Rank and Rigidity of Group-Circulant Matrices

Michael Yang
Mentor: Dr. Minh-Tâm Trinh
Lakeside School

October 14-15, 2023
MIT PRIMES Conference

1 Circulant Matrices

2 Group-Circulant Matrices

3 Matrix Rigidity

4 Acknowledgements

Definition (Circulant Matrix)

A (classical) circulant matrix is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).

Definition (Circulant Matrix)

A (classical) circulant matrix is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).

Example

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

General form of a circulant matrix:

$$
\left[\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} \\
c_{1} & c_{2} & c_{3} & \cdots & c_{0} \\
c_{2} & c_{3} & c_{4} & \cdots & c_{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{n-1} & c_{0} & c_{1} & \cdots & c_{n-2}
\end{array}\right]
$$

Each of the $c_{i} s$ appears exactly once in every row and column.

Circulant matrices are useful in many areas.

Circulant matrices are useful in many areas.
 ■ Signal processing

Circulant matrices are useful in many areas.
 ■ Signal processing
 ■ Discrete Fourier Transform

Circulant matrices are useful in many areas.

■ Signal processing

- Discrete Fourier Transform

What are their ranks? When are they invertible?

Circulant matrices are useful in many areas.
■ Signal processing

- Discrete Fourier Transform

What are their ranks? When are they invertible?

Example

$$
\operatorname{rank}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]\right)=3 \quad \operatorname{rank}\left(\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\right)=2
$$

Circulant matrices are useful in many areas.
■ Signal processing

- Discrete Fourier Transform

What are their ranks? When are they invertible?

Example

$$
\operatorname{rank}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]\right)=3 \quad \operatorname{rank}\left(\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\right)=2
$$

We'll actually answer these questions for a larger family of matrices: group-circulants.

Circulant matrices are a special example of a larger class of matrices, called group-circulant matrices.

Circulant matrices are a special example of a larger class of matrices, called group-circulant matrices.

Definition (Group-Circulant Matrix)

Given a finite group G, a ring Λ, and a function $f: G \rightarrow \Lambda$, a G-circulant matrix of f is a $|G| \times|G|$ matrix M with rows and columns indexed by the elements of G, such that $M_{x, y}=f(x y)$ for all $x, y \in G$.

Classical circulant matrices are $\mathbb{Z} / n \mathbb{Z}$-circulant matrices.

Classical circulant matrices are $\mathbb{Z} / n \mathbb{Z}$-circulant matrices.

$$
\begin{gathered}
\\
0 \\
1 \\
2 \\
\vdots \\
n-1
\end{gathered}\left(\begin{array}{ccccc}
0 & 1 & 2 & \cdots & n-1 \\
f(0) & f(1) & f(2) & \cdots & f(n-1) \\
f(1) & f(2) & f(3) & \cdots & f(0) \\
f(2) & f(3) & f(4) & \cdots & f(1) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f(n-1) & f(0) & f(1) & \cdots & f(n-2)
\end{array}\right)
$$

Classical circulant matrices are $\mathbb{Z} / n \mathbb{Z}$-circulant matrices.

$$
\begin{gathered}
\\
0 \\
1 \\
2 \\
\vdots \\
n-1
\end{gathered}\left(\begin{array}{ccccc}
0 & 1 & 2 & \cdots & n-1 \\
f(0) & f(1) & f(2) & \cdots & f(n-1) \\
f(1) & f(2) & f(3) & \cdots & f(0) \\
f(2) & f(3) & f(4) & \cdots & f(1) \\
\vdots(n-1) & f(0) & f(1) & \cdots & f(n-2)
\end{array}\right)
$$

If we let $f(i)=c_{i}$ for $i=0,1, \ldots, n-1$, we get the general form for a circulant.

Take $G=K_{4}:=\{e, x, y, x y\}$, where $x y=y x$ and $x^{2}=y^{2}=e$.

