On the Spum and Sum-Diameter of Paths

Aryan Bora and Lucas Tang
Mentor: Yunseo Choi

William P. Clements High School and Interlake High School

October 14-15, 2023
MIT PRIMES Conference

Sum Graphs

Sum Graphs

$$
\begin{aligned}
& 2 \\
& {[1,2,3,4,5]}
\end{aligned}
$$

Sum Graphs

$[1,2,3,4,5]$

Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

- The sum graph $G(V, E)$ with sum graph labeling $L \subseteq \mathbb{Z}^{+}$is given by $V=L$ and $(u, v) \in E$ if and only if $u+v \in L$.

Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

- The sum graph $G(V, E)$ with sum graph labeling $L \subseteq \mathbb{Z}^{+}$is given by $V=L$ and $(u, v) \in E$ if and only if $u+v \in L$.

Example: Sum Graph Labeling of G

$$
L=[1,2,3,4,5] \text { is a sum graph labeling of } G
$$

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?

Answer

- No!

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?
- No!

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?
- No!

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?
- No!

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?
- No!

The Existence of a Sum Graph Labeling

Natural Question

- Does every graph have a sum graph labeling?

Answer

- No!

- No connected graph is a sum graph.

Lower Bound on Isolated Vertices

Theorem (Harary, '90)

- For any G, there is a finite $\sigma(G)$ such that $G \cup I_{\geq \sigma(G)}$ is a sum graph.

Lower Bound on Isolated Vertices

Theorem (Harary, '90)

- For any G, there is a finite $\sigma(G)$ such that $G \cup I_{\geq \sigma(G)}$ is a sum graph.

Example: $\sigma\left(P_{9}\right)=1$

Theorem (Harary, '90)

- It holds that $\sigma\left(P_{n}\right)=1$.

Upper Bound on Isolated Vertices

Natural Question

- Is there an upper bound on the number of isolated vertices?

Upper Bound on Isolated Vertices

Natural Question

- Is there an upper bound on the number of isolated vertices?

Answer

- No!

Upper Bound on Isolated Vertices

Natural Question

- Is there an upper bound on the number of isolated vertices?

Answer

- No!

Upper Bound on Isolated Vertices?

Natural Question

- Is there an upper bound on the number of isolated vertices?

Answer

- No!

Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique

$$
L=[1,3,4,5,6]
$$

$L=[3,7,10,13,16]$

Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique

$$
L=[1,3,4,5,6]
$$

$$
L=[3,7,10,13,16]
$$

Natural question

- What is the smallest possible range ($\max -\min$) of the labels?

$\operatorname{Spum}(G)$

Spum (Goodell et al., '90)

- The minimum range (L) over all sum graphs $G \cup I_{\sigma(G)}$ with labels L.

Spum (G)

Spum (Goodell et al., '90)

- The minimum range (L) over all sum graphs $G \cup I_{\sigma(G)}$ with labels L.

Example: $\operatorname{spum}(G)=6-1=5$

$$
L=[1,3,4,5,6]
$$

Complete Graphs K_{n}

Example: K_{5}

Complete Graphs K_{n}

Example: K_{5}

Theorem (Bergstand et al, '89)

- It holds that $\sigma\left(K_{n}\right)$ is $2 n-3$.

Theorem (Li, '22)

- It holds that $\operatorname{spum}\left(K_{n}\right)$ is $4 n-6$.

Complete Graphs K_{n}

Example: $\operatorname{spum}\left(K_{5}\right)=4 \times 5-6=14$

Theorem (Bergstand et al, '89)

- It holds that $\sigma\left(K_{n}\right)$ is $2 n-3$.

Theorem (Li, '22)

- It holds that $\operatorname{spum}\left(K_{n}\right)$ is $4 n-6$.

Cycles C_{n}

Example: C_{5}

Cycles C_{n}

Example: C_{5}

Theorem (Fernau, Ryan, and Sugeng, '08)

- It holds that $\sigma\left(C_{n}\right)=2$.

Theorem (Li, '22)

- It holds that $\operatorname{spum}\left(C_{n}\right)=2 n-1$.

Cycles C_{n}

Example: $\operatorname{spum}\left(C_{5}\right)=2 \times 5-1=9$

Theorem (Fernau, Ryan, and Sugeng, '08)

- It holds that $\sigma\left(C_{n}\right)=2$.

Theorem (Li, '22)

- It holds that $\operatorname{spum}\left(C_{n}\right)=2 n-1$.

