Random Constraint Satisfaction Problems: Coloring Hypergraphs and NAE-SAT

Evan Chang (High Technology High School), Neel Kolhe
(Lynbrook High School)
Mentored by Youngtak Sohn (MIT)

Saturday $14^{\text {th }}$ October, 2023
PRIMES Conference

What's a Constraint Satisfaction Problem?

- In a constraint satisfaction problem, we have variables. We have control over variables.

What's a Constraint Satisfaction Problem?

- In a constraint satisfaction problem, we have variables. We have control over variables.
- In our case, they are boolean: 0 (false) or 1 (true)

What's a Constraint Satisfaction Problem?

- In a constraint satisfaction problem, we have variables. We have control over variables.
- In our case, they are boolean: 0 (false) or 1 (true)
- We impose clauses (conditions), on our variables.

What's a Constraint Satisfaction Problem?

- In a constraint satisfaction problem, we have variables. We have control over variables.
- In our case, they are boolean: 0 (false) or 1 (true)
- We impose clauses (conditions), on our variables.
- Each clause is imposed on a different subset of variables, but clauses can "overlap" on the variables they're imposed on (a variable can have multiple clauses corresponding to it)

What's a Constraint Satisfaction Problem?

- In a constraint satisfaction problem, we have variables. We have control over variables.
- In our case, they are boolean: 0 (false) or 1 (true)
- We impose clauses (conditions), on our variables.
- Each clause is imposed on a different subset of variables, but clauses can "overlap" on the variables they're imposed on (a variable can have multiple clauses corresponding to it)
- We want to see if our variables can satisfy those constraints.

The k-SAT Problem

- n boolean variables: 0 (false) or 1 (true).

The k-SAT Problem

- n boolean variables: 0 (false) or 1 (true).
- Impose m clauses. Each clause is "connected" to k variables. Each connection from a clause to a variable is labeled true or false (called a "literal").

The k-SAT Problem

- n boolean variables: 0 (false) or 1 (true).
- Impose m clauses. Each clause is "connected" to k variables. Each connection from a clause to a variable is labeled true or false (called a "literal").
- The clause is imposed on its k variables, dissatisfied iff every one of its k variables matches their respective connections

The k-SAT Problem

- n boolean variables: 0 (false) or 1 (true).
- Impose m clauses. Each clause is "connected" to k variables. Each connection from a clause to a variable is labeled true or false (called a "literal").
- The clause is imposed on its k variables, dissatisfied iff every one of its k variables matches their respective connections

"Regular" k-SAT

- We fix that each of the n variables must be corresponding to exactly d clauses. This is called regular.

"Regular" k-SAT

- We fix that each of the n variables must be corresponding to exactly d clauses. This is called regular.
- m is total \# of clauses, each clause imposed on k variables. n is total \# of variables, d clauses imposed on each variable

"Regular" k-SAT

- We fix that each of the n variables must be corresponding to exactly d clauses. This is called regular.
- m is total \# of clauses, each clause imposed on k variables. n is total \# of variables, d clauses imposed on each variable
- $d \cdot n=k \cdot m$. Why?

"Regular, and Not all Equals-SAT"

- Furthermore, we now say a clause is dissatisfied iff every one of its k variables matches its connection to clause OR every one of its k variables differs from its connection with clause

Random Constraint Satisfaction Problem

- Recall $d \cdot n=k \cdot m$.

Random Constraint Satisfaction Problem

- Recall $d \cdot n=k \cdot m$.
- We fix the clause to variable ratio $\alpha=m / n=d / k$, then let $m, n \rightarrow \infty$. Then take a random regular NAE-SAT instance with these parameters.

Random Constraint Satisfaction Problem

- Recall $d \cdot n=k \cdot m$.
- We fix the clause to variable ratio $\alpha=m / n=d / k$, then let $m, n \rightarrow \infty$. Then take a random regular NAE-SAT instance with these parameters.
- This means clauses and literals (recall literals are connection labels) are chosen randomly (so long as instance is d-regular)

Random Constraint Satisfaction Problem

- Recall $d \cdot n=k \cdot m$.
- We fix the clause to variable ratio $\alpha=m / n=d / k$, then let $m, n \rightarrow \infty$. Then take a random regular NAE-SAT instance with these parameters.
- This means clauses and literals (recall literals are connection labels) are chosen randomly (so long as instance is d-regular)
- Intuitively, when there's a higher density of clauses (constraints), it's harder for variables to satisfy clauses.

Satisfiability threshold

- It turns out, as α stays constant and m, n go to infinity, the probability of satisfiability (almost always) tends to 0 or 1.

Satisfiability threshold

- It turns out, as α stays constant and m, n go to infinity, the probability of satisfiability (almost always) tends to 0 or 1.
- Specifically, when α gets higher, it will pass a satisfiability threshold, before which probability of satisfiability always tends to one, and after which probability of satisfiability always tends to zero.

What's a Hypergraph?

- We investigated a similar problem involving hypergraphs

What's a Hypergraph?

