
Random Constraint Satisfaction Problems:
Coloring Hypergraphs and NAE-SAT

Evan Chang (High Technology High School), Neel Kolhe
(Lynbrook High School)

Mentored by Youngtak Sohn (MIT)

Saturday 14th October, 2023
PRIMES Conference



What’s a Constraint Satisfaction Problem?

▶ In a constraint satisfaction problem, we have variables.
We have control over variables.

▶ In our case, they are boolean: 0 (false) or 1 (true)
▶ We impose clauses (conditions), on our variables.
▶ Each clause is imposed on a different subset of variables, but

clauses can “overlap” on the variables they’re imposed on (a
variable can have multiple clauses corresponding to it)

▶ We want to see if our variables can satisfy those constraints.

2/18



What’s a Constraint Satisfaction Problem?

▶ In a constraint satisfaction problem, we have variables.
We have control over variables.

▶ In our case, they are boolean: 0 (false) or 1 (true)

▶ We impose clauses (conditions), on our variables.
▶ Each clause is imposed on a different subset of variables, but

clauses can “overlap” on the variables they’re imposed on (a
variable can have multiple clauses corresponding to it)

▶ We want to see if our variables can satisfy those constraints.

2/18



What’s a Constraint Satisfaction Problem?

▶ In a constraint satisfaction problem, we have variables.
We have control over variables.

▶ In our case, they are boolean: 0 (false) or 1 (true)
▶ We impose clauses (conditions), on our variables.

▶ Each clause is imposed on a different subset of variables, but
clauses can “overlap” on the variables they’re imposed on (a
variable can have multiple clauses corresponding to it)

▶ We want to see if our variables can satisfy those constraints.

2/18



What’s a Constraint Satisfaction Problem?

▶ In a constraint satisfaction problem, we have variables.
We have control over variables.

▶ In our case, they are boolean: 0 (false) or 1 (true)
▶ We impose clauses (conditions), on our variables.
▶ Each clause is imposed on a different subset of variables, but

clauses can “overlap” on the variables they’re imposed on (a
variable can have multiple clauses corresponding to it)

▶ We want to see if our variables can satisfy those constraints.

2/18



What’s a Constraint Satisfaction Problem?

▶ In a constraint satisfaction problem, we have variables.
We have control over variables.

▶ In our case, they are boolean: 0 (false) or 1 (true)
▶ We impose clauses (conditions), on our variables.
▶ Each clause is imposed on a different subset of variables, but

clauses can “overlap” on the variables they’re imposed on (a
variable can have multiple clauses corresponding to it)

▶ We want to see if our variables can satisfy those constraints.

2/18



The k-SAT Problem

▶ n boolean variables: 0 (false) or 1 (true).

▶ Impose m clauses. Each clause is “connected” to k variables.
Each connection from a clause to a variable is labeled true or
false (called a “literal”).

▶ The clause is imposed on its k variables, dissatisfied iff every
one of its k variables matches their respective connections

3/18



The k-SAT Problem

▶ n boolean variables: 0 (false) or 1 (true).
▶ Impose m clauses. Each clause is “connected” to k variables.

Each connection from a clause to a variable is labeled true or
false (called a “literal”).

▶ The clause is imposed on its k variables, dissatisfied iff every
one of its k variables matches their respective connections

3/18



The k-SAT Problem

▶ n boolean variables: 0 (false) or 1 (true).
▶ Impose m clauses. Each clause is “connected” to k variables.

Each connection from a clause to a variable is labeled true or
false (called a “literal”).

▶ The clause is imposed on its k variables, dissatisfied iff every
one of its k variables matches their respective connections

3/18



The k-SAT Problem

▶ n boolean variables: 0 (false) or 1 (true).
▶ Impose m clauses. Each clause is “connected” to k variables.

Each connection from a clause to a variable is labeled true or
false (called a “literal”).

▶ The clause is imposed on its k variables, dissatisfied iff every
one of its k variables matches their respective connections

3/18



“Regular” k-SAT
▶ We fix that each of the n variables must be corresponding to

exactly d clauses. This is called regular.