Stars $K_{1, n}$

Example: $K_{1,3}$

Stars $K_{1, n}$

Example: $K_{1,3}$

Theorem (Ellingham, '93)

- The sum number of any tree is 1 .

Theorem (Singla, Tiwari and Tripathi, '21)

- It holds that $\operatorname{spum}\left(K_{1, n}\right)=2 n-1$.

Stars $K_{1, n}$

Example: $\operatorname{spum}\left(K_{1,3}\right)=2 \times 3-1=5$

Theorem (Ellingham, '93)

- The sum number of any tree is 1 .

Theorem (Singla, Tiwari and Tripathi, '21)

- It holds that $\operatorname{spum}\left(K_{1, n}\right)=2 n-1$.

The Sum Number of Paths P_{n}

Example: P_{9}

Theorem (Harary, '90)

- It holds that $\sigma\left(P_{n}\right)=1$.

The Sum Number of Paths P_{n}

Example: P_{9}

Theorem (Harary, '90)

- It holds that $\sigma\left(P_{n}\right)=1$.

The Spum of Paths P_{n}

Theorem (Singla, Tiwari, and Tripathi, '21)
It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in\left\{\begin{array}{ll}
{[2 n-3,2 n+1]} & \text { if } n \geq 9 \text { is odd } \\
{[2 n-3,2 n+2]} & \text { if } n \geq 9 \text { is even }
\end{array} .\right.
$$

The Spum of Paths P_{n}

Theorem (Singla, Tiwari, and Tripathi, '21)
It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in \begin{cases}{[2 n-3,2 n+1]} & \text { if } n \geq 9 \text { is odd } \\ {[2 n-3,2 n+2]} & \text { if } n \geq 9 \text { is even }\end{cases}
$$

Conjecture (Singla, Tiwari, and Tripathi, '21)
It holds that

$$
\operatorname{spum}\left(P_{n}\right)= \begin{cases}2 n+1 & \text { if } n \geq 9 \text { is odd } \\ 2 n+2 & \text { if } n \geq 9 \text { is even }\end{cases}
$$

The Spum of Paths P_{n}

Theorem (Singla, Tiwari, and Tripathi, '21)
It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in \begin{cases}{[2 n-3,2 n+1]} & \text { if } n \geq 9 \text { is odd } \\ {[2 n-3,2 n+2]} & \text { if } n \geq 9 \text { is even }\end{cases}
$$

Conjecture (Singla, Tiwari, and Tripathi, '21)
It holds that

$$
\operatorname{spum}\left(P_{n}\right)= \begin{cases}2 n+1 & \text { if } n \geq 9 \text { is odd } \\ 2 n+2 & \text { if } n \geq 9 \text { is even }\end{cases}
$$

The Spum of Paths P_{n}

Theorem (Li, '22)
It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in \begin{cases}{[2 n-2,2 n-1]} & \text { if } n \geq 8 \text { is even } \\ {[2 n-2,2 n+1]} & \text { if } n \geq 9 \text { is odd }\end{cases}
$$

The Spum of Paths P_{n}

Theorem (Li, '22)

It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in \begin{cases}{[2 n-2,2 n-1]} & \text { if } n \geq 8 \text { is even } \\ {[2 n-2,2 n+1]} & \text { if } n \geq 9 \text { is odd }\end{cases}
$$

Conjecture (Li, '22)
It holds that

$$
\operatorname{spum}\left(P_{n}\right)= \begin{cases}2 n-1 & \text { if } n \geq 8 \text { is even } \\ 2 n+1 & \text { if } n \geq 9 \text { is odd }\end{cases}
$$

The Spum of Paths P_{n}

Theorem (Li, '22)
It holds that

$$
\operatorname{spum}\left(P_{n}\right) \in \begin{cases}{[2 n-2,2 n-1]} & \text { if } n \geq 8 \text { is even } \\ {[2 n-2,2 n+1]} & \text { if } n \geq 9 \text { is odd }\end{cases}
$$

Conjecture (Li, '22)
It holds that

$$
\operatorname{spum}\left(P_{n}\right)= \begin{cases}2 n-1 & \text { if } n \geq 8 \text { is even } \\ 2 n+1 & \text { if } n \geq 9 \text { is odd }\end{cases}
$$

The Spum of Paths P_{n}

Theorem (B.C.T., '23)

It holds that

$$
\operatorname{spum}\left(P_{n}\right)=\left\{\begin{array}{ll}
2 n-3 & \text { if } 3 \leq n \leq 6 \\
2 n-2 & \text { if } n=7 \\
2 n-1 & \text { if } n \geq 8 \text { is even } \\
2 n+1 & \text { if } n \geq 9 \text { is odd }
\end{array} .\right.
$$

Integral Sum Number

Natural Question

- Why restrict L to positive labels? What if we allow negative labels?

