David Dong Mentored By: Tanya Khovanova

October 14–15, 2023 MIT PRIMES Conference

- We will often consider permutations of the numbers $1, 2, \ldots, n$.
- Treat these as functions (bijections) from $\{1, 2, ..., n\}$ to itself.

- We will often consider permutations of the numbers 1, 2, ..., n.
- Treat these as functions (bijections) from $\{1, 2, ..., n\}$ to itself.
- There are two main ways to write permutations.

Two-line Notation

Example:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$$

- We will often consider permutations of the numbers $1, 2, \ldots, n$.
- Treat these as functions (bijections) from $\{1, 2, ..., n\}$ to itself.
- There are two main ways to write permutations.

Two-line Notation

Example:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$$

- Here, $\sigma(1) = 5$, $\sigma(2) = 6$, $\sigma(3) = 3$, etc.
- Sometimes, we simplify and write 563142.

- Previous Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$
- Reapplying σ on any element returns back to itself eventually:

$$\sigma(1)=5, \ \ \sigma(\sigma(1))=4, \ \ \sigma(\sigma(\sigma(1)))=1.$$

- Previous Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$
- Reapplying σ on any element returns back to itself eventually: $\sigma(1) = 5$, $\sigma(\sigma(1)) = 4$, $\sigma(\sigma(\sigma(1))) = 1$.
- Can interpret as cycles! Known as cycle notation.

• Each arrow represents an application of σ to the node.

- Previous Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$
- Reapplying σ on any element returns back to itself eventually: $\sigma(1) = 5$, $\sigma(\sigma(1)) = 4$, $\sigma(\sigma(\sigma(1))) = 1$.
- Can interpret as cycles! Known as cycle notation.

- Each arrow represents an application of σ to the node.
- We similarly use shorthand and write $\sigma = (154)(26)(3)$.
- By convention, we arrange cycles by smallest element, and put smallest element on the left (ensures uniquness!)

Ascents

In a permutation, an **ascent** is any position i where $\sigma(i) < \sigma(i+1)$.

• The size of an ascent is $\sigma(i+1) - \sigma(i)$.

Ascents

In a permutation, an **ascent** is any position i where $\sigma(i) < \sigma(i+1)$.

- The *size* of an ascent is $\sigma(i+1) \sigma(i)$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.

Ascents

In a permutation, an **ascent** is any position i where $\sigma(i) < \sigma(i+1)$.

- The *size* of an ascent is $\sigma(i+1) \sigma(i)$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.

- Ascent indices are marked in green.
- **Descents** are whenever $\sigma(i) > \sigma(i+1)$ (indices marked in red).
- Two ascents: ascent of size 1 at i = 1, ascent of size 3 at i = 3.

Excedances

An *excedance* is any position i where $\sigma(i) > i$.

• The size of an excedance is $\sigma(i) - i$.

Excedances

An *excedance* is any position i where $\sigma(i) > i$.

- The **size** of an excedance is $\sigma(i) i$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.

Excedances

An *excedance* is any position i where $\sigma(i) > i$.

- The size of an excedance is $\sigma(i) i$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.

- Excedances are marked in green.
- Anti-excedances, whenever $\sigma(i) < i$, are marked in red.
- Two excedances: an excedance of size 4 at i = 1 and i = 2.

Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:

Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:
- Stops at every element smaller than all previous elements, and start a new block before that element.
- Creates a new permutation $F(\sigma)$ where every block in σ is interpreted as cycle in $F(\sigma)$.

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

• Stop at every element smaller than all previous elements, and start a new block before that element.

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

• Number of ascents in σ equal to number of excedances in $F(\sigma)$.

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedances in $F(\sigma)$!

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedences in $F(\sigma)$!
- Descents inside blocks also correspond exactly.

• Example permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

- Stop at every element smaller than all previous elements, and start a new block before that element.
- Interpret blocks as cycles in transformed permutation $F(\sigma)$:

$$F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

- Number of ascents in σ equal to number of excedances in $F(\sigma)$.
- Ascents in σ correspond exactly with excedances in $F(\sigma)$!
- Descents inside blocks also correspond exactly.
- Finally, by convention, there must always be a descent/anti-excedance at the end of blocks.

David Dong Eulerian Numbers 7/14

Proposition

After an application of the Foata transform on any permutation σ , number of ascents in σ always equal to number of excedences in $F(\sigma)$.

Proposition

After an application of the Foata transform on any permutation σ , number of ascents in σ always equal to number of excedences in $F(\sigma)$.

• The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$F(\sigma) = (56)(3)(142) \implies \sigma = 563142.$$

Proposition

After an application of the Foata transform on any permutation σ , number of ascents in σ always equal to number of excedences in $F(\sigma)$.

• The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$F(\sigma) = (56)(3)(142) \implies \sigma = 563142.$$

• It is therefore a bijection!