Take $G=K_{4}:=\{e, x, y, x y\}$, where $x y=y x$ and $x^{2}=y^{2}=e$.

$$
\begin{aligned}
& e \\
& x \\
& x \\
& x y \\
& x y
\end{aligned}\left(\begin{array}{cccc}
e & x & y & x(e) \\
f(x) & f(x) & f(y) & f(x y) \\
f(y) & f(x y) & f(x y) & f(y) \\
f(x y) & f(y) & f(x) & f(x) \\
f(e)
\end{array}\right)
$$

Take $G=K_{4}:=\{e, x, y, x y\}$, where $x y=y x$ and $x^{2}=y^{2}=e$.

$$
\begin{aligned}
& e \\
& x \\
& x \\
& x y \\
& x y
\end{aligned}\left(\begin{array}{cccc}
e & x & y & x(e) \\
f(x) & f(x) & f(y) & f(x y) \\
f(x) & f(x y) & f(x y) & f(y) \\
f(x y) & f(y) & f(x) & f(e)
\end{array}\right)
$$

$f: G \rightarrow \mathbb{R}$ satisfies $f(e)=1, f(x)=2, f(y)=3, f(x y)=4$.

Take $G=K_{4}:=\{e, x, y, x y\}$, where $x y=y x$ and $x^{2}=y^{2}=e$.

$$
\begin{aligned}
& e \\
& x \\
& x \\
& x y \\
& x y
\end{aligned}\left(\begin{array}{cccc}
e & x & y \\
f(e) & f(x) & f(x) & f(x) \\
f(x) & f(x y) & f(x) \\
f(x y) & f(x y) & f(e) & f(x) \\
f(x) & f(x) & f(e)
\end{array}\right)
$$

$f: G \rightarrow \mathbb{R}$ satisfies $f(e)=1, f(x)=2, f(y)=3, f(x y)=4$.

$$
\begin{gathered}
\\
e \\
x \\
y \\
x y
\end{gathered}\left(\begin{array}{cccc}
e & x & y & x y \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

Take $G=K_{4}:=\{e, x, y, x y\}$, where $x y=y x$ and $x^{2}=y^{2}=e$.

$$
\begin{aligned}
& e \\
& e \\
& \times \\
& y \\
& x y
\end{aligned}\left(\begin{array}{cccc}
e & x & y & x(e) \\
f(x) & f(x) & f(y) & f(x y) \\
f(x) & f(x y) & f(x y) & f(y) \\
f(x y) & f(y) & f(x) & f(e)
\end{array}\right)
$$

$f: G \rightarrow \mathbb{R}$ satisfies $f(e)=1, f(x)=2, f(y)=3, f(x y)=4$.

$$
\operatorname{rank}\left(\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right]\right)=3
$$

What are the ranks of group-circulants?

Theorem (Group-Circulant Rank)

For any group G, good field Λ, and function $f: G \rightarrow \Lambda$, express f in the form

$$
f(x)=\sum_{\rho}\left(\sum_{1 \leq i, j \leq \operatorname{deg} \rho} c_{\rho, i, j} \rho_{i, j}(x)\right)
$$

where ρ runs over irreducible representations of G, the functions $\rho_{i, j}$ are the matrix coefficients of ρ, and $c_{\rho, i, j} \in \Lambda$. Then, the rank of the G-circulant corresponding to f equals

$$
\sum_{\rho}\left[(\operatorname{deg} \rho) \operatorname{rank}\left(\left[\begin{array}{cccc}
c_{\rho, 1,1} & c_{\rho, 1,2} & \cdots & c_{\rho, 1, N} \\
c_{\rho, 2,1} & c_{\rho, 2,2} & \cdots & c_{\rho, 2, N} \\
\vdots & \vdots & \ddots & \vdots \\
c_{\rho, N, 1} & c_{\rho, N, 2} & \cdots & c_{\rho, N, N}
\end{array}\right]\right)\right]
$$

How do we read the theorem?