- We investigated a similar problem involving hypergraphs
- In a normal graph, there are nodes, and certain connections (called edges) between two nodes.

What's a Hypergraph?

- We investigated a similar problem involving hypergraphs
- In a normal graph, there are nodes, and certain connections (called edges) between two nodes.
- Hypergraph: connections can involve more than two nodes.

What's a Hypergraph?

- We investigated a similar problem involving hypergraphs
- In a normal graph, there are nodes, and certain connections (called edges) between two nodes.
- Hypergraph: connections can involve more than two nodes.
- These connections are called "hyperedges"

Hypergraph Coloring

- Take hypergraph with n nodes and m hyperedges. Treat nodes as variables, hyperedges as clauses.

Hypergraph Coloring

- Take hypergraph with n nodes and m hyperedges. Treat nodes as variables, hyperedges as clauses.
- Make every hyperedge consist of k nodes, each node part of d hyperedges (" d-regular"). [HY15]

Hypergraph Coloring

- Take hypergraph with n nodes and m hyperedges. Treat nodes as variables, hyperedges as clauses.
- Make every hyperedge consist of k nodes, each node part of d hyperedges ("d-regular"). [HY15]
- Can we assign colors from $\{$ red, blue $\} \equiv\{0,1\}$ to nodes so there's no monochromatic (same color) hyperedge?

Random Constraint Satisfaction Problem

- As before, we have $d \cdot n=k \cdot m$.

Random Constraint Satisfaction Problem

- As before, we have $d \cdot n=k \cdot m$.
- Once again, fix $\alpha=m / n=d / k$ and let $m, n \rightarrow \infty$

Random Constraint Satisfaction Problem

- As before, we have $d \cdot n=k \cdot m$.
- Once again, fix $\alpha=m / n=d / k$ and let $m, n \rightarrow \infty$
- Consider a random hypergraph with those parameters.

Random Constraint Satisfaction Problem

- As before, we have $d \cdot n=k \cdot m$.
- Once again, fix $\alpha=m / n=d / k$ and let $m, n \rightarrow \infty$
- Consider a random hypergraph with those parameters.
- If α greater than a certain satisfiability threshold, the hypergraph is unlikely to be colorable as $m, n \rightarrow \infty$

Random Constraint Satisfaction Problem

- As before, we have $d \cdot n=k \cdot m$.
- Once again, fix $\alpha=m / n=d / k$ and let $m, n \rightarrow \infty$
- Consider a random hypergraph with those parameters.
- If α greater than a certain satisfiability threshold, the hypergraph is unlikely to be colorable as $m, n \rightarrow \infty$
- Conjecture: same satisfiability threshold as the NAE-SAT?

Probability Theory

- In probability theory, we usually associate a random variable X with a "probability mass function" $p(x)$. For a given x_{i}, $p\left(x_{i}\right)$ equals the probability of $X=x_{i}$ occurring.

Probability Theory

- In probability theory, we usually associate a random variable X with a "probability mass function" $p(x)$. For a given x_{i}, $p\left(x_{i}\right)$ equals the probability of $X=x_{i}$ occurring.
- If X is a dice roll, then $p(2)=1 / 6$. But $p(1.5)=0$.

Probability Theory

- In probability theory, we usually associate a random variable X with a "probability mass function" $p(x)$. For a given x_{i}, $p\left(x_{i}\right)$ equals the probability of $X=x_{i}$ occurring.
- If X is a dice roll, then $p(2)=1 / 6$. But $p(1.5)=0$.
- We are interested in the expected value of a random variable X. We denote this with $E[X]$. This is essentially a weighted average over all possible values X can take on.

Probability Theory

- In probability theory, we usually associate a random variable X with a "probability mass function" $p(x)$. For a given x_{i}, $p\left(x_{i}\right)$ equals the probability of $X=x_{i}$ occurring.
- If X is a dice roll, then $p(2)=1 / 6$. But $p(1.5)=0$.
- We are interested in the expected value of a random variable X. We denote this with $E[X]$. This is essentially a weighted average over all possible values X can take on.
- The expected value of a dice roll is $\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\cdots+\frac{1}{6} \cdot 6$.

Probability Theory

- In probability theory, we usually associate a random variable X with a "probability mass function" $p(x)$. For a given x_{i}, $p\left(x_{i}\right)$ equals the probability of $X=x_{i}$ occurring.
- If X is a dice roll, then $p(2)=1 / 6$. But $p(1.5)=0$.
- We are interested in the expected value of a random variable X. We denote this with $E[X]$. This is essentially a weighted average over all possible values X can take on.
- The expected value of a dice roll is $\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\cdots+\frac{1}{6} \cdot 6$.
- $E[X]=\sum_{i} x_{i} \times p\left(x_{i}\right)$

Probability Theory

- We often take a function of a random variable, yielding another random variable. But what's the expectation?

