Extremal Bounds on Peripherality Measures

Linus Tang Mentor: Dr. Jesse Geneson

Davidson Academy Online

October 14, 2023 MIT PRIMES Conference

Conventions

▲御▶ ▲ 臣▶ ▲ 臣▶

Finite simple graphs, usually connected. The name of the graph is always G and the number of vertices is always denoted n.

Centrality and Peripherality

Linus Tang Extremal Bounds on Peripherality Measures

A centrality measure is an approximate descriptor of the importance or influence of a vertex in a graph.

A centrality measure is an approximate descriptor of the importance or influence of a vertex in a graph.

Definition

A peripherality measure is the opposite of a centrality measure; peripheral vertices are the least important in a graph.

Applications

Linus Tang Extremal Bounds on Peripherality Measures

イロト イヨト イヨト イヨト

• Atmospheric networks

• • = • • = •

- Atmospheric networks
- Neural networks

æ

∃ ► < ∃ ►</p>

Applications

- Atmospheric networks
- Neural networks
- Contact networks

э

-

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

 $n_G(v_1, v_2) = 1$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

 $n_G(v_1, v_3) = 1$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

 $n_G(v_1, v_3) = 1; n_G(v_3, v_1) = 2$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

 $n_G(v_1, v_3) = 1; n_G(v_3, v_1) = 2$
 $n_G(v_2, v_3) = 2$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

 $n_G(v_1, v_3) = 1; n_G(v_3, v_1) = 2$
 $n_G(v_2, v_3) = 2; n_G(v_3, v_2) = 1$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

$$n_G(v_1, v_3) = 1; n_G(v_3, v_1) = 2$$

$$n_G(v_2, v_3) = 2; n_G(v_3, v_2) = 1$$

$$n_G(v_3, v_4) = 1$$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v (by graph theoretic distance).

$$n_G(v_1, v_2) = 1; n_G(v_2, v_1) = 3$$

$$n_G(v_1, v_3) = 1; n_G(v_3, v_1) = 2$$

$$n_G(v_2, v_3) = 2; n_G(v_3, v_2) = 1$$

$$n_G(v_3, v_4) = 1; n_G(v_4, v_3) = 1$$

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v.

æ

伺 ト イヨ ト イヨ ト

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v.

Vaguely speaking, $n_G(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v.

Vaguely speaking, $n_G(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Definition

The peripherality of a vertex, denoted peri(v), is the number of vertices x such that $n_G(x, v) > n_G(v, x)$.

Definition

 $n_G(u, v)$ is the number of vertices closer to u than to v.

Vaguely speaking, $n_G(u, v)$ tends to be large when v is peripheral. Thus, it makes sense to define the following as a peripherality measure:

Definition

The peripherality of a vertex, denoted peri(v), is the number of vertices x such that $n_G(x, v) > n_G(v, x)$.

Definition

The peripherality of a graph is the sum of the peripheralities of its vertices.

э

Linus Tang Extremal Bounds on Peripherality Measures

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$n_{G}(v_{1}, v_{2}) < n_{G}(v_{2}, v_{1}) n_{G}(v_{1}, v_{3}) < n_{G}(v_{3}, v_{1}) n_{G}(v_{1}, v_{4}) < n_{G}(v_{4}, v_{1}) n_{G}(v_{3}, v_{2}) < n_{G}(v_{2}, v_{3}) n_{G}(v_{4}, v_{2}) < n_{G}(v_{2}, v_{4}) n_{G}(v_{3}, v_{4}) = n_{G}(v_{4}, v_{3}) peri(v_{1}) = 0$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\begin{array}{l} n_G(v_1, v_2) < n_G(v_2, v_1) \\ n_G(v_1, v_3) < n_G(v_3, v_1) \\ n_G(v_1, v_4) < n_G(v_4, v_1) \\ n_G(v_3, v_2) < n_G(v_2, v_3) \\ n_G(v_4, v_2) < n_G(v_2, v_4) \\ n_G(v_3, v_4) = n_G(v_4, v_3) \\ \text{peri}(v_2) = 3 \end{array}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\begin{array}{l} n_G(v_1, v_2) < n_G(v_2, v_1) \\ n_G(v_1, v_3) < n_G(v_3, v_1) \\ n_G(v_1, v_4) < n_G(v_4, v_1) \\ n_G(v_3, v_2) < n_G(v_2, v_3) \\ n_G(v_4, v_2) < n_G(v_2, v_4) \\ n_G(v_3, v_4) = n_G(v_4, v_3) \\ \text{peri}(v_3) = 1 \end{array}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\begin{array}{l} n_G(v_1, v_2) < n_G(v_2, v_1) \\ n_G(v_1, v_3) < n_G(v_3, v_1) \\ n_G(v_1, v_4) < n_G(v_4, v_1) \\ n_G(v_3, v_2) < n_G(v_2, v_3) \\ n_G(v_4, v_2) < n_G(v_2, v_4) \\ n_G(v_3, v_4) = n_G(v_4, v_3) \\ peri(v_4) = 1 \end{array}$$

