< 口 > < 同 >

Rank and Rigidity of Group-Circulant Matrices

Michael Yang Mentor: Dr. Minh-Tâm Trinh

Lakeside School

October 14-15, 2023 MIT PRIMES Conference

Lakeside School

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

1 Circulant Matrices

- 2 Group-Circulant Matrices
- 3 Matrix Rigidity
- 4 Acknowledgements

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Definition (Circulant Matrix)

A (classical) **circulant matrix** is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).

Michael Yang Rank and Rigidity of Group-Circulant Matrices

< 口 > < 同 >

Group-Circulant Matrices

Matrix Rigidity

A = > 4

Definition (Circulant Matrix)

A (classical) **circulant matrix** is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).

Example $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Lakeside School

Outline 0	Circulant Matrices ○●○	Group-Circulant Matrices	Matrix Rigidity 00000	Acknowledgements 0	References

General form of a circulant matrix:

- <i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₂		c_{n-1}
<i>c</i> ₁	<i>c</i> ₂	c ₃	•••	c_0
<i>c</i> ₂	c ₃	С4	•••	c_1
÷	÷	÷	۰.	:
C_{n-1}	<i>c</i> ₀	c_1	•••	<i>c</i> _{<i>n</i>-2}

< ロ > < 回 > < 回 > < 回 > < 回</p>

Lakeside School

Each of the c_i s appears exactly once in every row and column.

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Matrix Rigidity 00000 cknowledgements

References

Circulant matrices are useful in many areas.

- * ロ > * 個 > * 目 > * 目 > 「目 > への

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Matrix Rigidity 00000 cknowledgements

References

Circulant matrices are useful in many areas.

Signal processing

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

Matrix Rigidity

Acknowledgements

References

Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?

- * ロ ▶ * @ ▶ * 臣 ▶ * 臣 * のへの

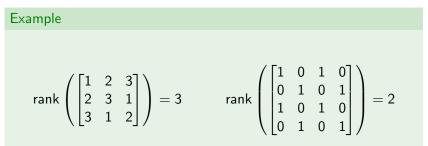
Michael Yang Rank and Rigidity of Group-Circulant Matrices

< D > < A > < B > <</p>

Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?



Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Lakeside School

Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?

 $\mathsf{rank}\left(\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \right) = 3 \qquad \mathsf{rank}\left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \right) = 2$

We'll actually answer these questions for a larger family of matrices: group-circulants.

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Circulant matrices are a special example of a larger class of matrices, called **group-circulant matrices**.

Michael Yang Rank and Rigidity of Group-Circulant Matrices

< E

Circulant matrices are a special example of a larger class of matrices, called **group-circulant matrices**.

Definition (Group-Circulant Matrix)

Given a finite group G, a ring Λ , and a function $f : G \to \Lambda$, a G-circulant matrix of f is a $|G| \times |G|$ matrix M with rows and columns indexed by the elements of G, such that $M_{x,y} = f(xy)$ for all $x, y \in G$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Lakeside School

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$ -circulant matrices.

Michael Yang Rank and Rigidity of Group-Circulant Matrices - * ロ > * 個 > * 注 > * 注 > - 注 - のへの

Lakeside School

Outline 0	Circulant Matrices	Group-Circulant Matrices 0●00000	Matrix Rigidity 00000	Acknowledgements 0	References

Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$ -circulant matrices.

$$\begin{array}{cccccc} & 0 & 1 & 2 & \cdots & n-1 \\ & f(0) & f(1) & f(2) & \cdots & f(n-1) \\ & f(1) & f(2) & f(3) & \cdots & f(0) \\ & f(2) & f(3) & f(4) & \cdots & f(1) \\ & \vdots & \vdots & \vdots & \ddots & \vdots \\ & f(n-1) & f(0) & f(1) & \cdots & f(n-2) \end{array} \right)$$

Lakeside School

メロト メロト メヨト メ

Rank and Rigidity of Group-Circulant Matrices

Michael Yang

Outline 0	Circulant Matrices	Group-Circulant Matrices 0●00000	Matrix Rigidity 00000	Acknowledgements 0	References

Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$ -circulant matrices.

$$\begin{array}{ccccc} & 0 & 1 & 2 & \cdots & n-1 \\ & & & \\ 1 \\ 2 \\ \vdots \\ n-1 \end{array} \begin{pmatrix} f(0) & f(1) & f(2) & \cdots & f(n-1) \\ f(1) & f(2) & f(3) & \cdots & f(0) \\ f(2) & f(3) & f(4) & \cdots & f(1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f(n-1) & f(0) & f(1) & \cdots & f(n-2) \end{pmatrix}$$

If we let $f(i) = c_i$ for i = 0, 1, ..., n - 1, we get the general form for a circulant.

