
Visualizing Distributed
Traces in Aggregate

Adrita Samanta and Henry Han

Mentors: Darby Huye, Zhaoqi (Roy) Zhang,
Lan (Max) Liu, Prof. Raja Sambasivan

1

2

What are Distributed Systems?

Distributed systems are

environments where multiple

computers work on numerous

tasks within a network.

Email example:

Front End

Authentication Draft Email Sending

3

What is Distributed Tracing?

Tracing is a method of looking into
requests in distributed environments.

Each request – any task performed by
the system – offers visibility into
interactions between services.
(Latency, errors, etc.)

A

B

Caller/Callee

Send email trace:

4

What is Distributed Tracing?

Tracing is a method of looking into
requests in distributed environments.

Each request – any task performed by
the system – offers visibility into
interactions between services.
(Latency, errors, etc.)

Front end

Authentication Sending
Let’s say you sent an email to a
coworker:

Current Issues with Tracing

5

Developers have a hard time
understanding an entire trace dataset.

- Applications like Jaeger allow
visualization of one or two traces
at a time

- There can be millions of
traces/services to look into

…

Dealing with Millions of Traces

● Debugging and optimization becomes harder for developers without
an understanding of the whole trace dataset.

● Software companies can generate millions of traces daily so, combing
through all traces can be inefficient. But, often these traces can be
similar [1].

● Group together similar traces

6

reduce traces needed to
understand overall system

https://people.mpi-sws.org/~jcmace/papers/lascasas2019sifter.pdf

Design

7

Encoding Traces

Build Similarity
Graph

Identify Similar
Groups

Inspect
Representative

Traces

Build Aggregate
Group Visualizer

1. Service names - for high level understand of system

2. Full trace topology - for details of services and their requests

3. Latency - for optimizing applications

8

Encoding Traces

Defining Trace Similarity

Keep track of service names in the trace.

Similar set of service names traces are similar

Set of service names:

9

A

B

C

D

C

D

Trace 1
● Trace 1: {A, B, C, D}A

B

D

C

Trace 2

● Trace 2: {A, B, C, D}
A

D C

Trace 3

● Trace 3: {A, C, D}

Measuring Similarity Between Traces

Jaccardian Similarity:

10

For two traces (trace_a and trace_b):

● A = set of service names in trace_a, B = set of service names in trace_b
● Threshold = 0.8 (min value of J(A, B) to consider A and B similar)

● J(A, B) > threshold similar set of service names traces are similar

11

J(trace1, trace2) = 1 > 0.8
Trace Similarity Graph:

Trace 1

Trace 2

Trace 3

Build Trace Similarity Graph

Trace 2

Trace 3

Trace 1

{A, B, C, D}

{A, B, C, D}

{A, C, D}

J(trace1, trace3) = 0.75 < 0.8

J(trace2, trace3) = 0.75 < 0.8

Grouping Similar Traces

● Use Disjoint Set Union (DSU) algorithm to find connected groups in the
trace similarity graph.

12

Trace 1

Trace 2

Trace 3Trace 1

Trace 2

Trace 3

After Grouping

Identify Similar Groups

● Created a sample trace set of 24 traces that has variation.

13

Methodology

Results

14

Trace
5

Trace
14

Trace
19

Trace
11

Trace
15

Trace
16

Trace
17

Trace
18

Trace 7 Trace 21 Trace 24

Trace 3 Trace 6 Trace 20Trace 1

Trace 2 Trace 4

Trace 8

Trace 10

Trace 13

Trace 23

Trace 22

Trace 9

Trace 12

Design

15

Encoding Traces

Build Similarity
Graph

Identify Similar
Groups

Inspect
Representative

Traces

Build Aggregate
Group Visualizer

● Choose a trace from each group that represents the group:
○ Trace connected to the most other traces in the trace similarity graph (i.e. trace

with the highest degree).

