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Permutations

We will often consider permutations of the numbers 1, 2, . . . , n.

Treat these as functions (bijections) from {1, 2, . . . , n} to itself.

There are two main ways to write permutations.

Two-line Notation

Example:

σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
Here, σ(1) = 5, σ(2) = 6, σ(3) = 3, etc.

Sometimes, we simplify and write 563142.
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Permutations

Previous Example: σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
Reapplying σ on any element returns back to itself eventually:

σ(1) = 5, σ(σ(1)) = 4, σ(σ(σ(1))) = 1.

Can interpret as cycles! Known as cycle notation.

1

5

4

2 6
3

Each arrow represents an application of σ to the node.

We similarly use shorthand and write σ = (154)(26)(3).

By convention, we arrange cycles by smallest element, and put
smallest element on the left (ensures uniquness!)
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Ascents

In a permutation, an ascent is any position i where σ(i) < σ(i+ 1).

The size of an ascent is σ(i+ 1)− σ(i).

(1, 5)

(2, 6)

(3, 3)

(4, 1)

(5, 4)

(6, 2)

Ascent indices are marked in
green.

Descents are whenever
σ(i) > σ(i+ 1) (indices
marked in red).

Two ascents: ascent of size 1
at i = 1, ascent of size 3 at
i = 3.
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Excedances

An excedance is any position i where σ(i) > i.

The size of an excedance is σ(i)− i.

(1, 5)

(2, 6)

(3, 3)

(4, 1)

(5, 4)

(6, 2)

Excedances are marked in
green.

Anti-excedances, whenever
σ(i) < i, are marked in red.

Two excedances: an
excedance of size 4 at i = 1
and i = 2.
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The Foata Transform

Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

Takes a permutation σ in two-line notation.

Splits the permutation into blocks:

Stops at every element smaller than all previous elements, and
start a new block before that element.

Creates a new permutation F (σ) where every block in σ is
interpreted as cycle in F (σ).
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The Foata Transform

Example permutation:

σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
.

Stop at every element smaller than all previous elements, and start
a new block before that element.

Interpret blocks as cycles in transformed permutation F (σ):Number of ascents in σ equal to number of excedances in F (σ).

Ascents in σ correspond exactly with excedances in F (σ)!

Descents inside blocks also correspond exactly.

Finally, by convention, there must always be a
descent/anti-excedance at the end of blocks.
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The Foata Transform

Proposition

After an application of the Foata transform on any permutation σ,
number of ascents in σ always equal to number of excedances in F (σ).

The Foata transform is reversible: write in cycle notation and then
interpret as one-line.

F (σ) = (56)(3)(142) =⇒ σ = 563142.

It is therefore a bijection!
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Eulerian Numbers

Definition (Eulerian Numbers)

The Eulerian number E(n,m) is the number of permutations on
1, 2, . . . , n with exactly m ascents.

By the Foata transform, this is ALSO the number of
permutations with exactly m excedances.

Example: E(3, 1) = 4. Four with exactly one ascent:

132, 213, 231, 312.

Four with exactly one excedance:

132, 213, 312, 321.
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Generalized Eulerian Numbers

Definition (r-Ascent)

Let σ be a permutation of 1, 2, . . . , n. An r-ascent is any position i
where σ(i) + r ≤ σ(i+ 1).

1-ascents are equivalent to regular ascents.

Definition (r-Excedance)

Let σ be a permutation of 1, 2, . . . , n. An r-excedance is any position
i where σ(i) ≥ i+ r.

Similarly, 1-excedances are equivalent to regular excedances.
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Generalized Eulerian Numbers

Definition

A generalized Eulerian number Er(n,m) counts the number of
permutations on 1, 2, . . . , n with exactly m r-ascents.

We claim Er(n,m) also counts the number of permutations with
exactly m r-excedances.

Consider our old examples:

σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
, F (σ) =

(
1 2 3 4 5 6
4 1 3 2 6 5

)
.

Power of Foata transform: ascent size in σ matched exactly with
excedance size in F (σ).
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A Further Generalization

Inspired by past projects, we defined:

Definition

The number Er(n,m, k) counts the number of permutations 1, 2, . . . , n
with exactly m r-excedances, and ends with k (i.e., σ(n) = k.)

Main theorem proven:

Theorem (Dong 2023)

The number Er(n,m, k) also counts the number of permutations
1, 2, . . . , n with exactly m r-ascents and ends with n+ 1− k.

We can show that Er(n,m, k) also counts the permutations with
m r-descents and ends with k (somewhat nicer, though in either
case symmetry is broken).
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A Further Generalization

We also proved several other properties of these numbers, including:

The following generalization of Worpitzky’s identity holds:

(x+ 1)n−k+1xk−1 =

n∑
i=0

E1(n, i, k)

(
x+ i

n− 1

)
.

It is possible to convert this generating function into an explicit
formula for E1(n,m, k).

For all integers n,m, k with k ≥ 2, we have the equality:

Er+1(n,m, k) = Er(n,m+ 1, k − 1) + (r − 1)Er(n− 1,m, k − 1)

− (r − 1)Er(n− 1,m+ 1, k − 1).

Furthermore, Er+1(n,m, 1) = Er(n,m, n).

This allows us to compute and potentially derive an explicit
formula for Er(n,m, k).

David Dong Eulerian Numbers
October 14–15, 2023 MIT PRIMES Conference
13 / 14



A Further Generalization

We also proved several other properties of these numbers, including:

The following generalization of Worpitzky’s identity holds:

(x+ 1)n−k+1xk−1 =

n∑
i=0

E1(n, i, k)

(
x+ i

n− 1

)
.

It is possible to convert this generating function into an explicit
formula for E1(n,m, k).

For all integers n,m, k with k ≥ 2, we have the equality:

Er+1(n,m, k) = Er(n,m+ 1, k − 1) + (r − 1)Er(n− 1,m, k − 1)

− (r − 1)Er(n− 1,m+ 1, k − 1).

Furthermore, Er+1(n,m, 1) = Er(n,m, n).

This allows us to compute and potentially derive an explicit
formula for Er(n,m, k).

David Dong Eulerian Numbers
October 14–15, 2023 MIT PRIMES Conference
13 / 14



Acknowledgements

I am grateful to Tanya Khovanova for introducing me to this
project and mentoring me as this project has developed.

Thanks to Ira Gessel for guidance with regards to permutations on
this project.

Thanks to Rodrigo Arrieta for providing useful feedback on
improving this presentation.

Thanks to MIT-PRIMES USA for such an amazing research
opportunity!

David Dong Eulerian Numbers
October 14–15, 2023 MIT PRIMES Conference
14 / 14


