Improved Bounds on Helly Numbers of Exponential Lattices

Srinivas Arun
Under the Guidance of Travis Dillon MIT PRIMES Conference

October 14th, 2023

Convexity

Definition

A set $S \subseteq \mathbb{R}^{d}$ is convex if for any u and v in S, every point on the segment between u and v is in S.

Helly's Theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Helly's Theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Example

Helly's Theorem

Example (Feasibility of a Linear Program)

To check whether or not n linear contraints can be simultaneously satisfied, it suffices to check whether every $d+1$ constraints can be simultaneously satisfied.

${ }^{1}$ Computational Geometry, WS 2007/08, Dr. Thomas Ottmann

Helly's Theorem

Can the bound be improved?
Theorem (Helly, 1923)
Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Helly's Theorem

Can the bound be improved?
Theorem (Helly, 1923)
Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Helly's Theorem

Can the bound be improved?
Theorem (Helly, 1923)
Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

In particular, can we replace $d+1$ with d ?

Helly's Theorem

The constant in Helly's Theorem cannot be improved.

Helly's Theorem

The constant in Helly's Theorem cannot be improved.

Every 2 edges intersect at a vertex, but not all edges intersect.

Helly's Theorem

The constant in Helly's Theorem cannot be improved.

Every 2 edges intersect at a vertex, but not all edges intersect.

Every 3 faces intersect at a vertex, but not all faces intersect.

Doignon's Theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Doignon's Theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $d+1$ or fewer sets in \mathcal{F} have nonempty intersection, then all sets in \mathcal{F} have nonempty intersection.

Theorem (Doignon, 1973)
Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every $\mathbf{2}^{\mathbf{d}}$ or fewer sets in \mathcal{F} intersect at a lattice point, then all sets in \mathcal{F} intersect at a lattice point.

Doignon's Theorem

Example

Doignon's Theorem

The constant in Doignon's Theorem also cannot be lowered.

Doignon's Theorem

The constant in Doignon's Theorem also cannot be lowered.

Every 3 triangles of the above form intersect at a lattice point, but all 4 do not.

Doignon's Theorem

The constant in Doignon's Theorem also cannot be lowered.

Every 3 triangles of the above form intersect at a lattice point, but all 4 do not.

Every 7 polytopes of the above form intersect at a lattice point, but all 8 do not.

Helly Numbers

Definition

Given a set $S \subseteq \mathbb{R}^{d}$, the Helly number of S, denoted $h(S)$, is the smallest h such that the following Helly-type theorem holds:

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{d}. If every h or fewer sets in \mathcal{F} intersect at a point in S, then the intersection of all sets in \mathcal{F} contains a point in S.

If no such h exists, we say $h(S)=\infty$.

Helly Numbers

Theorem (Helly, 1923)
$h\left(\mathbb{R}^{d}\right)=d+1$.

Theorem (Doignon, 1973)
$h\left(\mathbb{Z}^{d}\right)=2^{d}$.

Fundamental Results

Recall the examples we used to show that the Helly and Doignon bounds are sharp.

Both constructions involve taking the convex hull of all but one vertex of a polytope.

Fundamental Results

Definition

We say $\left\{x_{1}, \ldots, x_{m}\right\} \in S$ is intersect-empty in S if the sets

$$
\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{m}\right\} \backslash\left\{x_{i}\right\}\right), \quad i=1, \ldots, m
$$

do not all intersect at a point in S.

Fundamental Results

Theorem

If $S \subseteq \mathbb{R}^{d}$, then $h(S)$ is equal to the maximum number of vertices of an intersect-empty subset of S.

Example

A tetrahedron is a maximal intersect-empty set in $S=\mathbb{R}^{3}$.

Fundamental Results

Definition

We say a convex set in S is empty if the only elements of S in it are its vertices.

Fundamental Results

```
Theorem
If S \in 舟d}\mathrm{ and }S\mathrm{ is discrete}\mp@subsup{}{}{2}\mathrm{ , then }h(S)\mathrm{ is equal to the maximum number of vertices of an empty subset of \(S\).
```

Example
A cube is a maximal empty set in $S=\mathbb{Z}^{3}$.