▶ m is total # of clauses, each clause imposed on k variables. n
is total # of variables, d clauses imposed on each variable

▶ d · n = k ·m. Why?

4/18



“Regular” k-SAT
▶ We fix that each of the n variables must be corresponding to

exactly d clauses. This is called regular.
▶ m is total # of clauses, each clause imposed on k variables. n

is total # of variables, d clauses imposed on each variable

▶ d · n = k ·m. Why?

4/18



“Regular” k-SAT
▶ We fix that each of the n variables must be corresponding to

exactly d clauses. This is called regular.
▶ m is total # of clauses, each clause imposed on k variables. n

is total # of variables, d clauses imposed on each variable
▶ d · n = k ·m. Why?

4/18



“Regular, and Not all Equals-SAT”

▶ Furthermore, we now say a clause is dissatisfied iff every one
of its k variables matches its connection to clause OR every
one of its k variables differs from its connection with clause

5/18



Random Constraint Satisfaction Problem

▶ Recall d · n = k ·m.

▶ We fix the clause to variable ratio α = m/n = d/k, then let
m,n → ∞. Then take a random regular NAE-SAT instance
with these parameters.

▶ This means clauses and literals (recall literals are connection
labels) are chosen randomly (so long as instance is d-regular)

▶ Intuitively, when there’s a higher density of clauses
(constraints), it’s harder for variables to satisfy clauses.

6/18



Random Constraint Satisfaction Problem

▶ Recall d · n = k ·m.

▶ We fix the clause to variable ratio α = m/n = d/k, then let
m,n → ∞. Then take a random regular NAE-SAT instance
with these parameters.

▶ This means clauses and literals (recall literals are connection
labels) are chosen randomly (so long as instance is d-regular)

▶ Intuitively, when there’s a higher density of clauses
(constraints), it’s harder for variables to satisfy clauses.

6/18



Random Constraint Satisfaction Problem

▶ Recall d · n = k ·m.

▶ We fix the clause to variable ratio α = m/n = d/k, then let
m,n → ∞. Then take a random regular NAE-SAT instance
with these parameters.

▶ This means clauses and literals (recall literals are connection
labels) are chosen randomly (so long as instance is d-regular)

▶ Intuitively, when there’s a higher density of clauses
(constraints), it’s harder for variables to satisfy clauses.

6/18



Random Constraint Satisfaction Problem

▶ Recall d · n = k ·m.

▶ We fix the clause to variable ratio α = m/n = d/k, then let
m,n → ∞. Then take a random regular NAE-SAT instance
with these parameters.

▶ This means clauses and literals (recall literals are connection
labels) are chosen randomly (so long as instance is d-regular)

▶ Intuitively, when there’s a higher density of clauses
(constraints), it’s harder for variables to satisfy clauses.

6/18



Satisfiability threshold

▶ It turns out, as α stays constant and m,n go to infinity, the
probability of satisfiability (almost always) tends to 0 or 1.

▶ Specifically, when α gets higher, it will pass a satisfiability
threshold, before which probability of satisfiability always
tends to one, and after which probability of satisfiability
always tends to zero.

7/18



Satisfiability threshold

▶ It turns out, as α stays constant and m,n go to infinity, the
probability of satisfiability (almost always) tends to 0 or 1.

▶ Specifically, when α gets higher, it will pass a satisfiability
threshold, before which probability of satisfiability always
tends to one, and after which probability of satisfiability
always tends to zero.

7/18



What’s a Hypergraph?

▶ We investigated a similar problem involving hypergraphs

▶ In a normal graph, there are nodes, and certain connections
(called edges) between two nodes.

▶ Hypergraph: connections can involve more than two nodes.
▶ These connections are called “hyperedges”

8/18



What’s a Hypergraph?

▶ We investigated a similar problem involving hypergraphs
▶ In a normal graph, there are nodes, and certain connections

(called edges) between two nodes.

▶ Hypergraph: connections can involve more than two nodes.
▶ These connections are called “hyperedges”

8/18



What’s a Hypergraph?