Theorem

The peripherality of a graph is the number of unordered pairs (v, x) of vertices such that $n_G(v, x) \neq n_G(x, v)$.

• • = • • = •

э

Theorem

The peripherality of a graph is the number of unordered pairs (v, x) of vertices such that $n_G(v, x) \neq n_G(x, v)$.

Corollary

The peripherality of an *n*-vertex graph is at most $\binom{n}{2}$.

Geneson and Tsai found constructions of the equality case for each $n \ge 9$. We determined the maximum for each n < 9.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

The edge peripherality of an edge, denoted eperi($\{u, v\}$), is the number of vertices x such that $n_G(x, u) > n_G(u, x)$ and $n_G(x, v) > n_G(v, x)$.

何 ト イヨ ト イヨ ト

э

Definition

The edge peripherality of an edge, denoted eperi($\{u, v\}$), is the number of vertices x such that $n_G(x, u) > n_G(u, x)$ and $n_G(x, v) > n_G(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

伺 ト イヨト イヨト

Definition

The edge peripherality of an edge, denoted eperi($\{u, v\}$), is the number of vertices x such that $n_G(x, u) > n_G(u, x)$ and $n_G(x, v) > n_G(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

Old bound (Geneson and Tsai)

The maximum edge peripherality of an *n*-vertex graph lies in the interval $[\frac{2}{125}n^3, \frac{1}{2}n^3]$.

< 同 ト < 三 ト < 三 ト

Definition

The edge peripherality of an edge, denoted eperi($\{u, v\}$), is the number of vertices x such that $n_G(x, u) > n_G(u, x)$ and $n_G(x, v) > n_G(v, x)$.

Definition

The edge peripherality of an graph is the sum of the edge peripheralities of its edges.

Old bound (Geneson and Tsai)

The maximum edge peripherality of an *n*-vertex graph lies in the interval $[\frac{2}{125}n^3, \frac{1}{2}n^3]$.

New bound

The maximum edge peripherality of an *n*-vertex graph lies in the interval $\left[\frac{\sqrt{3}}{24}n^3(1-o(1)), \frac{1}{6}n^3\right]$.

The edge sum peripherality of an edge, denoted $espr({u, v})$, is defined as

$$\sum_{v\in V-\{u,v\}}(n_G(x,u)+n_G(x,v)).$$

何 ト イヨ ト イヨ ト

э

The edge sum peripherality of an edge, denoted $espr({u, v})$, is defined as

$$\sum_{\mathbf{x}\in V-\{u,v\}}(n_G(x,u)+n_G(x,v)).$$

Definition

The edge sum peripherality of a graph is the sum of the edge sum peripheralities of its edges.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $[\frac{1}{8}n^4(1-o(1)), n^4]$.

「ヨト・ヨト・ヨト

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $[\frac{1}{8}n^4(1-o(1)), n^4]$.

New bound

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $\left[\frac{5}{32}n^4(1-o(1)), \frac{1}{4}n^4\right]$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $[\frac{1}{8}n^4(1-o(1)), n^4]$.

