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Conventions

· · ·

Finite simple graphs, usually connected. The name of the
graph is always G and the number of vertices is always
denoted n.
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Centrality and Peripherality

Definition

A centrality measure is an approximate descriptor of the
importance or influence of a vertex in a graph.

Definition

A peripherality measure is the opposite of a centrality
measure; peripheral vertices are the least important in a graph.
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Applications

Atmospheric networks

Neural networks

Contact networks
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Definitions

v1 v2

v3

v4

Definition

nG (u, v) is the number of vertices closer to u than to v (by
graph theoretic distance).

nG (v1, v2) = 1; nG (v2, v1) = 3
nG (v1, v3) = 1; nG (v3, v1) = 2
nG (v2, v3) = 2; nG (v3, v2) = 1
nG (v3, v4) = 1; nG (v4, v3) = 1
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Peripherality

Definition

nG (u, v) is the number of vertices closer to u than to v .

Vaguely speaking, nG (u, v) tends to be large when v is
peripheral. Thus, it makes sense to define the following as a
peripherality measure:

Definition

The peripherality of a vertex, denoted peri(v), is the number
of vertices x such that nG (x , v) > nG (v , x).

Definition

The peripherality of a graph is the sum of the peripheralities of
its vertices.
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Peripherality Example

v1 v2

v3

v4

nG (v1, v2) < nG (v2, v1)
nG (v1, v3) < nG (v3, v1)
nG (v1, v4) < nG (v4, v1)
nG (v3, v2) < nG (v2, v3)
nG (v4, v2) < nG (v2, v4)
nG (v3, v4) = nG (v4, v3)
peri(v1) = 0
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Peripherality

Theorem

The peripherality of a graph is the number of unordered pairs (v , x) of
vertices such that nG (v , x) ̸= nG (x , v).

Corollary

The peripherality of an n-vertex graph is at most
(
n
2

)
.

Geneson and Tsai found constructions of the equality case for each
n ≥ 9. We determined the maximum for each n < 9.
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Edge Peripherality

Definition

The edge peripherality of an edge, denoted eperi({u, v}), is the number
of vertices x such that nG (x , u) > nG (u, x) and nG (x , v) > nG (v , x).

Definition
The edge peripherality of an graph is the sum of the edge peripheralities
of its edges.

Old bound (Geneson and Tsai)

The maximum edge peripherality of an n-vertex graph lies in the interval
[ 2
125n

3, 1
2n

3].

New bound
The maximum edge peripherality of an n-vertex graph lies in the interval

[
√
3

24 n
3(1− o(1)), 1

6n
3].
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Edge Sum Peripherality

Definition

The edge sum peripherality of an edge, denoted espr({u, v}), is defined as∑
x∈V−{u,v}

(nG (x , u) + nG (x , v)).

Definition
The edge sum peripherality of a graph is the sum of the edge sum
peripheralities of its edges.
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Edge Sum Peripherality

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an n-vertex graph lies in the
interval [ 18n

4(1− o(1)), n4].

New bound
The maximum edge sum peripherality of an n-vertex graph lies in the
interval [ 5

32n
4(1− o(1)), 1

4n
4].

New bound
The maximum edge sum peripherality of an n-vertex graph of diameter 2
is 4

27n
4 − O(n3).

New bound
The maximum edge sum peripherality of an n-vertex bipartite graph of
diameter at most 3 is 1

8n
4 − O(n2).
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Trinajstić Index

Definition

The Trinajstić index of an unordered pair (u, v) of vertices is
NT (u, v) = (nG (u, v)− nG (v , u))

2.

Definition

The Trinajstić index of a graph is the sum of NT (u, v) over all(
n
2

)
pairs.
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Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex graph is
maximized by the generalization of this graph:

Verdict
The conjecture is false. This family of graphs achieves
NT (G ) ≤ 0.25n4(1 + o(1)). The maximum of NT (G ) is actually
0.5n4(1− o(1)).
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Trinajstić Index

As the number of “arms” and the length of each “arm” both
go to infinity, NT (G ) = 0.5n4(1− o(1)).
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Trinajstić Index

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex tree is
minimized by the generalization of this graph:

This conjecture is still open.
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Trinajstić Index

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0, then every vertex has the same
degree.

Verdict
The graphs of the rhombic dodecahedron and rhombic triacontahedron
are counterexamples.

In fact, these can be used to generate arbitrarily large
counterexamples.
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