Extremal Bounds on Peripherality Measures

Linus Tang
Mentor: Dr. Jesse Geneson
Davidson Academy Online

October 14, 2023
MIT PRIMES Conference

Conventions

Conventions

Finite simple graphs, usually connected. The name of the graph is always G and the number of vertices is always denoted n.

Centrality and Peripherality

Centrality and Peripherality

Definition

A centrality measure is an approximate descriptor of the importance or influence of a vertex in a graph.

Centrality and Peripherality

Definition

A centrality measure is an approximate descriptor of the importance or influence of a vertex in a graph.

Definition

A peripherality measure is the opposite of a centrality measure; peripheral vertices are the least important in a graph.

Applications

Applications

- Atmospheric networks

Applications

- Atmospheric networks
- Neural networks

Applications

- Atmospheric networks
- Neural networks
- Contact networks

Definitions

Definitions

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1 ; n_{G}\left(v_{3}, v_{1}\right)=2$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1 ; n_{G}\left(v_{3}, v_{1}\right)=2$
$n_{G}\left(v_{2}, v_{3}\right)=2$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1 ; n_{G}\left(v_{3}, v_{1}\right)=2$
$n_{G}\left(v_{2}, v_{3}\right)=2 ; n_{G}\left(v_{3}, v_{2}\right)=1$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1 ; n_{G}\left(v_{3}, v_{1}\right)=2$
$n_{G}\left(v_{2}, v_{3}\right)=2 ; n_{G}\left(v_{3}, v_{2}\right)=1$
$n_{G}\left(v_{3}, v_{4}\right)=1$

Definitions

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).
$n_{G}\left(v_{1}, v_{2}\right)=1 ; n_{G}\left(v_{2}, v_{1}\right)=3$
$n_{G}\left(v_{1}, v_{3}\right)=1 ; n_{G}\left(v_{3}, v_{1}\right)=2$
$n_{G}\left(v_{2}, v_{3}\right)=2 ; n_{G}\left(v_{3}, v_{2}\right)=1$
$n_{G}\left(v_{3}, v_{4}\right)=1 ; n_{G}\left(v_{4}, v_{3}\right)=1$

Peripherality

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v.

Peripherality

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v.
Vaguely speaking, $n_{G}(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Peripherality

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v.
Vaguely speaking, $n_{G}(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Definition

The peripherality of a vertex, denoted peri (v), is the number of vertices x such that $n_{G}(x, v)>n_{G}(v, x)$.

Peripherality

Definition

$n_{G}(u, v)$ is the number of vertices closer to u than to v.
Vaguely speaking, $n_{G}(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Definition

The peripherality of a vertex, denoted peri (v), is the number of vertices x such that $n_{G}(x, v)>n_{G}(v, x)$.

Definition

The peripherality of a graph is the sum of the peripheralities of its vertices.

Peripherality Example

Peripherality Example

$$
\begin{aligned}
& n_{G}\left(v_{1}, v_{2}\right)<n_{G}\left(v_{2}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{3}\right)<n_{G}\left(v_{3}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{4}\right)<n_{G}\left(v_{4}, v_{1}\right) \\
& n_{G}\left(v_{3}, v_{2}\right)<n_{G}\left(v_{2}, v_{3}\right) \\
& n_{G}\left(v_{4}, v_{2}\right)<n_{G}\left(v_{2}, v_{4}\right) \\
& n_{G}\left(v_{3}, v_{4}\right)=n_{G}\left(v_{4}, v_{3}\right) \\
& \operatorname{peri}\left(v_{1}\right)=0
\end{aligned}
$$

Peripherality Example

$$
\begin{aligned}
& n_{G}\left(v_{1}, v_{2}\right)<n_{G}\left(v_{2}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{3}\right)<n_{G}\left(v_{3}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{4}\right)<n_{G}\left(v_{4}, v_{1}\right) \\
& n_{G}\left(v_{3}, v_{2}\right)<n_{G}\left(v_{2}, v_{3}\right) \\
& n_{G}\left(v_{4}, v_{2}\right)<n_{G}\left(v_{2}, v_{4}\right) \\
& n_{G}\left(v_{3}, v_{4}\right)=n_{G}\left(v_{4}, v_{3}\right) \\
& \operatorname{peri}\left(v_{2}\right)=3
\end{aligned}
$$

