
The Algebraic Value-Editing
Conjecture in Deep Reinforcement

Learning
By: Eddie Wei

Mentor: Andrew Gritsevskiy

What is Reinforcement Learning (RL)?
● Two main characters that interact:

○ The agent
○ The environment

● RL: Agents learn through trial + error
○ State: Entire description of the environment
○ Agent sees an observation: Partial description of

state
○ Chooses an action by its policy
○ Action Spaces: All valid actions
○ Return: Cumulative “score” over a set of actions

Deep Reinforcement Learning (Deep RL)
● Deep RL

○ = Deep learning + RL
○ Use Parameterized Policies: Determined by some

complex function

● Neural networks
○ How to modify our policy so that it maximizes the

expected return
○ Nodes contain an Activation
○ Forward pass: Weighted averages form the activations

of the previous layers
○ Gradient descent: Tweaks made to the edges to

optimize the policy
○ Backpropagation: Backward pass to compute gradient

Background
● We’ve always wanted to understand the internal mechanisms of how the

agent learns
● The math is way too complex for humans to understand: 100,000+

connections in typical models
● No intuitive concepts or patterns that were found yet…

So this is a formula
for calculating a
single activation in
a preceding
layer…

The Algebraic Value-Editing Conjecture (AVEC)
It's possible to deeply modify a range of alignment-relevant model properties,
without retraining the model, via techniques as simple as "run forward passes
on prompts which e.g. prompt the model to offer nice- and not-nice
completions, and then take a 'niceness vector', and then add the niceness
vector to future forward passes." [1]

Observation with the key

Hypothetical Activations: [3, 4, 1, 2]

Observation without the key

Hypothetical Activations: [1, 1, 0, 2]

Key Vector: [2, 3, 1, 0]

We can continue applying forward passes through
the maze where our position is changed. But

subtracting the key vector for our activations still
makes the agent avoid the key. The math does not

work anymore, but the relation holds!!

The key vector SHOULD make the agent avoid the
key at its starting position.

(Obs. with key) - (Obs. without key) = Key Activation

Obs. - Key Activation ≈ Avoid the Key

Previous Papers
Understanding and controlling a maze-solving policy network

● Used the Maze environment in Procgen
● “Cheese vector” = Cheese Activations - No Cheese Activations
● Net probability vectors of the entire maze to show the effects of the

cheese
● Adding cheese vector has no effect

○ Subtracting removes ability to see the cheese
○ Adding just increases “cheese perception” which is irrelevant

Improvements

● No addition vector found yet
● Not 100% accurate yet

Maze Environment

Patched V-field

Previous Papers (cont.)
Understanding and controlling a maze-solving policy
network

● Adding a “Top-right vector”
○ Subtracting has no effect

● Effects of scaling the vector
● “Top-right vector” transfers across mazes!
● Applies to other applications other than “cheese” and

top-right

Improvements

● Unsure about effects of scaling

The Plan
● Train a PPO model on the Minigrid environment:

○ Changing map sizes
○ Easily customizable mazes
○ More complex

● Replicate the results of the conjecture…

Proximal Policy
Optimization (PPO)

Model
● State of the art
● Estimation of the advantage

function
○ Calculates the “benefit” of particular

action to average action
○ The decision maker for the agent

● Updating the policy:
○ Measures the difference between

updated and old policies
○ Sampled across many small

batches of trajectories (sequences
of states & actions)

○ Stochastic gradient descent
○ Clipping mechanism

Our Model
● Trained PPO model on 5x5

Minigrid DoorKey and
MiniGrid-Four-Rooms
environment

● Differences:
○ Limited vision
○ Key + Lock
○ Different buttons for interacting

with key & lock

Results

5x5 Grid

Four-Rooms

Conclusion
● There are still many questions about this conjecture
● Scaling:

○ Big factors (>10) of the vector mess up the results
○ Small factors don’t have great impacts

● Cannot Add & Subtract the same vector:
○ Adding the cheese vector and subtracting the top-right vector have no effect

● The results do not generalize perfectly:
○ Smaller seeds or complex ones tend to have different results
○ Why would this vector generalize at all anyways?

Analysis
What if this conjecture is actually true?

● First insight into mechanics of neural networks and deep learning
● Massive training time save
● Applications to neuroscience: “Subtracting brain states”

Even through the internal complexities of neural network, a concept as simple as A - (A - B) = B still
often seems to work!!

Future Work
● Still need to replicate the results on our new environment
● Try different models:

○ Deep Q-Network (DQN)
○ Deep Deterministic Policy Gradient (DDPG)
○ Soft Actor-Critic (SAC)

● Test out other types of vectors other than just a key vector
○ Color vector
○ Goal vector
○ Our own “top-right” vector

● Other sub-environments in Minigrid

Acknowledgements
I would like to thank:

● The professors of MIT PRIMES
● My mentor Andrew Gritsevskiy
● My family

Citations
[1] Alex Turner et al. “Understanding and controlling a maze-solving policy
net-work”. (2023).

[2] Alex Turner et al. “Understanding and controlling a maze-solving policy net-

work”. (2023).

[3] Antonin Raffin. RL Baselines3 Zoo.
https://github.com/DLR-RM/rl-baselines3-zoo.2020.