▶ We investigated a similar problem involving hypergraphs
▶ In a normal graph, there are nodes, and certain connections

(called edges) between two nodes.
▶ Hypergraph: connections can involve more than two nodes.

▶ These connections are called “hyperedges”

8/18



What’s a Hypergraph?

▶ We investigated a similar problem involving hypergraphs
▶ In a normal graph, there are nodes, and certain connections

(called edges) between two nodes.
▶ Hypergraph: connections can involve more than two nodes.
▶ These connections are called “hyperedges”

8/18



Hypergraph Coloring

▶ Take hypergraph with n nodes and m hyperedges. Treat
nodes as variables, hyperedges as clauses.

▶ Make every hyperedge consist of k nodes, each node part of d
hyperedges (“d-regular”). [HY15]

▶ Can we assign colors from {red, blue} ≡ {0, 1} to nodes so
there’s no monochromatic (same color) hyperedge?

9/18



Hypergraph Coloring

▶ Take hypergraph with n nodes and m hyperedges. Treat
nodes as variables, hyperedges as clauses.

▶ Make every hyperedge consist of k nodes, each node part of d
hyperedges (“d-regular”). [HY15]

▶ Can we assign colors from {red, blue} ≡ {0, 1} to nodes so
there’s no monochromatic (same color) hyperedge?

9/18



Hypergraph Coloring

▶ Take hypergraph with n nodes and m hyperedges. Treat
nodes as variables, hyperedges as clauses.

▶ Make every hyperedge consist of k nodes, each node part of d
hyperedges (“d-regular”). [HY15]

▶ Can we assign colors from {red, blue} ≡ {0, 1} to nodes so
there’s no monochromatic (same color) hyperedge?

9/18



Random Constraint Satisfaction Problem

▶ As before, we have d · n = k ·m.

▶ Once again, fix α = m/n = d/k and let m,n → ∞
▶ Consider a random hypergraph with those parameters.
▶ If α greater than a certain satisfiability threshold, the

hypergraph is unlikely to be colorable as m,n → ∞
▶ Conjecture: same satisfiability threshold as the NAE-SAT?

10/18



Random Constraint Satisfaction Problem

▶ As before, we have d · n = k ·m.

▶ Once again, fix α = m/n = d/k and let m,n → ∞

▶ Consider a random hypergraph with those parameters.
▶ If α greater than a certain satisfiability threshold, the

hypergraph is unlikely to be colorable as m,n → ∞
▶ Conjecture: same satisfiability threshold as the NAE-SAT?

10/18



Random Constraint Satisfaction Problem

▶ As before, we have d · n = k ·m.

▶ Once again, fix α = m/n = d/k and let m,n → ∞
▶ Consider a random hypergraph with those parameters.

▶ If α greater than a certain satisfiability threshold, the
hypergraph is unlikely to be colorable as m,n → ∞

▶ Conjecture: same satisfiability threshold as the NAE-SAT?

10/18



Random Constraint Satisfaction Problem

▶ As before, we have d · n = k ·m.

▶ Once again, fix α = m/n = d/k and let m,n → ∞
▶ Consider a random hypergraph with those parameters.
▶ If α greater than a certain satisfiability threshold, the

hypergraph is unlikely to be colorable as m,n → ∞

▶ Conjecture: same satisfiability threshold as the NAE-SAT?

10/18



Random Constraint Satisfaction Problem

▶ As before, we have d · n = k ·m.

▶ Once again, fix α = m/n = d/k and let m,n → ∞
▶ Consider a random hypergraph with those parameters.
▶ If α greater than a certain satisfiability threshold, the

hypergraph is unlikely to be colorable as m,n → ∞
▶ Conjecture: same satisfiability threshold as the NAE-SAT?

10/18



Probability Theory

▶ In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given xi,
p(xi) equals the probability of X = xi occurring.

▶ If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

▶ We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

▶ The expected value of a dice roll is 1
6 · 1 + 1

6 · 2 + · · ·+ 1
6 · 6.

▶ E[X] =
∑

i xi × p(xi)

11/18



Probability Theory

▶ In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given xi,
p(xi) equals the probability of X = xi occurring.
▶ If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

▶ We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

▶ The expected value of a dice roll is 1
6 · 1 + 1

6 · 2 + · · ·+ 1
6 · 6.