[^0]
Exponential Lattices

Question (Dillon,2021)

What is $h\left(\left\{2^{n}: n \in \mathbb{N}\right\}^{2}\right)$?

Exponential Lattices

Question (Dillon,2021)

What is $h\left(\left\{2^{n}: n \in \mathbb{N}\right\}^{2}\right)$?

Question (Generalization)

Given $\alpha>1$, what is $h\left(\left\{\alpha^{n}: n \in \mathbb{N}\right\}^{2}\right\}$?

Exponential Lattices

Theorem (Ambrus, Balko, Frankl, Jung, and Naszódi, 2023)
Define $L_{2}(\alpha)=\left\{\alpha^{n}: n \in \mathbb{N}\right\}^{2}$.

- If $\alpha \geq 2$, then $h\left(L_{2}(\alpha)\right)=5$.
- If $\alpha \in\left[\frac{1+\sqrt{5}}{2}, 2\right)$, then $h\left(L_{2}(\alpha)\right)=7$.
- If $\alpha \in\left(1, \frac{1+\sqrt{5}}{2}\right)$, then $h\left(L_{2}(\alpha)\right) \leq 3\left\lceil\log _{\alpha}\left(\frac{\alpha}{\alpha-1}\right)\right\rceil+3$.

Exponential Lattices

Theorem (Ambrus, Balko, Frankl, Jung, and Naszódi, 2023)
Define $L_{2}(\alpha)=\left\{\alpha^{n}: n \in \mathbb{N}\right\}^{2}$.

- If $\alpha \geq 2$, then $h\left(L_{2}(\alpha)\right)=5$.
- If $\alpha \in\left[\frac{1+\sqrt{5}}{2}, 2\right)$, then $h\left(L_{2}(\alpha)\right)=7$.
- If $\alpha \in\left(1, \frac{1+\sqrt{5}}{2}\right)$, then $h\left(L_{2}(\alpha)\right) \leq 3\left\lceil\log _{\alpha}\left(\frac{\alpha}{\alpha-1}\right)\right\rceil+3$.

Theorem (S.A., 2023)

We have

$$
h\left(L_{2}(\alpha)\right) \leq 2\left\lceil\log _{\alpha}\left(\frac{\alpha}{\alpha-1}\right)\right\rceil+3 .
$$

Acknowledgements

- Travis Dillon, for introducing me to this topic and guiding my research
- Tanya Khovanova, for providing advice on presentation
- The PRIMES-USA Program, for making this opportunity possible
- MIT, for hosting this conference

References I

围 G．Ambrus，M．Balko，N．Frankl，A．Jung，and M．Naszódi．
On Helly numbers of exponential lattices， 2023.
E D．E．Bell．
A theorem concerning the integer lattice．
Studies in Applied Mathematics，56（2）：187－188，Apr． 1977.
國 J．A．De Loera，R．N．La Haye，D．Oliveros，and E．Roldán－Pensado． Helly numbers of Algebraic Subsets of \mathbb{R}^{d} ．
2015.

目 T．Dillon．
Discrete quantitative Helly－type theorems with boxes．
Advances in Applied Mathematics，129：102217， 82021.

References II

R J.-P. Doignon.

Convexity in cristallographical lattices. Journal of Geometry, 3(1):71-85, Mar. 1973.

圊 E. Helly.
Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.

目 A. J. Hoffman.
BINDING CONSTRAINTS AND HELLY NUMBERS.
Annals of the New York Academy of Sciences, 319(1 Second Intern):284-288, May 1979.

References III

围 H. E. Scarf.
An observation on the structure of production sets with indivisibilities. Proceedings of the National Academy of Sciences, 74(9):3637-3641, Sept. 1977.

[^0]: ${ }^{2}$ Here, we say S is discrete if any bounded region contains finitely many points in S