Integral Sum Number

Natural Question

- Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, '94)

- For any G, there is a finite $\zeta(G)$ such that $G \cup I_{\zeta(G)}$ is an integral sum graph.

Integral Sum Number

Natural Question

- Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, '94)

- For any G, there is a finite $\zeta(G)$ such that $G \cup I_{\zeta(G)}$ is an integral sum graph.

Integral Spum (Singla, Tiwari, and Tripathi, '21)

- The minimum range (L) over all $G \cup I_{\zeta(G)}$ with labels $L \subseteq \mathbb{Z}$.

Integral Sum Number

Natural Question

- Can $\zeta(G)=0$ for connected graphs G ?

Does our argument for $\sigma(G)$ work for $\zeta(G)$?

Integral Sum Number

Natural Question

- Can $\zeta(G)=0$ for connected graphs G ?

Does our argument for $\sigma(G)$ work for $\zeta(G)$?

Example: $\zeta(G)=0$ for P_{10}

Integral Spum

Natural Question

- Can ispum be less than spum?

Integral Spum

Natural Question

- Can ispum be less than spum?

Example: $\operatorname{spum}\left(P_{10}\right)=20-1=19$

Integral Spum

Natural Question

- Can ispum be less than spum?

Example: $\operatorname{spum}\left(P_{10}\right)=20-1=19$

Example: $\operatorname{ispum}\left(P_{10}\right)=16-(-1)=17$

Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)
If $n \geq 7$, then $2 n-5 \leq \operatorname{ispum}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.

Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)
If $n \geq 7$, then $2 n-5 \leq \operatorname{ispum}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.
Conjecture (Singla, Tiwari, and Tripathi, '21)
If $n \geq 7$, then $\operatorname{ispum}\left(P_{n}\right)=\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.

Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)
If $n \geq 7$, then $2 n-5 \leq \operatorname{ispum}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.

Conjecture (Singla, Tiwari, and Tripathi, '21)

If $n \geq 7$, then $\operatorname{ispum}\left(P_{n}\right)=\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.
Theorem (B.C.T., '23)
If $n \geq 7$, then $2 n-3 \leq \operatorname{ispum}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{array}\right.$.

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices?

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, '22)

- The $\operatorname{sd}(G)$ is the minimum range (L) over all $G \cup I_{\geq \sigma(G)}$ with labels L.

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, '22)

- The $\operatorname{sd}(G)$ is the minimum range (L) over all $G \cup I_{\geq \sigma(G)}$ with labels L.

Example: $\operatorname{spum}\left(P_{8}\right)=16-1=15$

Example: $\operatorname{sd}\left(P_{8}\right)=21-7=14$

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices and allow for $L \subseteq \mathbb{Z}$?

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices and allow for $L \subseteq \mathbb{Z}$?

Integral Sum-Diameter (Li, '22)

- The $\operatorname{isd}(G)$ is the minimum range (L) over all $G \cup I_{\geq \zeta(G)}$ with labels $L \subseteq \mathbb{Z}$.

Sum-Diameter and Integral Sum-Diameter

Natural Question

- What if we allow an arbitrary number of isolated vertices and allow for $L \subseteq \mathbb{Z}$?

Integral Sum-Diameter (Li, '22)

- The isd (G) is the minimum range (L) over all $G \cup I_{\geq \zeta(G)}$ with labels $L \subseteq \mathbb{Z}$.

Example: $\operatorname{sd}\left(P_{8}\right)=21-7=14$

Example: $\operatorname{isd}\left(P_{8}\right)=12-(-1)=13$

spum, sd, ispum, and isd

Results on Sum-Diameter

Proposition (Li, '22)

If $n \geq 3$, then $2 n-3 \leq \operatorname{sd}\left(P_{n}\right) \leq 2 n-2$.

Results on Sum-Diameter

Proposition (Li, '22)

If $n \geq 3$, then $2 n-3 \leq \operatorname{sd}\left(P_{n}\right) \leq 2 n-2$.
Theorem (B.C.T., '23)
If $n \geq 7$, then $\operatorname{sd}\left(P_{n}\right)=2 n-2$.

