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Graphs and Social Networks
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Weights as Transmission Probabilities

m Edge weights have the following properties:
friendship strength

physical proximity
B can represent
frequency of interaction

probability of transmission
m w(u,v)€[0,1] Yuv € E

# of interactions

m w(u,v) is approximated by -T2

m T, is the units of time until v and v interact

)

Expected transmission time is d(u, v) = E[T, ,] = m
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Modeling Information Diffusion

m How can we model information spread?
m epidemiological models: an "infection" of information
m Does a disease model (think common cold) always fit?
m No; peer pressure and social reinforcement exist
m Two general categories: simple contagion (disease) and
complex contagion (behavior)
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Simple Contagion

m A single successful interaction is enough to create adoption
m easily accepted, e.g. conversational topics, facts, the flu

m Each edge uv has a fixed probability p,, of transmission —
note that this is just w(u, v)

m Again, the expected transmission time between u and v is

d(u7 V) = W(Lll,v)
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Model Definition

Given a set of initially infected nodes Iy in the graph G = (V, E),
at time t the set of infected nodes /; will be

lt={vlveV 3u:uc€lds(uv) <t}
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Complex Contagion

m Multiple successful interactions (reinforcement) needed
m more difficult topics, e.g. controversial topics, politics, health
behaviors

m Often modeled with threshold models

Definition
Given an infection value 6 € [0, 1] and infected node set /;_; at
time t — 1, uninfected node v will become infected for time t if

Zfelt_ NN(v) w(i,v) ) )
zie:l(v) w(i,v) > 0. Call g ZIGN(V) w(i, v) as its threshold.
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Successful interactions will be shown by red edges
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Time elapsed has not surpassed the distance, so edge 01 is not yet red
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m Even though a successful interaction occurs, no new nodes become infected
m The uninfected endpoint of the red edge at t = 2 has threshold
% (% + % + %) = % and the infected edge only has a weight of %
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Future Networks

m How can we predict the future of graphs?
m Focus on future edges

m For each pair u,v € V,uv & E, we can calculate a similarity
score s, , to estimate probabilities of future connection
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The Common Neighbors Intuition

Definition

The common neighbors similarity is s = |[N(u) N N(v)|.

m Considers first-order neighbors
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Variants and Extensions

m Weighted variants consider sums of path length

m Can be extended to second-order neighbors (quasi-local
extension)
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Influence Maximization Problem

m Want to choose the k nodes such that influence is maximized

m Influence differs depending on the contagion model:

e

(a) Simple Contagion with
initial infected node 0

(b) Complex Contagion with
initial infected node 0
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Heuristic Centrality Metrics

m Primarily concerned with searching for a single influencer
(k=1)
m General categories:

m local measures, e.g. degree centrality
m iterative measures, e.g. PageRank, LeaderRank, coreness
m global measures, e.g. eigenvector centrality

m For a centrality metric, the top-scoring node is its “influencer”
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Choosing k Nodes

m Chooses a team instead of an individual
m Some use recursion around neighborhoods
m e.g. VoteRank, where nodes vote for neighbors

m Can also incorporate centrality metrics after reducing
redundancy
m e.g. graph coloring, which separates the graph into
independent sets before running centrality
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Predicted Graphs

m Steps to predict future influencers/groups of k nodes:

Given a graph, randomly take 90% of its edges as a starting
graph

Do link prediction on the starting graph and calculate
similarity scores for each pair of nodes (u, v)

If sy, # 0, normalize it into a probability of existence, which
becomes a probability of transmission

Run centrality and top k algorithms on the predicted graph to
find a set of predicted k nodes

Test the set found on the original graph to measure final
number of nodes infected
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Examples When Run on Graphs

Percentage Infected Over Time for Common Neighbors in Simple Contagion

0.5 alg
— centrality_voterank
top_k
0.4 —— graph_coloring_method
o —— random_k
2 lir_2
=}
:E 0.3 joint_nomination
= og_voterank
£ lir
S o2
o
a
0.1
LA
0
0 5 10 15 20 25
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Percentage Infected Over Time for Common Neighbors in Complex Contagion

0.5 alg
—— centrality_voterank
top_k
0.4 ~——— graph_coloring_method
o —— random_k
& lir_2
=}
g 0.3 joint_nomination
= og_voterank
;EJ lir
g 0z
o
a
0.1
0
0 5 10 15 20 25

Pink: VoteRank; Green: LIR, LIR-2, Blue: rest
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Percentage Infected Over Time for Local Path in Simple Contagion

0.5 alg
—— centrality_voterank
— top_k
0.4 ——— graph_coloring_method
o random_k
2z lir_2
[}
L 03 Jjoint_nomination
=
= og_voterank
= lir
o
o 02
o
a
0.1
0
0 5 10 15 20 25
time

Raina Wu Mentor: Professor Laura Schaposnik, University of lllinois at Chicago MIT PRIMES Conference




0O000e0

Percentage Infected Over Time for Local Path in Complex Contagion

0.5 alg
—— centrality_voterank
top_k
0.4 ~——— graph_coloring_method
o —— random_k
& lir_2
=}
g 0.3 joint_nomination
= og_voterank
;EJ lir
g 0z
o
a
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Pink: VoteRank; Green: LIR, LIR-2, Blue: rest
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Applications
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m Can
| |
| |
| |
| |
| |

be applied to:
advertising/marketing
social movement analysis
epidemiology

rumor propagation

media propaganda

m Help with prevention and planning
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