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What are Distributed Systems?

Distributed systems are 

environments where multiple 

computers work on numerous 

tasks within a network.

Email example:
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What is Distributed Tracing?

Tracing is a method of looking into 
requests in distributed environments. 

Each request – any task performed by 
the system – offers visibility into 
interactions between services. 
(Latency, errors, etc.)
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Send email trace:
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What is Distributed Tracing?

Tracing is a method of looking into 
requests in distributed environments. 

Each request – any task performed by 
the system – offers visibility into 
interactions between services. 
(Latency, errors, etc.)

Front end

Authentication Sending
Let’s say you sent an email to a 
coworker:



Current Issues with Tracing
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Developers have a hard time 
understanding an entire trace dataset.

- Applications like Jaeger allow 
visualization of one or two traces 
at a time

- There can be millions of 
traces/services to look into

…



Dealing with Millions of Traces

● Debugging and optimization becomes harder for developers without 
an understanding of the whole trace dataset. 

● Software companies can generate millions of traces daily so, combing 
through all traces can be inefficient. But, often these traces can be 
similar [1].

● Group together similar traces              
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reduce traces needed to 
understand overall system

https://people.mpi-sws.org/~jcmace/papers/lascasas2019sifter.pdf


Design
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1. Service names - for high level understand of system

2. Full trace topology - for details of services and their requests

3. Latency - for optimizing applications
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Encoding Traces



Defining Trace Similarity

Keep track of service names in the trace. 

Similar set of service names            traces are similar

Set of service names:
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Measuring Similarity Between Traces

Jaccardian Similarity:
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For two traces (trace_a and trace_b):

● A = set of service names in trace_a, B = set of service names in trace_b
● Threshold = 0.8 (min value of J(A, B) to consider A and B similar)

● J(A, B) > threshold            similar set of service names            traces are similar
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J(trace1, trace2) = 1 > 0.8
Trace Similarity Graph:

Trace 1

Trace 2

Trace 3

Build Trace Similarity Graph

Trace 2

Trace 3

Trace 1

{A, B, C, D}

{A, B, C, D}

{A, C, D}

J(trace1, trace3) = 0.75 < 0.8

J(trace2, trace3) = 0.75 < 0.8



Grouping Similar Traces

● Use Disjoint Set Union (DSU) algorithm to find connected groups in the 
trace similarity graph.
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● Created a sample trace set of 24 traces that has variation.
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Methodology



Results
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● Choose a trace from each group that represents the group: 
○ Trace connected to the most other traces in the trace similarity graph (i.e. trace 

with the highest degree).
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Results
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In addition to representative traces, 
we want to visualize traces such that 
developers can further their 
understanding of each group.

We want to highlight major 
services/interactions to show the 
most important information about a 
group.
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Build Aggregate Group Visualizer
Group 1

Trace 3Trace 2Trace 1



Group 1

We want to measure the frequency 

of each node within the group.

Collecting Group Data

Trace 3Trace 2Trace 1
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# 
Traces 3 2 3 3
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Rules:
1. Yellow nodes: present in all traces

2. Gray nodes: present in some traces

3. Node size: corresponds to # traces it 

is in vs. total # traces in the group.
a. Node B is ⅔ the size of Node A

Aggregate visualization:

Visualizing a Group
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Say we want to look into Node A:

Rules:

1. Chosen service (A) is highlighted in green 
2. Arrows are shown to indicate services 

which A calls
3. Arrow size corresponds to how often A calls 

another service

Node A visualization:

Interacting with Group Visualizations
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Group 2

Trace 1 Trace 2 Trace 3
Group 2 visualization:

Comparing Groups
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Group 2:
Group 1:

Group 2:

Group 1:
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Future Work
● Implement other methods of encoding traces.

○ Full trace topology
○ Latency

● Build trace similarity graph more efficiently

● Implement our aggregate visualization ideas 
using graph-tool. 
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https://graph-tool.skewed.de/static/doc/demos/inference/inference.html

https://graph-tool.skewed.de/static/doc/demos/inference/inference.html
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