Peripherality Example

$$
\begin{aligned}
& n_{G}\left(v_{1}, v_{2}\right)<n_{G}\left(v_{2}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{3}\right)<n_{G}\left(v_{3}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{4}\right)<n_{G}\left(v_{4}, v_{1}\right) \\
& n_{G}\left(v_{3}, v_{2}\right)<n_{G}\left(v_{2}, v_{3}\right) \\
& n_{G}\left(v_{4}, v_{2}\right)<n_{G}\left(v_{2}, v_{4}\right) \\
& n_{G}\left(v_{3}, v_{4}\right)=n_{G}\left(v_{4}, v_{3}\right) \\
& \operatorname{peri}\left(v_{3}\right)=1
\end{aligned}
$$

Peripherality Example

$$
\begin{aligned}
& n_{G}\left(v_{1}, v_{2}\right)<n_{G}\left(v_{2}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{3}\right)<n_{G}\left(v_{3}, v_{1}\right) \\
& n_{G}\left(v_{1}, v_{4}\right)<n_{G}\left(v_{4}, v_{1}\right) \\
& n_{G}\left(v_{3}, v_{2}\right)<n_{G}\left(v_{2}, v_{3}\right) \\
& n_{G}\left(v_{4}, v_{2}\right)<n_{G}\left(v_{2}, v_{4}\right) \\
& n_{G}\left(v_{3}, v_{4}\right)=n_{G}\left(v_{4}, v_{3}\right) \\
& \operatorname{peri}\left(v_{4}\right)=1
\end{aligned}
$$

Peripherality

Theorem

The peripherality of a graph is the number of unordered pairs (v, x) of vertices such that $n_{G}(v, x) \neq n_{G}(x, v)$.

Peripherality

Theorem

The peripherality of a graph is the number of unordered pairs (v, x) of vertices such that $n_{G}(v, x) \neq n_{G}(x, v)$.

Corollary

The peripherality of an n-vertex graph is at most $\binom{n}{2}$.
Geneson and Tsai found constructions of the equality case for each $n \geq 9$. We determined the maximum for each $n<9$.

Edge Peripherality

Definition

The edge peripherality of an edge, denoted eperi $(\{u, v\})$, is the number of vertices x such that $n_{G}(x, u)>n_{G}(u, x)$ and $n_{G}(x, v)>n_{G}(v, x)$.

Edge Peripherality

Definition

The edge peripherality of an edge, denoted eperi $(\{u, v\})$, is the number of vertices x such that $n_{G}(x, u)>n_{G}(u, x)$ and $n_{G}(x, v)>n_{G}(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

Edge Peripherality

Definition

The edge peripherality of an edge, denoted eperi $(\{u, v\})$, is the number of vertices x such that $n_{G}(x, u)>n_{G}(u, x)$ and $n_{G}(x, v)>n_{G}(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

Old bound (Geneson and Tsai)

The maximum edge peripherality of an n-vertex graph lies in the interval $\left[\frac{2}{125} n^{3}, \frac{1}{2} n^{3}\right]$.

Edge Peripherality

Definition

The edge peripherality of an edge, denoted eperi $(\{u, v\})$, is the number of vertices x such that $n_{G}(x, u)>n_{G}(u, x)$ and $n_{G}(x, v)>n_{G}(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

Old bound (Geneson and Tsai)

The maximum edge peripherality of an n-vertex graph lies in the interval $\left[\frac{2}{125} n^{3}, \frac{1}{2} n^{3}\right]$.

New bound

The maximum edge peripherality of an n-vertex graph lies in the interval $\left[\frac{\sqrt{3}}{24} n^{3}(1-o(1)), \frac{1}{6} n^{3}\right]$.

Edge Sum Peripherality

Definition

The edge sum peripherality of an edge, denoted espr $(\{u, v\})$, is defined as

$$
\sum_{\in V-\{u, v\}}\left(n_{G}(x, u)+n_{G}(x, v)\right) .
$$

Edge Sum Peripherality

Definition

The edge sum peripherality of an edge, denoted espr$(\{u, v\})$, is defined as

$$
\sum_{x \in V-\{u, v\}}\left(n_{G}(x, u)+n_{G}(x, v)\right)
$$

Definition

The edge sum peripherality of a graph is the sum of the edge sum peripheralities of its edges.

