On Generalized Eulerian Numbers

David Dong
Mentored By: Tanya Khovanova

October 14-15, 2023
MIT PRIMES Conference

Permutations

- We will often consider permutations of the numbers $1,2, \ldots, n$.
- Treat these as functions (bijections) from $\{1,2, \ldots, n\}$ to itself.

Permutations

- We will often consider permutations of the numbers $1,2, \ldots, n$.
- Treat these as functions (bijections) from $\{1,2, \ldots, n\}$ to itself.
- There are two main ways to write permutations.

Two-line Notation

Example:

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

Permutations

- We will often consider permutations of the numbers $1,2, \ldots, n$.
- Treat these as functions (bijections) from $\{1,2, \ldots, n\}$ to itself.
- There are two main ways to write permutations.

Two-line Notation

Example:

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Here, $\sigma(1)=5, \sigma(2)=6, \sigma(3)=3$, etc.
- Sometimes, we simplify and write 563142 .

Permutations

- Previous Example: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$
- Reapplying σ on any element returns back to itself eventually:

$$
\sigma(1)=5, \quad \sigma(\sigma(1))=4, \quad \sigma(\sigma(\sigma(1)))=1
$$

Permutations

- Previous Example: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$
- Reapplying σ on any element returns back to itself eventually:

$$
\sigma(1)=5, \quad \sigma(\sigma(1))=4, \quad \sigma(\sigma(\sigma(1)))=1
$$

- Can interpret as cycles! Known as cycle notation.

- Each arrow represents an application of σ to the node.

Permutations

- Previous Example: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$
- Reapplying σ on any element returns back to itself eventually:

$$
\sigma(1)=5, \quad \sigma(\sigma(1))=4, \quad \sigma(\sigma(\sigma(1)))=1
$$

- Can interpret as cycles! Known as cycle notation.

- Each arrow represents an application of σ to the node.
- We similarly use shorthand and write $\sigma=(154)(26)(3)$.
- By convention, we arrange cycles by smallest element, and put smallest element on the left (ensures uniquness!)

Ascents

In a permutation, an ascent is any position i where $\sigma(i)<\sigma(i+1)$.

- The size of an ascent is $\sigma(i+1)-\sigma(i)$.

Ascents

In a permutation, an ascent is any position i where $\sigma(i)<\sigma(i+1)$.

- The size of an ascent is $\sigma(i+1)-\sigma(i)$.
- Example permutation: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$.

Ascents

In a permutation, an ascent is any position i where $\sigma(i)<\sigma(i+1)$.

- The size of an ascent is $\sigma(i+1)-\sigma(i)$.
- Example permutation: $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$.

- Ascent indices are marked in green.
- Descents are whenever $\sigma(i)>\sigma(i+1)$ (indices marked in red).
- Two ascents: ascent of size 1 at $i=1$, ascent of size 3 at $i=3$.

Excedances

An excedance is any position i where $\sigma(i)>i$.

- The size of an excedance is $\sigma(i)-i$.

Excedances

An excedance is any position i where $\sigma(i)>i$.

- The size of an excedance is $\sigma(i)-i$.
- Example permutation: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$.

Excedances

An excedance is any position i where $\sigma(i)>i$.

- The size of an excedance is $\sigma(i)-i$.
- Example permutation: $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2\end{array}\right)$.

- Excedances are marked in green.
- Anti-excedances, whenever $\sigma(i)<i$, are marked in red.
- Two excedances: an excedance of size 4 at $i=1$ and $i=2$.

The Foata Transform

Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:

The Foata Transform

Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:
- Stops at every element smaller than all previous elements, and start a new block before that element.
- Creates a new permutation $F(\sigma)$ where every block in σ is interpreted as cycle in $F(\sigma)$.

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$
F(\sigma)=(56)(3)(142)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$
F(\sigma)=(56)(3)(142)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$
F(\sigma)=(56)(3)(142)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedances in $F(\sigma)$!

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$
F(\sigma)=(56)(3)(142)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedances in $F(\sigma)$!
- Descents inside blocks also correspond exactly.

The Foata Transform

- Example permutation:

$$
\sigma=\left(\begin{array}{ll|l|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right)
$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$
F(\sigma)=(56)(3)(142)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedances in $F(\sigma)$!
- Descents inside blocks also correspond exactly.
- Finally, by convention, there must always be a descent/anti-excedance at the end of blocks.

The Foata Transform

Proposition

After an application of the Foata transform on any permutation σ, number of ascents in σ always equal to number of excedances in $F(\sigma)$.

The Foata Transform

Proposition

After an application of the Foata transform on any permutation σ, number of ascents in σ always equal to number of excedances in $F(\sigma)$.

- The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$
F(\sigma)=(56)(3)(142) \Longrightarrow \sigma=563142 .
$$

The Foata Transform

Proposition

After an application of the Foata transform on any permutation σ, number of ascents in σ always equal to number of excedances in $F(\sigma)$.

- The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$
F(\sigma)=(56)(3)(142) \Longrightarrow \sigma=563142 .
$$

- It is therefore a bijection!

Eulerian Numbers

Definition (Eulerian Numbers)

The Eulerian number $E(n, m)$ is the number of permutations on $1,2, \ldots, n$ with exactly m ascents.

Eulerian Numbers

Definition (Eulerian Numbers)

The Eulerian number $E(n, m)$ is the number of permutations on $1,2, \ldots, n$ with exactly m ascents.

