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Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, ’90)

The sum graph G (V ,E ) with sum graph labeling L ⊆ Z+ is given by
V = L and (u, v) ∈ E if and only if u + v ∈ L.

Example: Sum Graph Labeling of G

4
4

1
1

2 2

3 3

5
5

L = [1, 2, 3, 4, 5] is a sum graph labeling of G
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The Existence of a Sum Graph Labeling

Natural Question

Does every graph have a sum graph labeling?

Answer

No!
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The Existence of a Sum Graph Labeling

Natural Question

Does every graph have a sum graph labeling?

Answer

No!

4 1

2

3

5 4

4

4

No connected graph is a sum graph.
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Lower Bound on Isolated Vertices

Theorem (Harary, ’90)

For any G , there is a finite σ(G ) such that G ∪ I≥σ(G) is a sum graph.

Example: σ(P9) = 1
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Theorem (Harary, ’90)

It holds that σ(Pn) = 1.
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Upper Bound on Isolated Vertices

Natural Question

Is there an upper bound on the number of isolated vertices?

Answer
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Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique
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Natural question

What is the smallest possible range (max−min) of the labels?
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Spum(G )

Spum (Goodell et al., ’90)

The minimum range(L) over all sum graphs G ∪ Iσ(G) with labels L.

Example: spum(G ) = 6− 1 = 5
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Complete Graphs Kn

Example: K5
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Theorem (Bergstand et al, ’89)

It holds that σ(Kn) is 2n − 3.

Theorem (Li, ’22)

It holds that spum(Kn) is 4n − 6.
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Complete Graphs Kn

Example: spum(K5) = 4× 5− 6 = 14
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Cycles Cn

Example: C5
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Theorem (Fernau, Ryan, and Sugeng, ’08)

It holds that σ(Cn) = 2.

Theorem (Li, ’22)

It holds that spum(Cn) = 2n − 1.
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Cycles Cn

Example: spum(C5) = 2× 5− 1 = 9
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Stars K1,n

Example: K1,3

4 1
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Theorem (Ellingham, ’93)

The sum number of any tree is 1.

Theorem (Singla, Tiwari and Tripathi, ’21)

It holds that spum(K1,n) = 2n − 1.
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The Sum Number of Paths Pn

Example: P9

4 2 1 3 5 4 2 1 35

Theorem (Harary, ’90)

It holds that σ(Pn) = 1.
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The Spum of Paths Pn

Theorem (Singla, Tiwari, and Tripathi, ’21)

It holds that

spum(Pn) ∈

{
[2n − 3, 2n + 1] if n ≥ 9 is odd

[2n − 3, 2n + 2] if n ≥ 9 is even
.

Conjecture (Singla, Tiwari, and Tripathi, ’21)

It holds that

spum(Pn) =

{
2n + 1 if n ≥ 9 is odd

2n + 2 if n ≥ 9 is even
.
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The Spum of Paths Pn

Theorem (Li, ’22)

It holds that

spum(Pn) ∈
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The Spum of Paths Pn

Theorem (B.C.T., ’23)

It holds that

spum(Pn) =


2n − 3 if 3 ≤ n ≤ 6

2n − 2 if n = 7

2n − 1 if n ≥ 8 is even

2n + 1 if n ≥ 9 is odd

.
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Integral Sum Number

Natural Question

Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, ’94)

For any G , there is a finite ζ(G ) such that G ∪ Iζ(G) is an integral
sum graph.

Integral Spum (Singla, Tiwari, and Tripathi, ’21)

The minimum range(L) over all G ∪ Iζ(G) with labels L ⊆ Z.

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Sum Number

Natural Question

Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, ’94)

For any G , there is a finite ζ(G ) such that G ∪ Iζ(G) is an integral
sum graph.

Integral Spum (Singla, Tiwari, and Tripathi, ’21)

The minimum range(L) over all G ∪ Iζ(G) with labels L ⊆ Z.

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Sum Number

Natural Question

Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, ’94)

For any G , there is a finite ζ(G ) such that G ∪ Iζ(G) is an integral
sum graph.

Integral Spum (Singla, Tiwari, and Tripathi, ’21)

The minimum range(L) over all G ∪ Iζ(G) with labels L ⊆ Z.

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Sum Number

Natural Question

Can ζ(G ) = 0 for connected graphs G?

