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Scientific machine learning for partial differential equations

Scientific machine learning combines machine learning models with physics
knowledge in a variety of applications, such as predicting fluid flow. Many
problems can be described well with partial differential equations (PDEs)

Example (Kovasznay Flow)

Navier-Stokes Equations
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Possible solution for v

PDE Problems can be very complicated and expensive to solve in general.
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Deep neural networks

A deep neural network is a specific type of function with a set of
parameters θ called weights. Formally, we can define a deep neural
network to be of the form

N (x ; θ) = T L ◦ (σ ◦ T L−1) ◦ · · · ◦ (σ ◦ T 1)(x)

composed of layers

(σ ◦ T ℓ)(x) = σ(Wℓx + bℓ)

the nonlinear function σ is called the activation function.
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Deep neural networks for PDEs

A deep neural network can be trained to learn almost any function,
including the solution to a PDE. Here is an example of a network that
might be used to learn a fluid flow problem.
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Loss function and gradient descent

All neural networks are trained with a loss function. The loss function L
aggregates the total error of the neural network into a real number.
Algorithms for minimizing the loss function are based on gradient
descent.

Gradient descent formula

xt+1 = xt − η
∂L
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PDE loss

Navier-Stokes equations in 2 dimensions
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Recall that we want the output of the neural network to satisfy these
differential equations. How can we encode this information into the loss
function?
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PDE loss

Navier-Stokes equations in 2 dimensions (continuity equation)
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for some observation points (xi , yi ) scattered throughout the domain.
Minimizing this loss effectively enforces the differential equation.
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Physics-informed neural network

Formally, a Physics-informed neural network is a type of deep neural
network with a special loss function:

L(θ;T ) = Lic(θ;Tic) + Lbc(θ;Tbc) + Lf(θ;Tf)

where

Lic(θ;Tic) =
1

|Tic|
∑
x∈Tic

∥û(θ, x)− u(x)∥22 (initial conditions)

Lbc(θ;Tbc) =
1

|Tbc|
∑
x∈Tbc

∥B[û(x; θ)]∥22 (boundary conditions)

Lf(θ;Tf) =
1

|Tf|
∑
x∈Tf

∥f [û(x; θ);λ]∥22 (PDE loss)
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High accuracy of solutions

Implementing this problem in the DeepXDE library, we can see that the
PINN is able to learn the PDE.
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Low precision training

Even with deep learning, solving PDE problems can be slow and expensive.
Modern GPUs support half precision (float16) data types. In the context
of scientific machine learning, these data types

are faster (good)

take up less memory (good)

are less accurate (not good)

Are the benefits worth the accuracy loss?
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Float16 failure

Implemented naively, float16 training fails.
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Floating point theory
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Floating point values are stored in binary scientific notation. As a rule of
thumb, float32 values have around 7 significant (decimal) digits and
float16 values have around 3 significant digits.
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Float16 gradient descent

Gradient descent formula

xt+1 = xt − η
∂L
∂x

What if we have

xt = 10, η = 10−3,
∂L
∂x

= −10−1?

The updated weight is

xt+1 = 1.000× 101 + 1.000× 10−4 = 1.000× 101 = xt .
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Float16 gradient descent

Gradient descent formula

xt+1 = xt − η
∂L
∂x

What if we have

xt = 10, η = 10−3,
∂L
∂x

= −10−1?

The updated weight is

xt+1 = 1.000× 101 + 1.000× 10−4 = 1.000× 101 = xt .

Even with perfect gradient computation, float16 weights are hard to fine
tune!
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Basic mixed precision model

Gradient descent formula

xt+1 = xt − η
∂L
∂x

What we hold the weights in float32 and gradients in float16?

xt+1 = 1.0000000× 101 + 1.000× 10−4 = 1.0001000× 101

The weight updates correctly!
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Basic mixed precision model

Float32 Weights Float16 Weights

Float16 Gradients

Float16 Loss

Float32 Gradients

Gradient 
descent
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Results

The mixed precision model is as accurate as the float32 model.
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Training time and memory improvements

Precision Memory (GB)

Float32 1.51± 0.02
Float16 0.76± 0.01

Mixed precision 0.76± 0.01

There was also a 12% reduction in training time, which would be more
drastic for a larger problem with more dimensions.
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