0} centered at $P \subset S$. For all future turns, no matter what Alice plays, it is always possible for Bob to play such that B_{i} is centered at P. Clearly, the limit point is P. Therefore, Bob wins.
\qquad

Trivial Example

Lemma
Let $S=(-\infty, P) \cup(P, \infty)$. If $1-2 \alpha+\alpha \beta \leq 0$, then S is (α, β)-losing.
Proof.
Bob selects B_{0} centered at $P \subset S$. For all future turns, no matter what Alice plays, it is always possible for Bob to play such that B_{i} is centered at P. Clearly, the limit point is P. Therefore, Bob wins.
\qquad

Schmidt Diagrams

Definition

Denote by I the open unit square:

$$
I:=\{(\alpha, \beta): 0<\alpha, \beta<1\}=(0,1) \times(0,1) .
$$

For any S, define the Schmidt Diagram $D(S)$ of S as the set of all pairs $(\alpha, \beta) \in I$ such that S is (α, β)-winning.

Schmidt Diagrams

Definition

Let

$$
\check{D}:=\{(\alpha, \beta) \in I: 1-2 \beta+\alpha \beta \leq 0\}
$$

and

$$
\hat{D}:=\{(\alpha, \beta) \in I: 1-2 \alpha+\alpha \beta>0\}
$$

There are only four Schmidt Diagrams that are completely described: \emptyset, \check{D}, \hat{D}, and I.
Lemma
If S is dense and $S \neq \mathbb{R}$, then $\check{D} \subseteq D(S) \subseteq \hat{D}$.

Properties of Schmidt Diagrams

Lemma

If S is (α, β)-winning, $\alpha^{\prime} \beta^{\prime}=\alpha \beta$, and $\alpha^{\prime}<\alpha$, then S is also ($\alpha^{\prime}, \beta^{\prime}$)-winning.

Properties of Schmidt Diagrams

Lemma

If S is (α, β)-winning, $\alpha^{\prime} \beta^{\prime}=\alpha \beta$, and $\alpha^{\prime}<\alpha$, then S is also ($\alpha^{\prime}, \beta^{\prime}$)-winning.

Lemma

If S is (α, β)-winning and $\alpha^{\prime}<\alpha$, it does not follow that S is (α^{\prime}, β)-winning.

Diophantine Approximations

Diophantine Approximations deal with the approximation of real numbers using rational numbers.

Example

$\sqrt{2}$ can be approximated by the sequence of fractions

$$
\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \ldots
$$

Diophantine Approximations

Diophantine Approximations deal with the approximation of real numbers using rational numbers.

Example

$\sqrt{2}$ can be approximated by the sequence of fractions

$$
\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \ldots
$$

Theorem
For any irrational number x, there exists infinitely many pairs of integers p, q such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

Variations

Theorem

For any irrational number x, there exists infinitely many pairs of integers p, k such that

$$
\left|x-\frac{p}{2^{k}}\right|<\frac{1}{2^{k}} .
$$

Let's consider

2-BA $:=\left\{x \in \mathbb{R}:\left|x-\frac{m}{2^{n}}\right|>\frac{c}{2^{n}}\right.$ for some $c>0$ and all $\left.m \in \mathbb{Z}, n \in \mathbb{N}\right\}$.
Theorem
Despite having zero Lebesgue measure, $D(2-B A)=\hat{D}$.

Variations

Define
2-BA $(c, N):=\left\{x \in \mathbb{R}:\left|x-\frac{m}{2^{k}}\right|>\frac{c}{2^{k}}\right.$ for all $m \in \mathbb{Z}, k \in \mathbb{N}$ s.t. $\left.k>N\right\}$,

$$
2-\mathrm{BA}(c):=\bigcup_{N \in \mathbb{N}} 2-\mathrm{BA}(c, N) .
$$

Its complement is equivalent to

$$
2-\mathrm{BA}(c)^{c}=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty}\left(\bigcup_{m \in \mathbb{Z}}\left[\frac{m}{2^{n}}-\frac{c}{2^{n}}, \frac{m}{2^{n}}+\frac{c}{2^{n}}\right]\right) .
$$

2-BA(c) bounds

Digit Frequencies

Definition

Consider the base-2 expansions of the form $x=x_{0} \cdot x_{1} x_{2} \cdots$ where x_{0} is an integer and $x_{i} \in\{0,1\}$ are the digits in the base-2 expansion of x. We define

$$
d^{-}(x, j)=\liminf _{k \rightarrow \infty} \frac{\#\left\{1 \leq i \leq k: x_{i}=j\right\}}{k} .
$$

and the set

$$
D_{c}^{-}=\left\{x \in \mathbb{R}: d^{-}(x, 0)>c\right\} .
$$

Example
If $x=0.0101010101 \ldots$, then $d^{-}(x, 0)=\frac{1}{2}$.

Instead of focusing on a method to win, focus on overarching strategies as elements.
Theorem
The set $D_{1 / 2}^{-}$is losing for $\alpha \geq \beta$.

Instead of focusing on a method to win, focus on overarching strategies as elements.
Theorem
The set $D_{1 / 2}^{-}$is losing for $\alpha \geq \beta$.

Conjecture

The set $D_{1 / 2}^{-}$is winning for $\alpha<\beta$.

- Not trivially easy to prove, since the game is still inherently asymmetric: Bob picks his interval first.
- Furthermore, the $d^{-}(x, 0)=1 / 2$ case makes things complicated.
- If proven true, this will produce a fifth completely described Schmidt Diagram.

Acknowledgements

I would like to thank

- Vasiliy Nekrasov, my PRIMES mentor, for his helpful guidance and support through the research process.
- Prof. Dmitry Kleinbock, for the project proposal and his valuable suggestions in research paths.
- Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the other PRIMES organizers, for providing me the wonderful opportunity to conduct math research through MIT-PRIMES.

References

- P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. reine angew, Math. (1909).
- Á. Farkas and J. Fraser and E. Nesharim and D. Simmons, Schmidt's game on Hausdorff metric and function spaces: generic dimension of sets and images, arXiv e-prints (2021),
https://arxiv.org/pdf/1907.07394.pdf.
- S. Kalia and M. Zanger-Tishler, On the Winning and Losing Parameters of Schmidt's Game, PRIMES Preprint (2012),
https://math.mit.edu/research/highschool/primes/materials/2012/Zanger-Tishler-Kalia.pdf.
- J. Nilsson, The Fine Structure of Dyadically Badly Approximable Numbers, arXiv e-prints (2010), https://arxiv.org/pdd/1002.4614.pdf.
- T. Persson and J. Schmeling, Dyadic Diophantine Approximation and Katok's Horseshoe Approximation, Acta Arithmetica 132 (2008), 3, 205-230.
- W.M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178-199.
- B. Volkmann. Gewinnmengen, Arch. Math., 10 (1959), 235-240.

Thank you for your attention!