< ロ > < 回 > < 回 > < 回 > <</p>

Rank and Rigidity of Group-Circulant Matrices

Michael Yang

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ���♡

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

$$\begin{array}{cccc} e & x & y & xy \\ e \\ x \\ y \\ y \\ xy \end{array} \begin{pmatrix} f(e) & f(x) & f(y) & f(xy) \\ f(x) & f(e) & f(xy) & f(y) \\ f(y) & f(xy) & f(e) & f(x) \\ f(xy) & f(y) & f(x) & f(e) \end{pmatrix}$$

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

$$\begin{array}{cccc} e & x & y & xy \\ f(e) & f(x) & f(y) & f(xy) \\ f(x) & f(e) & f(xy) & f(y) \\ f(y) & f(xy) & f(e) & f(x) \\ f(y) & f(y) & f(x) & f(e) \end{array} \right)$$

$$f: G \rightarrow \mathbb{R}$$
 satisfies $f(e) = 1, f(x) = 2, f(y) = 3, f(xy) = 4$.

Lakeside School

Michael Yang Rank and Rigidity of Group-Circulant Matrices

$$\begin{array}{cccc} e & x & y & xy \\ f(e) & f(x) & f(y) & f(xy) \\ f(x) & f(e) & f(xy) & f(y) \\ f(y) & f(xy) & f(e) & f(x) \\ f(y) & f(y) & f(x) & f(e) \end{array} \right)$$

 $f: G \rightarrow \mathbb{R}$ satisfies f(e) = 1, f(x) = 2, f(y) = 3, f(xy) = 4.

Lakeside School

Image: A math a math

Rank and Rigidity of Group-Circulant Matrices

Michael Yang

$$\begin{array}{cccc} e & x & y & xy \\ f(e) & f(x) & f(y) & f(xy) \\ f(x) & f(e) & f(xy) & f(y) \\ f(y) & f(xy) & f(e) & f(x) \\ f(y) & f(y) & f(x) & f(e) \end{array} \right)$$

 $f: G \rightarrow \mathbb{R}$ satisfies f(e) = 1, f(x) = 2, f(y) = 3, f(xy) = 4.

$$\mathsf{rank}\left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix} \right) = 3$$

Lakeside School

What are the ranks of group-circulants?

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Theorem (Group-Circulant Rank)

For any group G, good field $\Lambda,$ and function $f:G\to\Lambda,$ express f in the form

$$f(x) = \sum_{
ho} \left(\sum_{1 \leq i,j \leq \deg
ho} c_{
ho,i,j}
ho_{i,j}(x) \right)$$

where ρ runs over irreducible representations of G, the functions $\rho_{i,j}$ are the matrix coefficients of ρ , and $c_{\rho,i,j} \in \Lambda$. Then, the rank of the G-circulant corresponding to f equals

$$\sum_{\rho} \left[(\deg \rho) \ rank \left(\begin{bmatrix} c_{\rho,1,1} & c_{\rho,1,2} & \cdots & c_{\rho,1,N} \\ c_{\rho,2,1} & c_{\rho,2,2} & \cdots & c_{\rho,2,N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{\rho,N,1} & c_{\rho,N,2} & \cdots & c_{\rho,N,N} \end{bmatrix} \right) \right]$$

Lakeside School

< 口 > < 同 >

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Outline 0	Circulant Matrices	Group-Circulant Matrices 00000●0	Matrix Rigidity 00000	Acknowledgements 0	References

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.

< 口 > < 同 >

Lakeside School

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.

< 口 > < 同 >

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.

While this theorem was known to Diaconis, we gave a new, more elementary proof.

< ∃⇒

When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Circulant Matrices Group-Circulant Matrices 00000●

Matrix Rigidity

< ロ > < 回 > < 回 > < 回 > < 回 >

When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega = e^{2\pi i/n}$. The rank of the $n \times n$ circulant matrix with first row $[c_0, c_1, \ldots, c_{n-1}]$ is the number of nonzero entries in the vector

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-(2n-2)} & \cdots & \omega^{-(n-1)^2} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}$$

Lakeside School

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

Circulant Matrices Group-Circulant Matrices

Matrix Rigidity

< ロ > < 回 > < 回 > < 回 > < 回 >

.

Lakeside School

When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega = e^{2\pi i/n}$. The rank of the $n \times n$ circulant matrix with first row $[c_0, c_1, \ldots, c_{n-1}]$ is the number of nonzero entries in the vector

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-(2n-2)} & \cdots & \omega^{-(n-1)^2} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}$$

Vanishing sums of roots of unity \implies singular circulants

Outline

Rank and Rigidity of Group-Circulant Matrices

Definition (Matrix Rigidity)

Fix a square matrix M. The **rank**-r **rigidity** of M, denoted $\mathcal{R}_M(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.