How do we read the theorem?

■ For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.

How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
■ This basis is well-studied and nice to work with.

How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
■ This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.

How do we read the theorem?

■ For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.

- This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.

While this theorem was known to Diaconis, we gave a new, more elementary proof.

When we take $G=\mathbb{Z} / n \mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

When we take $G=\mathbb{Z} / n \mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega=e^{2 \pi i / n}$. The rank of the $n \times n$ circulant matrix with first row $\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]$ is the number of nonzero entries in the vector

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-(2 n-2)} & \cdots & \omega^{-(n-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right]
$$

When we take $G=\mathbb{Z} / n \mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega=e^{2 \pi i / n}$. The rank of the $n \times n$ circulant matrix with first row $\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]$ is the number of nonzero entries in the vector

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-(2 n-2)} & \cdots & \omega^{-(n-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right]
$$

Vanishing sums of roots of unity \Longrightarrow singular circulants

Definition (Matrix Rigidity)

Fix a square matrix M. The rank- r rigidity of M, denoted $\mathcal{R}_{M}(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.

Definition (Matrix Rigidity)

Fix a square matrix M. The rank- r rigidity of M, denoted $\mathcal{R}_{M}(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.

Example

For the $n \times n$ identity matrix I_{n},

$$
\mathcal{R}_{l_{n}}(r)=n-r .
$$

We can change $n-r$ of the diagonal 1 s to 0 s to make the rank r.

Example

Let

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then, $\mathcal{R}_{1_{3}}(1)=2$.

Example

Let

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then, $\mathcal{R}_{13}(1)=2$.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example

Let

$$
M=\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7
\end{array}\right]
$$

Then, $\mathcal{R}_{M}(1)=3$.

Example

Let

$$
M=\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7
\end{array}\right]
$$

Then, $\mathcal{R}_{M}(1)=3$.

$$
\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 5 \\
1 & 3 / 2 & 5 / 2 \\
4 & 6 & 10
\end{array}\right]
$$

Example

Let

$$
M=\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7
\end{array}\right]
$$

Then, $\mathcal{R}_{M}(1)=3$.

$$
\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 5 \\
1 & 3 / 2 & 5 / 2 \\
4 & 6 & 10
\end{array}\right]
$$

Changing any two entries will leave a 2×2 rectangle of full rank unchanged.

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:
■ Super-regular matrices

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

- Super-regular matrices

■ Walsh-Hadamard transform

Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

- Super-regular matrices

■ Walsh-Hadamard transform

- G-circulants for abelian G

Theorem (Dvir-Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to $|G|$.

Theorem (Dvir-Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to $|G|$.

Theorem (Trinh-Y. 2023)

For groups G with relatively large abelian normal subgroups, the family of G-circulant matrices is not Valiant-rigid.

Acknowledgements

Thank you to my mentor, Dr. Minh-Tâm Trinh, for proposing the project and resourcefully and patiently guiding me to the discovery of these results. Thank you also to the PRIMES-USA Program for the incredible opportunity to conduct this research. Lastly, thank you to my parents; without your unwavering support, none of this would have been possible.

References

[Val77] Leslie G Valiant. "Graph-theoretic arguments in low-level complexity". In: International Symposium on Mathematical Foundations of Computer Science. Springer. 1977, pp. 162-176.
[Dia90] Persi Diaconis. "Patterned matrices". In: Proc. of Symposia in Applied Mathematics. Vol. 40. 1990, pp. 37-58.
[DE17] Zeev Dvir and Benjamin Edelman. "Matrix rigidity and the Croot-Lev-Pach lemma". In: arXiv preprint arXiv:1708.01646 (2017).
[DL19] Zeev Dvir and Allen Liu. "Fourier and circulant matrices are not rigid". In: arXiv preprint arXiv:1902.07334 (2019).

