Social Networks

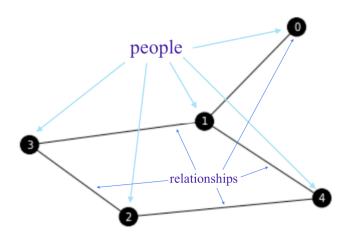
Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

MIT PRIMES Conference

October 2023

Graphs and Social Networks

•0



Edge weights have the following properties:

can represent friendship strength physical proximity frequency of interaction probability of transmission

- $w(u, v) \in [0, 1] \ \forall uv \in E$
- w(u, v) is approximated by $\frac{\# \text{ of interactions}}{\text{units of time}}$
- \blacksquare $T_{u,v}$ is the units of time until u and v interact

Definition

0

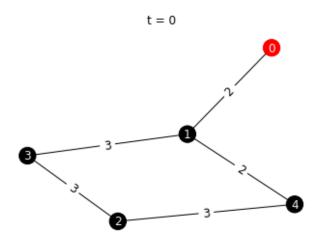
Expected transmission time is $d(u, v) = \mathbb{E}[T_{u,v}] = \frac{1}{w(u,v)}$

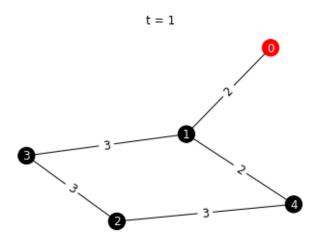
Modeling Information Diffusion

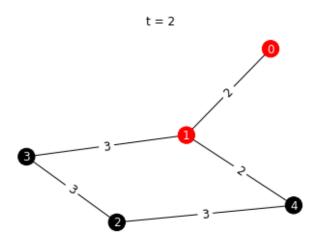
- How can we model information spread?
 - epidemiological models: an "infection" of information
- Does a disease model (think common cold) always fit?
 - No; peer pressure and social reinforcement exist
- Two general categories: simple contagion (disease) and complex contagion (behavior)

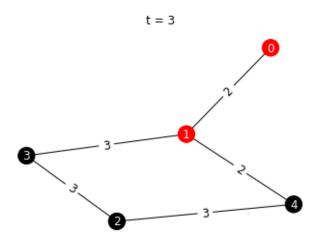
Simple Contagion

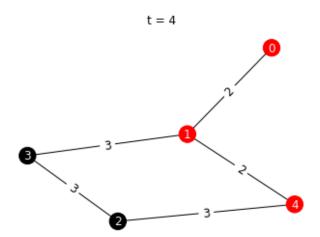
- A single successful interaction is enough to create adoption easily accepted, e.g. conversational topics, facts, the flu
- **Each** edge uv has a fixed probability $p_{\mu\nu}$ of transmission note that this is just w(u, v)
- Again, the expected transmission time between u and v is $d(u, v) = \frac{1}{w(u, v)}$

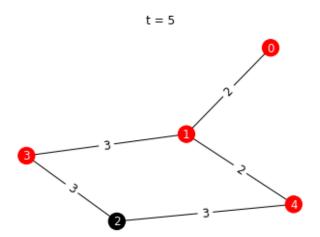












Model Definition

Social Networks

Definition

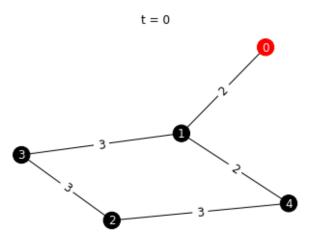
Given a set of initially infected nodes I_0 in the graph G = (V, E), at time t the set of infected nodes I_t will be

$$I_t = \{ v | v \in V \exists u : u \in I_0, d_G(u, v) \le t \}$$

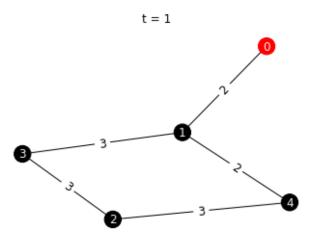
- Multiple successful interactions (reinforcement) needed
 - more difficult topics, e.g. controversial topics, politics, health behaviors
- Often modeled with threshold models

Definition

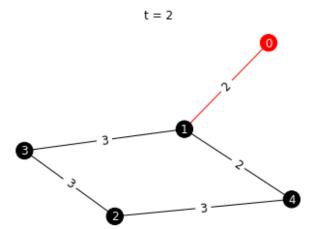
Given an infection value $\theta \in [0,1]$ and infected node set I_{t-1} at time t-1, uninfected node v will become infected for time t if $\frac{\sum_{i \in I_{t-1} \cap N(v)} w(i,v)}{\sum_{i \in N(v)} w(i,v)} \geq \theta. \text{ Call } \theta \cdot \sum_{i \in N(v)} w(i,v) \text{ as its } threshold.$



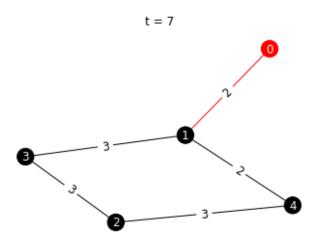
Successful interactions will be shown by red edges



Time elapsed has not surpassed the distance, so edge 01 is not yet red



- Even though a successful interaction occurs, no new nodes become infected
- The uninfected endpoint of the red edge at t = 2 has threshold $\frac{1}{2} \cdot (\frac{1}{2} + \frac{1}{3} + \frac{1}{2}) = \frac{2}{3}$, and the infected edge only has a weight of $\frac{1}{2}$



Future Networks

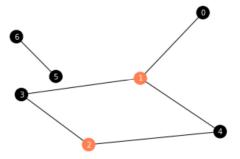
- How can we predict the future of graphs?
- Focus on future edges
- For each pair $u, v \in V$, $uv \notin E$, we can calculate a similarity score $s_{\mu,\nu}$ to estimate probabilities of future connection

The Common Neighbors Intuition

Definition

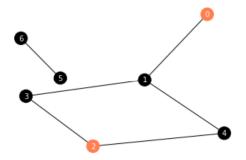
The common neighbors similarity is $s_{u,v}^{CN} = |N(u) \cap N(v)|$.