Does our argument for σ(G ) work for ζ(G )?
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Example: ζ(G ) = 0 for P10
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Integral Spum

Natural Question

Can ispum be less than spum?

Example: spum(P10) = 20− 1 = 19
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Example: ispum(P10) = 16− (−1) = 17

7
-1

8
3

9
7

1
11

1
5

2
9

3
12

3
16

0
1

1
15

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Spum

Natural Question

Can ispum be less than spum?

Example: spum(P10) = 20− 1 = 19

3
16

3
1

8
15

2
5

9
11

1
9

1
7

0
13

1
3

1
17

1
20

Example: ispum(P10) = 16− (−1) = 17

7
-1

8
3

9
7

1
11

1
5

2
9

3
12

3
16

0
1

1
15

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Spum

Natural Question

Can ispum be less than spum?

Example: spum(P10) = 20− 1 = 19

3
16

3
1

8
15

2
5

9
11

1
9

1
7

0
13

1
3

1
17

1
20

Example: ispum(P10) = 16− (−1) = 17

7
-1

8
3

9
7

1
11

1
5

2
9

3
12

3
16

0
1

1
15

On the Spum and Sum-Diameter of Paths Results 10 / 19



Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, ’21)

If n ≥ 7, then 2n − 5 ≤ ispum(Pn) ≤

{
2n − 3 if n is even
5
2(n − 3) if n is odd

.

Conjecture (Singla, Tiwari, and Tripathi, ’21)

If n ≥ 7, then ispum(Pn) =

{
2n − 3 if n is even
5
2(n − 3) if n is odd

.

Theorem (B.C.T., ’23)

If n ≥ 7, then 2n − 3 ≤ ispum(Pn) ≤

{
2n − 3 if n is even
5
2(n − 3) if n is odd

.
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Sum-Diameter and Integral Sum-Diameter

Natural Question

What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, ’22)

The sd(G ) is the minimum range(L) over all G ∪ I≥σ(G) with labels L.

Example: spum(P8) = 16− 1 = 15
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Sum-Diameter and Integral Sum-Diameter

Natural Question

What if we allow an arbitrary number of isolated vertices and allow
for L ⊆ Z?

Integral Sum-Diameter (Li, ’22)

The isd(G ) is the minimum range(L) over all G ∪ I≥ζ(G) with labels
L ⊆ Z.

Example: sd(P8) = 21− 7 = 14
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spum, sd, ispum, and isd

Minimum Number of Isolated Vertices

Arbitrary Number of Isolated Vertices

L ⊆ Z+ L ⊆ Z

spum ispum

sd isd
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Results on Sum-Diameter

Proposition (Li, ’22)

If n ≥ 3, then 2n − 3 ≤ sd(Pn) ≤ 2n − 2.

Theorem (B.C.T., ’23)

If n ≥ 7, then sd(Pn) = 2n − 2.
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Results on Integral Sum-Diameter

Proposition (Li, ’22)

If n ≥ 3, then 2n − 5 ≤ isd(Pn) ≤

{
2n − 2 if n is odd

2n − 3 if n is even
.

Theorem (B.C.T., ’23)

If n ≥ 27, then isd(Pn) =

{
2n − 2 if n is odd

2n − 3 if n is even
.
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Conclusion

Best Known Bounds for n ≥ 27

Minimum Number

of Isolated Vertices

Arbitrary Number

of Isolated Vertices

L ⊆ Z+ L ⊆ Z

spum(Pn ) ⊆



[2n − 2, 2n − 1]

for even n

[2n − 2, 2n + 1]

for odd n

(Li, ’22)
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for odd n

(Li, ’22)

ispum(Pn ) ⊆



[2n − 5, 2n − 3]

for even n

[2n − 5, 5

2
(n − 3)]

for odd n

(Singla, Tiwari, and Tripathi, ’21)
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for even n
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2
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sd(Pn ) ⊆ [2n − 3, 2n − 2]

(Li, ’22)
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2
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sd(Pn ) ⊆ [2n − 3, 2n − 2]

(Li, ’22)

isd(Pn ) ⊆



[2n − 5, 2n − 3]

for even n

[2n − 5, 2n − 2]

for odd n

(Li, ’22)
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Conclusion

Theorems (B.C.T., ’23)

Minimum Number

of Isolated Vertices

Arbitrary Number

of Isolated Vertices

L ⊆ Z+ L ⊆ Z

spum(Pn ) =



2n − 1

for even n

2n + 1

for odd n
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