Eulerian Numbers

Definition (Eulerian Numbers)

The **Eulerian number** E(n,m) is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.

Eulerian Numbers

Definition (Eulerian Numbers)

The **Eulerian number** E(n,m) is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.

 By the Foata transform, this is ALSO the number of permutations with exactly m excedances.

Eulerian Numbers

Definition (Eulerian Numbers)

The **Eulerian number** E(n,m) is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.

- By the Foata transform, this is ALSO the number of permutations with exactly m excedances.
- Example: E(3,1) = 4. Four with exactly one ascent:

Four with exactly one excedance:

Definition (r-Ascent)

Let σ be a permutation of 1, 2, ..., n. An r-ascent is any position i where $\sigma(i) + r \leq \sigma(i+1)$.

Definition (r-Ascent)

Let σ be a permutation of 1, 2, ..., n. An r-ascent is any position i where $\sigma(i) + r \leq \sigma(i+1)$.

• 1-ascents are equivalent to regular ascents.

Definition (r-Ascent)

Let σ be a permutation of 1, 2, ..., n. An r-ascent is any position i where $\sigma(i) + r \leq \sigma(i+1)$.

• 1-ascents are equivalent to regular ascents.

Definition (r-Excedance)

Let σ be a permutation of 1, 2, ..., n. An r-excedance is any position i where $\sigma(i) \geq i + r$.

• Similarly, 1-excedances are equivalent to regular excedances.

Definition

A generalized Eulerian number $E_r(n, m)$ counts the number of permutations on 1, 2, ..., n with exactly m r-ascents.

Definition

A generalized Eulerian number $E_r(n, m)$ counts the number of permutations on 1, 2, ..., n with exactly m r-ascents.

• We claim $E_r(n, m)$ also counts the number of permutations with exactly m r-excedances.

Definition

A generalized Eulerian number $E_r(n, m)$ counts the number of permutations on 1, 2, ..., n with exactly m r-ascents.

- We claim $E_r(n, m)$ also counts the number of permutations with exactly m r-excedances.
- Consider our old examples:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}, \qquad F(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$

• Power of Foata transform: ascent size in σ matched exactly with excedance size in $F(\sigma)$.

• Inspired by past projects, we defined:

Definition

The number $E_r(n, m, k)$ counts the number of permutations 1, 2, ..., n with exactly m r-excedances, and ends with k (i.e., $\sigma(n) = k$.)

• Inspired by past projects, we defined:

Definition

The number $E_r(n, m, k)$ counts the number of permutations 1, 2, ..., n with exactly m r-excedances, and ends with k (i.e., $\sigma(n) = k$.)

• Main theorem proven:

Theorem (Dong 2023)

The number $E_r(n, m, k)$ also counts the number of permutations 1, 2, ..., n with exactly m r-ascents and ends with n + 1 - k.

• Inspired by past projects, we defined:

Definition

The number $E_r(n, m, k)$ counts the number of permutations 1, 2, ..., n with exactly m r-excedances, and ends with k (i.e., $\sigma(n) = k$.)

• Main theorem proven:

Theorem (Dong 2023)

The number $E_r(n, m, k)$ also counts the number of permutations $1, 2, \ldots, n$ with exactly m r-ascents and ends with n + 1 - k.

• We can show that $E_r(n, m, k)$ also counts the permutations with m r-descents and ends with k (somewhat nicer, though in either case symmetry is broken).

We also proved several other properties of these numbers, including:

• The following generalization of Worpitzky's identity holds:

$$(x+1)^{n-k+1}x^{k-1} = \sum_{i=0}^{n} E_1(n,i,k) {x+i \choose n-1}.$$

• It is possible to convert this generating function into an explicit formula for $E_1(n, m, k)$.

We also proved several other properties of these numbers, including:

• The following generalization of Worpitzky's identity holds:

$$(x+1)^{n-k+1}x^{k-1} = \sum_{i=0}^{n} E_1(n,i,k) \binom{x+i}{n-1}.$$

- It is possible to convert this generating function into an explicit formula for $E_1(n, m, k)$.
- For all integers n, m, k with $k \geq 2$, we have the equality:

$$E_{r+1}(n, m, k) = E_r(n, m+1, k-1) + (r-1)E_r(n-1, m, k-1) - (r-1)E_r(n-1, m+1, k-1).$$

Furthermore, $E_{r+1}(n, m, 1) = E_r(n, m, n)$.

• This allows us to compute and potentially derive an explicit formula for $E_r(n, m, k)$.

Acknowledgements

- I am grateful to Tanya Khovanova for introducing me to this project and mentoring me as this project has developed.
- Thanks to Ira Gessel for guidance with regards to permutations on this project.
- Thanks to Rodrigo Arrieta for providing useful feedback on improving this presentation.
- Thanks to MIT-PRIMES USA for such an amazing research opportunity!