
Exploring Data-driven Approaches
to Resource Management in Serverless
Systems

Alan Song and Evan Ning (PRIMES CS)

Mentors:
Nikita Lazarev
Varun Gohil 1PRIMES Fall Conference: October 15, 2023

What is Cloud Computing?

Cloud
Apps

2

Actual application

How to run the
application/what is
needed

How many resources to
give to the container

How does cloud computing work?

3

What is serverless?

Traditional cloud computing

$/ $/f(x)

…….

…….

…….

Serverless computing

4

Serverless in Production

5

Since 2014…

A Challenge of Serverless

Resource Management

6

Quality of Service (QoS)

Imagine you are a serverless user who sends some functions to a provider. What
do you care about?

Latency: how quickly?
(milli/micro)seconds

Throughput: how many
per second?

Requests Per Second (RPS)

Tail Latency

7

Resource Management - A Balancing Act

Resource Utilization

Cloud Provider

8

Quality of Service

How is resource management done in production?

Autoscalers!

if (cpu_util_per_container > 250m):
scale_up()

else:
scale_down()

if (mem_util_per_container > 256 MiB):
scale_up()

else:
scale_down()

naive! Autoscaler Logic:

9

Intelligent Scaling

Use an ML model instead!

Data-driven
scaling system!

10

The problem with traditional ML

Everything
keeps changing!

11

Reinforcement
Learning!

12

A Primer on Reinforcement Learning (RL)

Reinforcement learning can be thought of as a loop between the environment and
the agent

13

RL: Learning through experience

1st time seeing a
Goomba

5th time seeing a
Goomba

500th time seeing a
Goomba

14

RL (Q-Learning) for Resource Management

Agent
(scaler)

State (QoS requirements, resource usages,
current # of containers)

Environment
(Cloud)

Reward function
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Invoke and collect QoS metrics (tail latency)

Read metrics

Compute reward

Save
experience

Q=0.88

Q=0.13

Q-Table

15

Deep Q-Learning for Resource Management

Agent
(scaler)

State (resource usages,
current # of containers)

Reward function
(based on QoS metrics)

Reward

Action (scaling)

Read metrics (tail latency)

Read metrics

Compute reward

Save
experience

Deep Q
Network
Q-Table

Q=0.88

Q=0.13

Q-Table

Scale up

Environment
(Cloud)

16

Challenges in a serverless environment

Agent
(scaler)

State (resource usages,
current # of containers)

Environment (containers)

Reward function
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Read metrics (tail latency)

Read metrics

Compute reward

Save
experience

Functions are
running…

17

Agent
(scaler)

State (QoS requirements, resource usages,
current # of containers)

Environment
(Cloud)

Reward function
(based on QoS metrics)

Reward

Action (scaling)

Scale up

Invoke and collect QoS metrics (tail latency)

Read metrics

Compute reward

Save
experience

Reusing previous experiences with a replay buffer

Deep Q
Network 18

System Implementation

19

A Real Serverless Environment

hotel-app fibonacci-python

20

API Gateway

DQN
3.

Initialize
DQN

Client (main)

1. Deploy
functions2. Get initial

environment state

CloudLab Node

DQN Implementation: Each Episode Training Loop

Written by us

21

DQN Implementation: Training

Actuator
API

Environment
API

DQN

1. Action(s)
A = Up/Down/0

2. Action(s)
A = Up/Down/0

5. compile
env state and

latencies
4. return metrics

and latencies

3. Scale
functions and

invoke

6. Return
state and
compute
reward

Written by us

Training Loop

Any Model!

22

Results - Horizontal Pod Autoscaling

Re
w

ar
d

of

 c
on

ta
in

er
s

function #1

function #2

function #3

La
te

nc
y,

 μ
s 99th tail

90th tail
median

Latency as
QoS

Stop learning! 23

Results - Vertical Pod Autoscaling

Around
1000-2000

24

Contributions and Artifacts

1. We constructed proper infrastructure to replicate

serverless environments with different workloads.

2. We implemented Deep Q-Learning as a data-driven

way to tackle resource management in dynamic

serverless environments.

3. Github can be found here

25

Acknowledgments

● Nikita, Varun, Lisa

● Families

● Shoutout to CloudLab!

● PRIMES

26