- By the Foata transform, this is ALSO the number of permutations with exactly m excedances.

Eulerian Numbers

Definition (Eulerian Numbers)

The Eulerian number $E(n, m)$ is the number of permutations on $1,2, \ldots, n$ with exactly m ascents.

- By the Foata transform, this is ALSO the number of permutations with exactly m excedances.
- Example: $E(3,1)=4$. Four with exactly one ascent:

$$
132,213,231,312 .
$$

Four with exactly one excedance:

$$
132,213,312,321
$$

Generalized Eulerian Numbers

Definition (r-Ascent)

Let σ be a permutation of $1,2, \ldots, n$. An r-ascent is any position i where $\sigma(i)+r \leq \sigma(i+1)$.

Generalized Eulerian Numbers

Definition (r-Ascent)

Let σ be a permutation of $1,2, \ldots, n$. An r-ascent is any position i where $\sigma(i)+r \leq \sigma(i+1)$.

- 1-ascents are equivalent to regular ascents.

Generalized Eulerian Numbers

Definition (r-Ascent)

Let σ be a permutation of $1,2, \ldots, n$. An r-ascent is any position i where $\sigma(i)+r \leq \sigma(i+1)$.

- 1-ascents are equivalent to regular ascents.

Definition (r-Excedance)

Let σ be a permutation of $1,2, \ldots, n$. An r-excedance is any position i where $\sigma(i) \geq i+r$.

- Similarly, 1-excedances are equivalent to regular excedances.

Generalized Eulerian Numbers

Definition

A generalized Eulerian number $E_{r}(n, m)$ counts the number of permutations on $1,2, \ldots, n$ with exactly $m r$-ascents.

Generalized Eulerian Numbers

Definition

A generalized Eulerian number $E_{r}(n, m)$ counts the number of permutations on $1,2, \ldots, n$ with exactly $m r$-ascents.

- We claim $E_{r}(n, m)$ also counts the number of permutations with exactly $m r$-excedances.

Generalized Eulerian Numbers

Definition

A generalized Eulerian number $E_{r}(n, m)$ counts the number of permutations on $1,2, \ldots, n$ with exactly $m r$-ascents.

- We claim $E_{r}(n, m)$ also counts the number of permutations with exactly $m r$-excedances.
- Consider our old examples:

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 3 & 1 & 4 & 2
\end{array}\right), \quad F(\sigma)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

- Power of Foata transform: ascent size in σ matched exactly with excedance size in $F(\sigma)$.

A Further Generalization

- Inspired by past projects, we defined:

Definition

The number $E_{r}(n, m, k)$ counts the number of permutations $1,2, \ldots, n$ with exactly $m r$-excedances, and ends with k (i.e., $\sigma(n)=k$.)

A Further Generalization

- Inspired by past projects, we defined:

Definition

The number $E_{r}(n, m, k)$ counts the number of permutations $1,2, \ldots, n$ with exactly $m r$-excedances, and ends with k (i.e., $\sigma(n)=k$.)

- Main theorem proven:

Theorem (Dong 2023)

The number $E_{r}(n, m, k)$ also counts the number of permutations $1,2, \ldots, n$ with exactly m-ascents and ends with $n+1-k$.

A Further Generalization

- Inspired by past projects, we defined:

Definition

The number $E_{r}(n, m, k)$ counts the number of permutations $1,2, \ldots, n$ with exactly $m r$-excedances, and ends with k (i.e., $\sigma(n)=k$.)

- Main theorem proven:

Theorem (Dong 2023)

The number $E_{r}(n, m, k)$ also counts the number of permutations $1,2, \ldots, n$ with exactly m-ascents and ends with $n+1-k$.

- We can show that $E_{r}(n, m, k)$ also counts the permutations with $m r$-descents and ends with k (somewhat nicer, though in either case symmetry is broken).

A Further Generalization

We also proved several other properties of these numbers, including:

- The following generalization of Worpitzky's identity holds:

$$
(x+1)^{n-k+1} x^{k-1}=\sum_{i=0}^{n} E_{1}(n, i, k)\binom{x+i}{n-1}
$$

- It is possible to convert this generating function into an explicit formula for $E_{1}(n, m, k)$.

A Further Generalization

We also proved several other properties of these numbers, including:

- The following generalization of Worpitzky's identity holds:

$$
(x+1)^{n-k+1} x^{k-1}=\sum_{i=0}^{n} E_{1}(n, i, k)\binom{x+i}{n-1}
$$

- It is possible to convert this generating function into an explicit formula for $E_{1}(n, m, k)$.
- For all integers n, m, k with $k \geq 2$, we have the equality:

$$
\begin{aligned}
E_{r+1}(n, m, k) & =E_{r}(n, m+1, k-1)+(r-1) E_{r}(n-1, m, k-1) \\
& -(r-1) E_{r}(n-1, m+1, k-1)
\end{aligned}
$$

Furthermore, $E_{r+1}(n, m, 1)=E_{r}(n, m, n)$.

- This allows us to compute and potentially derive an explicit formula for $E_{r}(n, m, k)$.

Acknowledgements

- I am grateful to Tanya Khovanova for introducing me to this project and mentoring me as this project has developed.
- Thanks to Ira Gessel for guidance with regards to permutations on this project.
- Thanks to Rodrigo Arrieta for providing useful feedback on improving this presentation.
- Thanks to MIT-PRIMES USA for such an amazing research opportunity!