▶ E[X] =
∑

i xi × p(xi)

11/18



Probability Theory

▶ In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given xi,
p(xi) equals the probability of X = xi occurring.
▶ If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

▶ We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

▶ The expected value of a dice roll is 1
6 · 1 + 1

6 · 2 + · · ·+ 1
6 · 6.

▶ E[X] =
∑

i xi × p(xi)

11/18



Probability Theory

▶ In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given xi,
p(xi) equals the probability of X = xi occurring.
▶ If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

▶ We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

▶ The expected value of a dice roll is 1
6 · 1 + 1

6 · 2 + · · ·+ 1
6 · 6.

▶ E[X] =
∑

i xi × p(xi)

11/18



Probability Theory

▶ In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given xi,
p(xi) equals the probability of X = xi occurring.
▶ If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

▶ We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

▶ The expected value of a dice roll is 1
6 · 1 + 1

6 · 2 + · · ·+ 1
6 · 6.

▶ E[X] =
∑

i xi × p(xi)

11/18



Probability Theory

▶ We often take a function of a random variable, yielding
another random variable. But what’s the expectation?

▶ For example, squaring: we can calculate E[X2] for a dice by
adding 1

6 · 12 + · · ·+ 1
6 · 62

▶ Notice this is not the same as (E[X])2.

▶ Observe E[g(X)] =
∑

i g(xi)× p(xi)

12/18



Probability Theory

▶ We often take a function of a random variable, yielding
another random variable. But what’s the expectation?

▶ For example, squaring: we can calculate E[X2] for a dice by
adding 1

6 · 12 + · · ·+ 1
6 · 62

▶ Notice this is not the same as (E[X])2.

▶ Observe E[g(X)] =
∑

i g(xi)× p(xi)

12/18



Probability Theory

▶ We often take a function of a random variable, yielding
another random variable. But what’s the expectation?

▶ For example, squaring: we can calculate E[X2] for a dice by
adding 1

6 · 12 + · · ·+ 1
6 · 62

▶ Notice this is not the same as (E[X])2.

▶ Observe E[g(X)] =
∑

i g(xi)× p(xi)

12/18



Probability Theory

▶ We often take a function of a random variable, yielding
another random variable. But what’s the expectation?

▶ For example, squaring: we can calculate E[X2] for a dice by
adding 1

6 · 12 + · · ·+ 1
6 · 62

▶ Notice this is not the same as (E[X])2.

▶ Observe E[g(X)] =
∑

i g(xi)× p(xi)

12/18



First moment method

▶ The “moment methods” are theorems that bound a
probability that a certain non-negative, integer-valued random
variable is > 0, by expected values (often easier to compute).

▶ (First Moment Method). For a non-negative, integer-valued
random variable X, then

P (X > 0) ≤ E[X].

▶ If X is counting something, then X > 0 shows existence.

13/18



First moment method

▶ The “moment methods” are theorems that bound a
probability that a certain non-negative, integer-valued random
variable is > 0, by expected values (often easier to compute).

▶ (First Moment Method). For a non-negative, integer-valued
random variable X, then

P (X > 0) ≤ E[X].

▶ If X is counting something, then X > 0 shows existence.

13/18



First moment method

▶ The “moment methods” are theorems that bound a
probability that a certain non-negative, integer-valued random
variable is > 0, by expected values (often easier to compute).

▶ (First Moment Method). For a non-negative, integer-valued
random variable X, then

P (X > 0) ≤ E[X].

▶ If X is counting something, then X > 0 shows existence.

13/18



Second moment method

▶ The Second Moment Method lower bounds P (X > 0).

▶ (Second Moment Method). For a non-negative, integer-valued
random variable X with finite variance, then

P (X > 0) ≥ E[X]2

E[X2]
.

14/18



Second moment method

▶ The Second Moment Method lower bounds P (X > 0).
▶ (Second Moment Method). For a non-negative, integer-valued

random variable X with finite variance, then

P (X > 0) ≥ E[X]2

E[X2]
.

