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Graphs and Social Networks
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Weights as Transmission Probabilities

Edge weights have the following properties:

can represent


friendship strength

physical proximity

frequency of interaction

probability of transmission

w(u, v) ∈ [0, 1] ∀uv ∈ E

w(u, v) is approximated by # of interactions
units of time

Tu,v is the units of time until u and v interact

Definition

Expected transmission time is d(u, v) = E[Tu,v ] =
1

w(u,v)
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Modeling Information Diffusion

How can we model information spread?

epidemiological models: an ”infection” of information

Does a disease model (think common cold) always fit?

No; peer pressure and social reinforcement exist

Two general categories: simple contagion (disease) and
complex contagion (behavior)
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Simple Contagion

A single successful interaction is enough to create adoption

easily accepted, e.g. conversational topics, facts, the flu

Each edge uv has a fixed probability puv of transmission –
note that this is just w(u, v)

Again, the expected transmission time between u and v is
d(u, v) = 1

w(u,v)
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Model Definition

Definition

Given a set of initially infected nodes I0 in the graph G = (V ,E ),
at time t the set of infected nodes It will be

It = {v |v ∈ V ∃u : u ∈ I0, dG (u, v) ≤ t}
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Complex Contagion

Multiple successful interactions (reinforcement) needed

more difficult topics, e.g. controversial topics, politics, health
behaviors

Often modeled with threshold models

Definition

Given an infection value θ ∈ [0, 1] and infected node set It−1 at
time t − 1, uninfected node v will become infected for time t if∑

i∈It−1∩N(v) w(i ,v)∑
i∈N(v) w(i ,v) ≥ θ. Call θ ·

∑
i∈N(v) w(i , v) as its threshold.
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Successful interactions will be shown by red edges
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Time elapsed has not surpassed the distance, so edge 01 is not yet red
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Even though a successful interaction occurs, no new nodes become infected
The uninfected endpoint of the red edge at t = 2 has threshold
1
2
· ( 1

2
+ 1

3
+ 1

2
) = 2

3
, and the infected edge only has a weight of 1

2
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Future Networks

How can we predict the future of graphs?

Focus on future edges

For each pair u, v ∈ V , uv ̸∈ E , we can calculate a similarity
score su,v to estimate probabilities of future connection

Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago MIT PRIMES Conference

Link Prediction and Influencer Identification on Weighted Graphs



Social Networks Contagion Processes Link Prediction Influencer Identification Combinations Acknowledgements

The Common Neighbors Intuition

Definition

The common neighbors similarity is sCNu,v = |N(u) ∩ N(v)|.

Considers first-order neighbors
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Variants and Extensions

Weighted variants consider sums of path length

Can be extended to second-order neighbors (quasi-local
extension)
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Influence Maximization Problem

Want to choose the k nodes such that influence is maximized

Influence differs depending on the contagion model:

(a) Simple Contagion with
initial infected node 0

(b) Complex Contagion with
initial infected node 0
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Heuristic Centrality Metrics

Primarily concerned with searching for a single influencer
(k = 1)

General categories:

local measures, e.g. degree centrality
iterative measures, e.g. PageRank, LeaderRank, coreness
global measures, e.g. eigenvector centrality

For a centrality metric, the top-scoring node is its “influencer”
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Choosing k Nodes

Chooses a team instead of an individual

Some use recursion around neighborhoods

e.g. VoteRank, where nodes vote for neighbors

Can also incorporate centrality metrics after reducing
redundancy

e.g. graph coloring, which separates the graph into
independent sets before running centrality
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Predicted Graphs

Steps to predict future influencers/groups of k nodes:

1 Given a graph, randomly take 90% of its edges as a starting
graph

2 Do link prediction on the starting graph and calculate
similarity scores for each pair of nodes (u, v)

3 If su,v ̸= 0, normalize it into a probability of existence, which
becomes a probability of transmission

4 Run centrality and top k algorithms on the predicted graph to
find a set of predicted k nodes

5 Test the set found on the original graph to measure final
number of nodes infected
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Examples When Run on Graphs
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Pink: VoteRank; Green: LIR, LIR-2, Blue: rest
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Applications

Can be applied to:

advertising/marketing
social movement analysis
epidemiology
rumor propagation
media propaganda

Help with prevention and planning
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