
Public-key signature scheme with
reduced hardware trust

Albert Lu and Andrew Carratu

Mentors:
Jules Drean and Sacha Servan-Schreiber

Table of Contents

1. Remote Attestation

2. Digital Signatures

3. Lamport Signature Scheme

4. Zero Knowledge Proof-of-Knowledge

5. Putting All Together

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A “verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.

- The untrusted device sends the remote user a certificate or proof or remote attestation.

Remote UserRemote User
(verifier)

Untrusted Cloud

Trusted Secure
Processor (prover)

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A “verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.

- The untrusted device sends the remote user a certificate or proof or remote attestation.
Binary + Data

Remote UserRemote User
(verifier)

Untrusted Cloud

Trusted Secure
Processor (prover)

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A “verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.

- The untrusted device sends the remote user a certificate or proof or remote attestation.

Certificate

Binary + Data

Remote UserRemote User
(verifier)

Untrusted Cloud

Trusted Secure
Processor (prover)

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A “verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.

- The untrusted device sends the remote user a certificate or proof or remote attestation.

Certificate

Binary + Data

Remote User

This is used as a “proof of attestation”

Remote User
(verifier)

Untrusted Cloud

Trusted Secure
Processor (prover)

● In recent years, the security of remote attestation schemes
has been compromised.

● Most attacks target the hardware (microarchitectural side
channels and transient execution attacks).

● These attacks steal the secret key used to sign the certificate.

Hardware Vulnerabilities and Side Channels

- Systems are not secure if an attacker can steal secret keys.

- The hardware resources (processors, memory etc…) are shared between several programs.

- One program might be able to exploit shared resources to spy on another and steal secret keys.

These are called side channels:

Real life example: When you watch a movie on your computer and it freezes…
 … you can guess someone else in the house is using the internet connection!

Similarly, an attacker program can observe the ressources it shares with a victim and infer secrets!

The introduction of the Spectre (transient-execution attack) make these attacks even worse!

Conclusion: We need to change our trust assumptions on the hardware.

Digital Signatures
- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures
- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

Digital Signatures

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures

Only Alice knows her private
key, so nobody can forge her
signature

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

- Family of cryptographic algorithms used to prove the authenticity of a message.

- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures: Forgery Detection
- What if Bob modified the message?

How to make digital signatures with minimal trust?
- Contribution I: Limit shared hardware resources

- Contribution II: Keep all secrets in the CPU registers

Private Key

“Normal” range

❌

How to make digital signatures with minimal trust?

“Normal” range

Private Key

- Contribution I: Limit shared hardware resources

- Contribution II: Keep all secrets in the CPU registers

How to make digital signatures with minimal trust?
- Contribution I: Limit shared hardware resources

- Contribution II: Keep all secrets in the CPU registers

- Challenges

- Very little room for in-between

computation (only ~20kB)

- We need a

lightweight

signature scheme!
Private Key

“Normal” range

Digital Signature: Lamport Signature Scheme
First Public Key Digital Signature Algorithm!

For each bit of the message to sign (256 bits):

We generate 2 random 128-bit number, one to encode 0 and one to encode 1.
0: 53285a2d862e7d9b13bbf416bb4a09e3
1:
These are one element of the private key.

We can generate an element of the public key by hashing.
0: H(53285a2d862e7d9b13bbf416bb4a09e3) = H()
 = c21c9b4aa082bdace250f85db5b6e1b8db1f0262cc5afe8dbb6b4d9e989e8758
1: H() =

Digital Signature: Lamport Signature Scheme

Digital Signature: Lamport Signature Scheme

Digital Signature: Lamport Signature Scheme

Is the signature authentic?

=

Digital Signature: Lamport Signature Scheme

Is the signature authentic?

=

Limitations of Lamport

One Time Usage: a private key may only be used once!!

Each signature reveal part of the key ->

 an attacker could sign new unseen messages by reconstructing the key!

Msg 1

Msg 2

Partially Reconstructed Key!

…

…

Limitations of Lamport

One Time Usage: a private key may only be used once!!

Each signature reveal part of the key ->

 an attacker could sign new unseen messages by reconstructing the key!

Msg 1

Msg 2

Partially Reconstructed Key!

…

…

Zero Knowledge Proof-of-Knowledge
- Can we “sign” a message without revealing any of the private key values?

- Prove that we know the value of a secret “s” without revealing the secret.

- Example: Where’s Waldo?

We have a blank canvas with a hole.

We have a blank canvas with a hole.

We position the picture behind the canvas so Waldo can be seen through the hole!

We have a blank canvas with a hole.

We position the picture behind the canvas so Waldo can be seen through the hole!

Someone can verify that we know where Waldo is, but we are not revealing Waldo’s exact location.

Digital Signature: Lamport Signature Scheme + Zero Knowledge

For each bit of the message, we want to
prove we know such that
H() = , but without revealing the
value of .

We can use zero-knowledge proof of
that! (represented with)

Assumptions we are considering for Zero-Knowledge Proof Scheme

- Discrete Logarithm & Schnorr

- Rabin one-way-function & square root modulo N

- Dual of Learning Parity with Noise (dual-LPN) & Stern ZKP

Dual of Learning Parity with Noise (dual-LPN)
- Assumption that given (H, Hs), it is “hard” to find s, where

- H is an (n x m) bit matrix

- s is a m-length random bit vector with hamming weight m/10 (sparse)

Stern’s ZKP
- Prover picks y, a m-length random bit vector, and a permutation 𝜎 of size m

- Commitment 1: 𝜎 || Hy

- Commitment 2: 𝜎 (y)

- Commitment 3: 𝜎(y ⊕ s)

- Verifier picks a random bit b in {0, 1, 2}, and Prover opens the commitments as follows:
- If b = 0, it opens commitment to 𝜎 (y) by giving (y and 𝜎)

- If b = 1, it opens (y ⊕ s)

- If b = 2, it opens 𝜎(y) and 𝜎(s)

- Verifier verifies that
- If b = 0, it verifies commitments (1), (2)

- If b = 1, it verifies (1), (3) and that H*(y ⊕ s) ⊕ H*(s) = H(y)

- If b = 2, it verifies (2), (3) and that 𝜎(s) has correct hamming weight

Next Steps

- Designing our signature scheme

- Implementing the signature scheme

- Performance evaluation if the signature scheme is fast enough

Acknowledgements

Our mentors

 Jules Drean Sacha Servan-Schreiber

MIT PRIMES organizers for making this possible!

Thank you!