Probability Theory

- We often take a function of a random variable, yielding another random variable. But what's the expectation?
- For example, squaring: we can calculate $E\left[X^{2}\right]$ for a dice by adding $\frac{1}{6} \cdot 1^{2}+\cdots+\frac{1}{6} \cdot 6^{2}$

Probability Theory

- We often take a function of a random variable, yielding another random variable. But what's the expectation?
- For example, squaring: we can calculate $E\left[X^{2}\right]$ for a dice by adding $\frac{1}{6} \cdot 1^{2}+\cdots+\frac{1}{6} \cdot 6^{2}$
- Notice this is not the same as $(E[X])^{2}$.

Probability Theory

- We often take a function of a random variable, yielding another random variable. But what's the expectation?
- For example, squaring: we can calculate $E\left[X^{2}\right]$ for a dice by adding $\frac{1}{6} \cdot 1^{2}+\cdots+\frac{1}{6} \cdot 6^{2}$
- Notice this is not the same as $(E[X])^{2}$.
- Observe $E[g(X)]=\sum_{i} g\left(x_{i}\right) \times p\left(x_{i}\right)$

First moment method

- The "moment methods" are theorems that bound a probability that a certain non-negative, integer-valued random variable is >0, by expected values (often easier to compute).

First moment method

- The "moment methods" are theorems that bound a probability that a certain non-negative, integer-valued random variable is >0, by expected values (often easier to compute).
- (First Moment Method). For a non-negative, integer-valued random variable X, then

$$
P(X>0) \leq E[X]
$$

First moment method

- The "moment methods" are theorems that bound a probability that a certain non-negative, integer-valued random variable is >0, by expected values (often easier to compute).
- (First Moment Method). For a non-negative, integer-valued random variable X, then

$$
P(X>0) \leq E[X]
$$

- If X is counting something, then $X>0$ shows existence.

Second moment method

- The Second Moment Method lower bounds $P(X>0)$.

Second moment method

- The Second Moment Method lower bounds $P(X>0)$.
- (Second Moment Method). For a non-negative, integer-valued random variable X with finite variance, then

$$
P(X>0) \geq \frac{E[X]^{2}}{E\left[X^{2}\right]}
$$

Ding, Sly, Sun [DSS16]

- Proves exact satisfiability threshold for NAE-SAT model for large enough k, as the solution to a system of equations.

Ding, Sly, Sun [DSS16]

- Proves exact satisfiability threshold for NAE-SAT model for large enough k, as the solution to a system of equations.
- First and second moment methods applied on individual solutions bound d within an interval

Ding, Sly, Sun [DSS16]

- Proves exact satisfiability threshold for NAE-SAT model for large enough k, as the solution to a system of equations.
- First and second moment methods applied on individual solutions bound d within an interval
- To find the exact value, the paper uses what's known as a cluster model (clusters are defined as groups of solutions that are relatively close to each other)

Ding, Sly, Sun [DSS16]

- Proves exact satisfiability threshold for NAE-SAT model for large enough k, as the solution to a system of equations.
- First and second moment methods applied on individual solutions bound d within an interval
- To find the exact value, the paper uses what's known as a cluster model (clusters are defined as groups of solutions that are relatively close to each other)
- First and second moment methods are applied on the number of clusters, not the number of individual solutions

Our work

- Ding, Sly, Sun does not show their threshold holds for small k, or even that their threshold is algebraically well-defined.

Our work

- Ding, Sly, Sun does not show their threshold holds for small k, or even that their threshold is algebraically well-defined.
- We upper bound the satisfiability threshold for all $k \geq 3$ and provide a threshold matching the Ding, Sly, Sun paper by interpolating a theorem from Sly, Sun, Zhang [SSZ16]

Our work

- Ding, Sly, Sun does not show their threshold holds for small k, or even that their threshold is algebraically well-defined.
- We upper bound the satisfiability threshold for all $k \geq 3$ and provide a threshold matching the Ding, Sly, Sun paper by interpolating a theorem from Sly, Sun, Zhang [SSZ16]
- We show the threshold also holds for the hypergraph model.

Our work

- Ding, Sly, Sun does not show their threshold holds for small k, or even that their threshold is algebraically well-defined.
- We upper bound the satisfiability threshold for all $k \geq 3$ and provide a threshold matching the Ding, Sly, Sun paper by interpolating a theorem from Sly, Sun, Zhang [SSZ16]
- We show the threshold also holds for the hypergraph model.
- Algebraically prove our upper bound is well-defined.

Acknowledgements

- Our mentor Dr. Youngtak Sohn
- The PRIMES-USA Program and its director Dr. Slava Gerovitch
- Dr. Tanya Khovanova
- Our parents

References

囯 Jian Ding，Allan Sly，and Nike Sun，Satisfiability threshold for random regular NAE－SAT，Commun．Math．Phys． 341 （2016）， no．2，435－489．

國 Michael Henning and Anders Yeo，Transversals in 4－uniform hypergraphs，The Electronic Journal of Combinatorics 23 （2015）．
囯 Allan Sly，Nike Sun，and Yumeng Zhang，The number of solutions for random regular NAE－SAT，Proceedings of the 57th Symposium on Foundations of Computer Science，FOCS ＇16，2016，pp．724－731．