New bound

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $\left[\frac{5}{32}n^4(1-o(1)), \frac{1}{4}n^4\right]$.

New bound

The maximum edge sum peripherality of an *n*-vertex graph of diameter 2 is $\frac{4}{27}n^4 - O(n^3)$.

Old bound (Geneson and Tsai)

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $[\frac{1}{8}n^4(1-o(1)), n^4]$.

New bound

The maximum edge sum peripherality of an *n*-vertex graph lies in the interval $\left[\frac{5}{32}n^4(1-o(1)), \frac{1}{4}n^4\right]$.

New bound

The maximum edge sum peripherality of an *n*-vertex graph of diameter 2 is $\frac{4}{27}n^4 - O(n^3)$.

New bound

The maximum edge sum peripherality of an *n*-vertex bipartite graph of diameter at most 3 is $\frac{1}{8}n^4 - O(n^2)$.

The Trinajstić index of an unordered pair (u, v) of vertices is $NT(u, v) = (n_G(u, v) - n_G(v, u))^2$.

The Trinajstić index of an unordered pair (u, v) of vertices is $NT(u, v) = (n_G(u, v) - n_G(v, u))^2$.

Definition

The Trinajstić index of a graph is the sum of NT(u, v) over all $\binom{n}{2}$ pairs.

Conjecture (Furtula)

For sufficiently large *n*, the Trinajstić index of an *n*-vertex graph is maximized by the generalization of this graph:

Conjecture (Furtula)

For sufficiently large *n*, the Trinajstić index of an *n*-vertex graph is maximized by the generalization of this graph:

Verdict

The conjecture is false. This family of graphs achieves $NT(G) \le 0.25n^4(1 + o(1))$. The maximum of NT(G) is actually $0.5n^4(1 - o(1))$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

As the number of "arms" and the length of each "arm" both go to infinity, $NT(G) = 0.5n^4(1 - o(1))$.

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex tree is minimized by the generalization of this graph:

Conjecture (Furtula)

For sufficiently large n, the Trinajstić index of an n-vertex tree is minimized by the generalization of this graph:

This conjecture is still open.

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0, then every vertex has the same degree.

伺 ト イヨト イヨト

э

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0, then every vertex has the same degree.

Verdict

The graphs of the rhombic dodecahedron and rhombic triacontahedron are counterexamples.

伺 ト イヨト イヨト

Conjecture (Furtula)

If the Trinajstić Index of a graph is 0, then every vertex has the same degree.

Verdict

The graphs of the rhombic dodecahedron and rhombic triacontahedron are counterexamples.

In fact, these can be used to generate arbitrarily large counterexamples.

I thank Dr. Jesse Geneson for suggesting this research topic, telling me about many possible directions for research, helping me format my results into a paper, giving me feedback on drafts of the paper, helping me submit it to arXiv and a journal, and giving me feedback on my presentation rehearsal. I thank Dr. Tanya Khovanova for giving me feedback on drafts of the paper and on my presentation, as well as PRIMES organizers for making this amazing research opportunity possible.

And I thank my parents for making mathematical opportunities like PRIMES accessible to me and helping me sustain my love for mathematics.

• • = = • • = =

References

- B. Furtula, Trinajstić index. Discrete Math. Lett. 9 (2022) 100–106.
- J. Geneson and S. Tsai, Peripherality in networks: theory and applications. J. Math. Chem. 60 (2021) 1021–1079.
- Š. Miklavič, J. Pardey, D. Rautenbach, and F. Werner, Bounding the Mostar index. (2022) https://arxiv.org/pdf/2211.06682.pdf.
- S. Silva, S. Burrows, M. Evans, M. Halappanavar, A graph theoretical intercomparison of atmospheric chemical mechanisms. Geophysical Res. Lett. 48 (2020) e2020GL090481.
- F. Asif, A. Kashif, S. Zafar, A. Aljaedi, U. Albalawi, Mostar Index of Neural Networks and Applications. (2023) 2000