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What is Cloud Computing?

Cloud
Apps
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Actual application

How to run the 
application/what is 
needed

How many resources to 
give to the container

How does cloud computing work?
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What is serverless?

Traditional cloud computing

$/ $/f(x)

…….

…….

…….

Serverless computing
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Serverless in Production
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Since 2014…



A Challenge of Serverless

Resource Management
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Quality of Service (QoS)

Imagine you are a serverless user who sends some functions to a provider. What 
do you care about?

Latency: how quickly?
(milli/micro)seconds

Throughput: how many 
per second?

Requests Per Second (RPS)

Tail Latency
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Resource Management - A Balancing Act

Resource Utilization

Cloud Provider
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Quality of Service



How is resource management done in production?

Autoscalers!

if (cpu_util_per_container > 250m):
scale_up()

else:
scale_down()

if (mem_util_per_container > 256 MiB):
scale_up()

else:
scale_down()

naive! Autoscaler Logic:
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Intelligent Scaling

Use an ML model instead!

Data-driven 
scaling system!
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The problem with traditional ML

Everything 
keeps changing!
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Reinforcement 
Learning!
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A Primer on Reinforcement Learning (RL)

Reinforcement learning can be thought of as a loop between the environment and 
the agent
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RL: Learning through experience

1st time seeing a 
Goomba

5th time seeing a 
Goomba

500th time seeing a 
Goomba
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RL (Q-Learning) for Resource Management

Agent 
(scaler)

State (QoS requirements, resource usages, 
current # of containers)

Environment 
(Cloud)

Reward function 
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Invoke and collect QoS metrics (tail latency)

Read metrics

Compute reward

Save
experience

Q=0.88

Q=0.13

Q-Table
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Deep Q-Learning for Resource Management

Agent 
(scaler)

State (resource usages, 
current # of containers)

Reward function 
(based on QoS metrics)

Reward

Action (scaling)

Read metrics (tail latency)

Read metrics

Compute reward

Save
experience

Deep Q 
Network
Q-Table

Q=0.88

Q=0.13

Q-Table

Scale up

Environment 
(Cloud)
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Challenges in a serverless environment

Agent 
(scaler)

State (resource usages, 
current # of containers)

Environment (containers)

Reward function 
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Read metrics (tail latency)

Read metrics

Compute reward

Save
experience

Functions are 
running…
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Agent 
(scaler)

State (QoS requirements, resource usages, 
current # of containers)

Environment 
(Cloud)

Reward function 
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Invoke and collect QoS metrics (tail latency)

Read metrics

Compute reward

Save
experience

Reusing previous experiences with a replay buffer

Deep Q 
Network 18



System Implementation
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A Real Serverless Environment

hotel-app fibonacci-python
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API Gateway

DQN
3. 

Initialize 
DQN

Client (main)

1. Deploy 
functions2. Get initial 

environment state

CloudLab Node

DQN Implementation: Each Episode Training Loop

Written by us
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DQN Implementation: Training

Actuator 
API

Environment 
API

DQN

1. Action(s)
A = Up/Down/0

2. Action(s)
A = Up/Down/0

5. compile 
env state and 

latencies
4. return metrics 

and latencies

3. Scale 
functions and 

invoke

6. Return 
state and 
compute 
reward

Written by us

Training Loop

Any Model!
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Results - Horizontal Pod Autoscaling
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Latency as 
QoS

Stop learning! 23



Results - Vertical Pod Autoscaling

Around 
1000-2000

24



Contributions and Artifacts

1. We constructed proper infrastructure to replicate  

serverless environments with different workloads.

2. We implemented Deep Q-Learning as a data-driven 

way to tackle resource management in dynamic 

serverless environments.

3. Github can be found here
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