Edge Sum Peripherality

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{1}{8} n^{4}(1-o(1)), n^{4}\right]$.

Edge Sum Peripherality

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{1}{8} n^{4}(1-o(1)), n^{4}\right]$.

New bound

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{5}{32} n^{4}(1-o(1)), \frac{1}{4} n^{4}\right]$.

Edge Sum Peripherality

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{1}{8} n^{4}(1-o(1)), n^{4}\right]$.

New bound

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{5}{32} n^{4}(1-o(1)), \frac{1}{4} n^{4}\right]$.

New bound

The maximum edge sum peripherality of an n-vertex graph of diameter 2 is $\frac{4}{27} n^{4}-O\left(n^{3}\right)$.

Edge Sum Peripherality

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{1}{8} n^{4}(1-o(1)), n^{4}\right]$.

New bound

The maximum edge sum peripherality of an n-vertex graph lies in the interval $\left[\frac{5}{32} n^{4}(1-o(1)), \frac{1}{4} n^{4}\right]$.

New bound

The maximum edge sum peripherality of an n-vertex graph of diameter 2 is $\frac{4}{27} n^{4}-O\left(n^{3}\right)$.

New bound

The maximum edge sum peripherality of an n-vertex bipartite graph of diameter at most 3 is $\frac{1}{8} n^{4}-O\left(n^{2}\right)$.

Trinajstić Index

Definition

The Trinajstić index of an unordered pair (u, v) of vertices is $N T(u, v)=\left(n_{G}(u, v)-n_{G}(v, u)\right)^{2}$.

Trinajstić Index

Definition

The Trinajstić index of an unordered pair (u, v) of vertices is $N T(u, v)=\left(n_{G}(u, v)-n_{G}(v, u)\right)^{2}$.

Definition

The Trinajstić index of a graph is the sum of $N T(u, v)$ over all $\binom{n}{2}$ pairs.

Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex graph is maximized by the generalization of this graph:

Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex graph is maximized by the generalization of this graph:

Verdict

The conjecture is false. This family of graphs achieves $N T(G) \leq 0.25 n^{4}(1+o(1))$. The maximum of $N T(G)$ is actually $0.5 n^{4}(1-o(1))$.

Trinajstić Index

As the number of "arms" and the length of each "arm" both go to infinity, $N T(G)=0.5 n^{4}(1-o(1))$.

Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex tree is minimized by the generalization of this graph:

Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex tree is minimized by the generalization of this graph:

This conjecture is still open.

Trinajstić Index

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0 , then every vertex has the same degree.

Trinajstić Index

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0 , then every vertex has the same degree.

Verdict

The graphs of the rhombic dodecahedron and rhombic triacontahedron are counterexamples.

Trinajstić Index

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0 , then every vertex has the same degree.

Verdict

The graphs of the rhombic dodecahedron and rhombic triacontahedron are counterexamples.

In fact, these can be used to generate arbitrarily large counterexamples.

Acknowledgements

I thank Dr. Jesse Geneson for suggesting this research topic, telling me about many possible directions for research, helping me format my results into a paper, giving me feedback on drafts of the paper, helping me submit it to arXiv and a journal, and giving me feedback on my presentation rehearsal. I thank Dr. Tanya Khovanova for giving me feedback on drafts of the paper and on my presentation, as well as PRIMES organizers for making this amazing research opportunity possible.
And I thank my parents for making mathematical opportunities like PRIMES accessible to me and helping me sustain my love for mathematics.

References

囯 B．Furtula，Trinajstić index．Discrete Math．Lett． 9 （2022） 100－106．
－J．Geneson and S．Tsai，Peripherality in networks：theory and applications．J．Math．Chem． 60 （2021）1021－1079．

嗇 Š．Miklavič，J．Pardey，D．Rautenbach，and F．Werner， Bounding the Mostar index．（2022） https：／／arxiv．org／pdf／2211．06682．pdf．

围 S．Silva，S．Burrows，M．Evans，M．Halappanavar，A graph theoretical intercomparison of atmospheric chemical mechanisms．Geophysical Res．Lett． 48 （2020） e2020GL090481．

囯 F．Asif，A．Kashif，S．Zafar，A．Aljaedi，U．Albalawi， Mostar Index of Neural Networks and Applications．（2023）