Michael Yang Rank and Rigidity of Group-Circulant Matrices

Image: A math a math

Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity ●0000	Acknowledgements 0	References

Definition (Matrix Rigidity)

Fix a square matrix M. The **rank**-r **rigidity** of M, denoted $\mathcal{R}_M(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.

Example

For the $n \times n$ identity matrix I_n ,

$$\mathcal{R}_{I_n}(r)=n-r.$$

We can change n - r of the diagonal 1s to 0s to make the rank r.

< □ > < 同 > < 回 > < Ξ > < Ξ

Lakeside School

Rank and Rigidity of Group-Circulant Matrices

Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 0●000	Acknowledgements O	References
E	kample				
Le	et	Г1 (רס כ		

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then,
$$\mathcal{R}_{I_3}(1) = 2$$

Michael Yang Rank and Rigidity of Group-Circulant Matrices

(日) (四) (日) (日) (日)

Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 0●000	Acknowledgements O	References

Let

 $I_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$

Then, $\mathcal{R}_{I_3}(1) = 2$.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Lakeside School

・ロト ・回 ト ・ ヨト ・

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

C	Dutline	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 00●00	Acknowledgements 0	References

Let

$$M = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix}$$

Then, $\mathcal{R}_M(1) = 3$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

Michael Yang Rank and Rigidity of Group-Circulant Matrices Lakeside School

	Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 00●00	Acknowledgements 0	
--	--------------	--------------------	--------------------------	--------------------------	-----------------------	--

Let

$$M = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix}$$

Then, $\mathcal{R}_M(1) = 3$.

$$\begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 3 & 5 \\ 1 & 3/2 & 5/2 \\ 4 & 6 & 10 \end{bmatrix}$$

Michael Yang

Rank and Rigidity of Group-Circulant Matrices

▶ ≣ ৵৭৫ Lakeside School

メロト メロト メヨト メヨト

Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 00●00	Acknowledgements 0	Reference

Let

$$M = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix}$$

Then, $\mathcal{R}_M(1) = 3$.

$$\begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 3 & 5 \\ 1 & 3/2 & 5/2 \\ 4 & 6 & 10 \end{bmatrix}$$

Changing any two entries will leave a 2×2 rectangle of full rank unchanged.

< ロ > < 回 > < 回 > < 回 > <</p>

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

Image: A math a math

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

< 口 > < 同 >

Lakeside School

Valiant-rigid matrices are highly rigid.

Goal: find an **explicit** Valiant-rigid matrix.

Michael Yang Rank and Rigidity of Group-Circulant Matrices

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

< 口 > < 同 >

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

Michael Yang

Super-regular matrices

< 口 > < 同 >

< ∃ >

Rank and Rigidity of Group-Circulant Matrices

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

- Super-regular matrices
- Walsh-Hadamard transform

< 口 > < 同 >

< ∃ >

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size O(N)and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

- Super-regular matrices
- Walsh-Hadamard transform
- G-circulants for abelian G

< 口 > < 同 >

< ∃ >

0	outline	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 0000●	Acknowledgements 0	References

Theorem (Dvir–Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to |G|.

Michael Yang Rank and Rigidity of Group-Circulant Matrices

3 ×

Outline 0	Circulant Matrices	Group-Circulant Matrices	Matrix Rigidity 0000●	Acknowledgements 0	References

Theorem (Dvir–Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to |G|.

Theorem (Trinh-Y. 2023)

For groups G with relatively large abelian normal subgroups, the family of G-circulant matrices is not Valiant-rigid.

イロト イポト イヨト イヨト

Lakeside School

Michael Yang Rank and Rigidity of Group-Circulant Matrices

< 口 > < 同 >

Acknowledgements

Thank you to my mentor, Dr. Minh-Tâm Trinh, for proposing the project and resourcefully and patiently guiding me to the discovery of these results. Thank you also to the PRIMES-USA Program for the incredible opportunity to conduct this research. Lastly, thank you to my parents; without your unwavering support, none of this would have been possible.

< 口 > < 同 >

References

- [Val77] Leslie G Valiant. "Graph-theoretic arguments in low-level complexity". In: International Symposium on Mathematical Foundations of Computer Science. Springer. 1977, pp. 162–176.
- [Dia90] Persi Diaconis. "Patterned matrices". In: Proc. of Symposia in Applied Mathematics. Vol. 40. 1990, pp. 37–58.
- [DE17] Zeev Dvir and Benjamin Edelman. "Matrix rigidity and the Croot-Lev-Pach lemma". In: *arXiv preprint arXiv:1708.01646* (2017).
- [DL19] Zeev Dvir and Allen Liu. "Fourier and circulant matrices are not rigid". In: *arXiv preprint arXiv:1902.07334* (2019).