16

Trace 1

Trace 2

Trace 3

Trace 4

Inspect Representative Traces

Results

17

Trace
5

Trace
14

Trace
19

Trace
11

Trace
15

Trace
16

Trace
17

Trace
18

Trace 7 Trace 21 Trace 24

Trace 3 Trace 6 Trace 20

Trace 22

Trace 1

Trace 2 Trace 4

Trace 8

Trace 10

Trace 13

Trace 23

Trace 22

Trace 9

Trace 12

Trace
14

Trace 24

Trace 20

Trace
19

Trace
16

Trace
18

Trace 23

In addition to representative traces,
we want to visualize traces such that
developers can further their
understanding of each group.

We want to highlight major
services/interactions to show the
most important information about a
group.

18

Build Aggregate Group Visualizer
Group 1

Trace 3Trace 2Trace 1

Group 1

We want to measure the frequency

of each node within the group.

Collecting Group Data

Trace 3Trace 2Trace 1

Node
A

Node
B

Node
C

Node
D

Traces 3 2 3 3

19

Rules:
1. Yellow nodes: present in all traces

2. Gray nodes: present in some traces

3. Node size: corresponds to # traces it

is in vs. total # traces in the group.
a. Node B is ⅔ the size of Node A

Aggregate visualization:

Visualizing a Group

20

Say we want to look into Node A:

Rules:

1. Chosen service (A) is highlighted in green
2. Arrows are shown to indicate services

which A calls
3. Arrow size corresponds to how often A calls

another service

Node A visualization:

Interacting with Group Visualizations

21

Group 2

Trace 1 Trace 2 Trace 3
Group 2 visualization:

Comparing Groups

22

Group 2:
Group 1:

Group 2:

Group 1:

23

Future Work
● Implement other methods of encoding traces.

○ Full trace topology
○ Latency

● Build trace similarity graph more efficiently

● Implement our aggregate visualization ideas
using graph-tool.

24

https://graph-tool.skewed.de/static/doc/demos/inference/inference.html

https://graph-tool.skewed.de/static/doc/demos/inference/inference.html

Visualizing Distributed Traces in Aggregate

Encoding Traces

Build Similarity
Graph

Identify Similar
Groups

Inspect
Representative

Traces

Build Aggregate
Group Visualizer

25

References

[1] Las-Casas, P., Papakerashvili, G., Anand, V., Mace, J.: Sifter: Scalable Sampling for Distributed
Traces, without Feature Engineering. https://people.mpi-sws.org/~jcmace/papers/lascasas2019sifter.pdf

[2] Gias, A. UI., Gao, Y., Sheldon, M., Peruspuía, J. A., O’Brien, O., Casale, G.: SampleHST: Efficient
On-the-Fly Selection of Distributed Traces. In arXiv 2022. https://arxiv.org/abs/2210.04595

[3] Huang, L., Zhu, T.: tprof: performance profiling via structural aggregation and automated analysis of
distributed systems traces. In: SoCC 2021, pp. 76–91. https://dl.acm. org/doi/10.1145/3472883.3486994

[4] Huye, D., Shkuro, Y., Sambasivan, R. R.: Lifting the veil on Meta’s microservice architecture: Analyses
of topology and request workflows. In: USENIX ATC 2023, pp. 419–432. https://www.usenix.org/
conference/atc23/presentation/huye

[5] Wu, Y., Chen, A., Phan, L. T. X.: Zeno: Diagnosing Performance Problems with Temporal Provenance.
In: NSDI 2019, pp. 395-420. https://www.usenix.org/system/ files/nsdi19-wu.pdf

26

https://people.mpi-sws.org/~jcmace/papers/lascasas2019sifter.pdf
https://arxiv.org/abs/2210.04595
https://dl.acm.
https://www.usenix.org/
https://www.usenix.org/
https://www.usenix.org/system/

Acknowledgements

We’d like to thank

● Our mentors: Darby Huye, Zhaoqi (Roy) Zhang, Lan (Max) Liu, and Prof. Raja
Sambasivan for their guidance and time.

● MIT PRIMES: Dr. Slava Gerovitch and Prof. Srini Devadas for this great
opportunity.

27