14/18



Ding, Sly, Sun [DSS16]

▶ Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.

▶ First and second moment methods applied on individual
solutions bound d within an interval

▶ To find the exact value, the paper uses what’s known as a
cluster model (clusters are defined as groups of solutions
that are relatively close to each other)

▶ First and second moment methods are applied on the number
of clusters, not the number of individual solutions

15/18



Ding, Sly, Sun [DSS16]

▶ Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.

▶ First and second moment methods applied on individual
solutions bound d within an interval

▶ To find the exact value, the paper uses what’s known as a
cluster model (clusters are defined as groups of solutions
that are relatively close to each other)

▶ First and second moment methods are applied on the number
of clusters, not the number of individual solutions

15/18



Ding, Sly, Sun [DSS16]

▶ Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.

▶ First and second moment methods applied on individual
solutions bound d within an interval

▶ To find the exact value, the paper uses what’s known as a
cluster model (clusters are defined as groups of solutions
that are relatively close to each other)

▶ First and second moment methods are applied on the number
of clusters, not the number of individual solutions

15/18



Ding, Sly, Sun [DSS16]

▶ Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.

▶ First and second moment methods applied on individual
solutions bound d within an interval

▶ To find the exact value, the paper uses what’s known as a
cluster model (clusters are defined as groups of solutions
that are relatively close to each other)

▶ First and second moment methods are applied on the number
of clusters, not the number of individual solutions

15/18



Our work

▶ Ding, Sly, Sun does not show their threshold holds for small k,
or even that their threshold is algebraically well-defined.

▶ We upper bound the satisfiability threshold for all k ≥ 3 and
provide a threshold matching the Ding, Sly, Sun paper by
interpolating a theorem from Sly, Sun, Zhang [SSZ16]

▶ We show the threshold also holds for the hypergraph model.
▶ Algebraically prove our upper bound is well-defined.

16/18



Our work

▶ Ding, Sly, Sun does not show their threshold holds for small k,
or even that their threshold is algebraically well-defined.

▶ We upper bound the satisfiability threshold for all k ≥ 3 and
provide a threshold matching the Ding, Sly, Sun paper by
interpolating a theorem from Sly, Sun, Zhang [SSZ16]

▶ We show the threshold also holds for the hypergraph model.
▶ Algebraically prove our upper bound is well-defined.

16/18



Our work

▶ Ding, Sly, Sun does not show their threshold holds for small k,
or even that their threshold is algebraically well-defined.

▶ We upper bound the satisfiability threshold for all k ≥ 3 and
provide a threshold matching the Ding, Sly, Sun paper by
interpolating a theorem from Sly, Sun, Zhang [SSZ16]

▶ We show the threshold also holds for the hypergraph model.

▶ Algebraically prove our upper bound is well-defined.

16/18



Our work

▶ Ding, Sly, Sun does not show their threshold holds for small k,
or even that their threshold is algebraically well-defined.

▶ We upper bound the satisfiability threshold for all k ≥ 3 and
provide a threshold matching the Ding, Sly, Sun paper by
interpolating a theorem from Sly, Sun, Zhang [SSZ16]

▶ We show the threshold also holds for the hypergraph model.
▶ Algebraically prove our upper bound is well-defined.

16/18



Acknowledgements

▶ Our mentor Dr. Youngtak Sohn
▶ The PRIMES-USA Program and its director Dr. Slava

Gerovitch
▶ Dr. Tanya Khovanova
▶ Our parents

17/18



References

Jian Ding, Allan Sly, and Nike Sun, Satisfiability threshold for
random regular NAE-SAT, Commun. Math. Phys. 341 (2016),
no. 2, 435–489.
Michael Henning and Anders Yeo, Transversals in 4-uniform
hypergraphs, The Electronic Journal of Combinatorics 23
(2015).

Allan Sly, Nike Sun, and Yumeng Zhang, The number of
solutions for random regular NAE-SAT, Proceedings of the
57th Symposium on Foundations of Computer Science, FOCS
’16, 2016, pp. 724–731.

18/18