Considers first-order neighbors



Variants and Extensions

- Weighted variants consider sums of path length
- Can be extended to second-order neighbors (quasi-local extension)

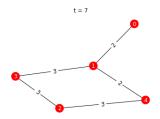


Influence Maximization Problem

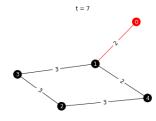
■ Want to choose the k nodes such that influence is maximized

•00

Influence differs depending on the contagion model:



(a) Simple Contagion with initial infected node 0



(b) Complex Contagion with initial infected node 0

- Primarily concerned with searching for a single influencer (k = 1)
- General categories:
 - local measures, e.g. degree centrality
 - iterative measures, e.g. PageRank, LeaderRank, coreness
 - global measures, e.g. eigenvector centrality
- For a centrality metric, the top-scoring node is its "influencer"

Choosing k Nodes

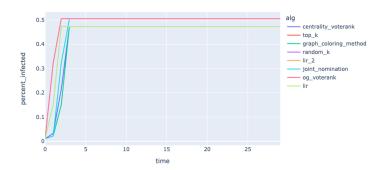
- Chooses a team instead of an individual
- Some use recursion around neighborhoods
 - e.g. VoteRank, where nodes vote for neighbors
- Can also incorporate centrality metrics after reducing redundancy
 - e.g. graph coloring, which separates the graph into independent sets before running centrality

Predicted Graphs

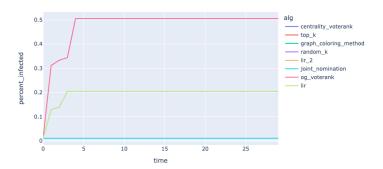
- Steps to predict future influencers/groups of k nodes:
 - Given a graph, randomly take 90% of its edges as a starting graph
 - 2 Do link prediction on the starting graph and calculate similarity scores for each pair of nodes (u, v)
 - If $s_{\mu,\nu} \neq 0$, normalize it into a probability of existence, which becomes a probability of transmission
 - 4 Run centrality and top k algorithms on the predicted graph to find a set of predicted k nodes
 - 5 Test the set found on the original graph to measure final number of nodes infected

Examples When Run on Graphs

Percentage Infected Over Time for Common Neighbors in Simple Contagion

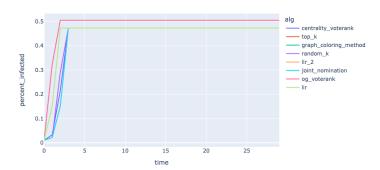


Percentage Infected Over Time for Common Neighbors in Complex Contagion

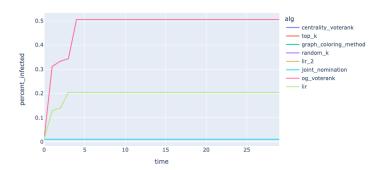


Pink: VoteRank; Green: LIR, LIR-2, Blue: rest

000000



Percentage Infected Over Time for Local Path in Complex Contagion



Pink: VoteRank; Green: LIR, LIR-2, Blue: rest

Applications

- Can be applied to:
 - advertising/marketing
 - social movement analysis
 - epidemiology
 - rumor propagation
 - media propaganda
- Help with prevention and planning

Acknowledgements

- I would like to thank my mentor, Prof. Laura Schaposnik, for her guidance and encouragement throughout the project.
- I am grateful to the MIT PRIMES-USA Program, Dr. Tanya Khovanova, Dr. Slava Gerovitch, and Prof. Pavel Etingof for making such a wonderful research opportunity.
- My parents

References

- Amit Goyal, Francesco Bonchi, and Laks Lakshmanan. Learning influence probabilities in social networks, volume 241-250, pages 241-250, 02 2010.
- Byungjoon Min and Maxi Miguel. Competing contagion processes: Complex contagion triggered by simple contagion. Scientific Reports. 8, 07 2018.
- Damon Centola and Michael Macv. Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3):702-734, 2007.
- Paulo Shakarian, Abhinav Bhatnagar, Ashkan Aleali, Elham Shaabani, and Ruocheng Guo. The Independent Cascade and Linear Threshold Models, pages 35-48. 01 2015.
- Tsuvoshi Murata and Sakiko Morivasu. Link prediction of social networks based on weighted proximity measures. volume 85-88, pages 85-88, 12 2007.
- Tao Zhou, Linvuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The European Physical Journal B, 71(4):623-630, oct 2009. 32

- Meng Bai, Ke Hu, and Yi Tang. Link prediction based on a semi-local similarity index. Chinese Physics B, 20(12):128902, dec 2011.
- Furqan Aziz, Haji Gul, M. Irfan Uddin, and Georgios Gkoutos. Path-based extensions of local link prediction methods for complex networks. Scientific Reports, 10, 11 2020.
- V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks, 2003.
- P. D. Karampourniotis, B. K. Szymanski, and G. Korniss. Influence maximization for fixed heterogeneous thresholds. Scientific Reports, 9(1), apr 2019.
- Jian-Xiong Zhang, Duan-Bing Chen, Qiang Dong, and Zhi-Dan Zhao.
 Identifying a set of influential spreaders in complex networks, 2016.
- J. Leskovec, J. Kleinberg and C. Faloutsos. Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (ACM TKDD), 1(1), 2007.