Results on Integral Sum-Diameter

Proposition (Li, '22)
If $n \geq 3$, then $2 n-5 \leq \operatorname{isd}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-2 & \text { if } n \text { is odd } \\ 2 n-3 & \text { if } n \text { is even }\end{array}\right.$.

Results on Integral Sum-Diameter

Proposition (Li, '22)
If $n \geq 3$, then $2 n-5 \leq \operatorname{isd}\left(P_{n}\right) \leq\left\{\begin{array}{ll}2 n-2 & \text { if } n \text { is odd } \\ 2 n-3 & \text { if } n \text { is even }\end{array}\right.$.
Theorem (B.C.T., '23)
If $n \geq 27$, then $\operatorname{isd}\left(P_{n}\right)=\left\{\begin{array}{ll}2 n-2 & \text { if } n \text { is odd } \\ 2 n-3 & \text { if } n \text { is even }\end{array}\right.$.

Conclusion

Best Known Bounds for $n \geq 27$

Conclusion

Best Known Bounds for $n \geq 27$

	$L \subseteq \mathbb{Z}^{+}$	$L \subseteq \mathbb{Z}$
Minimum Number of Isolated Vertices	$\operatorname{spum}\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-2,2 n-1]} \\ \text { for even } n \\ {[2 n-2,2 n+1]} \\ \text { for odd } n \end{array}\right.$ (Li, '22)	$\text { ispum }\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-5,2 n-3]} \\ \text { for even } n \\ {\left[2 n-5, \frac{5}{2}(n-3)\right]} \\ \text { for odd } n \end{array}\right.$ (Singla, Tiwari, and Tripathi, '21)
Arbitrary Number of Isolated Vertices		

Conclusion

Best Known Bounds for $n \geq 27$

	$L \subseteq \mathbb{Z}^{+}$	$L \subseteq \mathbb{Z}$
Minimum Number of Isolated Vertices	$\operatorname{spum}\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-2,2 n-1]} \\ \text { for even } n \\ {[2 n-2,2 n+1]} \\ \text { for odd } n \end{array}\right.$ (Li, '22)	$\text { ispum }\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-5,2 n-3]} \\ \text { for even } n \\ {\left[2 n-5, \frac{5}{2}(n-3]\right.} \\ \text { for odd } n \end{array}\right.$ (Singla, Tiwari, and Tripathi, '21)
Arbitrary Number of Isolated Vertices	$\operatorname{sd}\left(P_{n}\right) \subseteq[2 n-3,2 n-2]$ (Li, '22)	

Conclusion

Best Known Bounds for $n \geq 27$

	$L \subseteq \mathbb{Z}^{+}$	$L \subseteq \mathbb{Z}$
Minimum Number of Isolated Vertices	$\operatorname{spum}\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-2,2 n-1]} \\ \text { for even } n \\ {[2 n-2,2 n+1]} \\ \text { for odd } n \end{array}\right.$ (Li, '22)	$\text { ispum }\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-5,2 n-3]} \\ \text { for even } n \\ {\left[2 n-5, \frac{5}{2}(n-3)\right]} \\ \text { for odd } n \end{array}\right.$ (Singla, Tiwari, and Tripathi, '21)
Arbitrary Number of Isolated Vertices	$\operatorname{sd}\left(P_{n}\right) \subseteq[2 n-3,2 n-2]$ (Li, '22)	$\mathrm{isd}\left(P_{n}\right) \subseteq\left\{\begin{array}{l} {[2 n-5,2 n-3]} \\ \text { for even } n \\ {[2 n-5,2 n-2]} \\ \text { for odd } n \end{array}\right.$ (Li, '22)

Conclusion

Theorems (B.C.T., '23)

Acknowledgements

Acknowledgements

- Yunseo Choi (Mentor)
- PRIMES-USA Program
- Slava Gerovitch
- Pavel Etingof
- Tanya Khovanova

References

References

- J. Goodell et al. Sum graphs. unpublished (1990).
- F. Harary. Sum graphs and difference graphs. Congr. Numer. 72 (1990), pp. 101-108.
- F. Harary. Sum graphs over all integers. Discrete Math. 124 (1994), pp. 99-105.
- R. Li. The Spum and Sum-Diameter of Graphs: Labelings of Sum Graphs. Discrete Math. 345.5 (2022), p. 112806.
- S. Singla, A. Tiwari, and A. Tripathi. Some results on the spum and the integral spum of graphs. Discrete Math. 344 (2021), P3.32.

