Machine Learning and Gradient Descent for Infectious Disease Risk Prediction

Catherine Li Mentor: Daniel Lazarev

MIT PRIMES Conference

October 14, 2023

Table of Contents

- Introduction

Epidemiology

- Study of incidence, spread, and control of disease
- Source, nature, and risk factors
- Recent emergence of infectious diseases
- Disease Models
 - SIR compartmental model (Susceptible, Infected, Recovered): system of differential equations
 - Maximum Entropy: least-biased probability distribution given constraints

Factors of Transmission

- Temperature
- Humidity
- Vaccination
- Social contact/human mobility patterns
- Host-receptor binding affinity
- Ecological niche of virus
- Viral mutations/escape

Table of Contents

•00

- Exponential Risk Scores

Risk Scores for SARS-CoV-2 Mutations

- Maher et al. combined three epidemiological factors of mutations into Epi Score
 - Mutation frequency

Exponential Risk Scores

Fraction of unique haplotypes (group of DNA variations that are inherited together) in which mutation occurs

Tunable Weights and Gradient Descent

- Number of countries in which mutation occurs
- Forecasts spread of mutations months in advance

Exponential Risk Scores

Risk Scores for SARS-CoV-2 Mutations, cont.

- For mutation i, let freq, hap, count, denote mutation frequency, haplotype occurrence, and country occurrence
- Define f_i, h_i, c_i as percentiles of $freq_i, hap_i, count_i$ (0 to 1)
- Exponential score: Epi Score_i = $\frac{10^{f_i}+10^{h_i}+10^{c_i}}{2}$
 - Exponentials help further differentiate high-risk mutations
- Performed better than any other measure (evolution, immune, etc.)

Table of Contents

- Introduction
- 2 Exponential Risk Scores
- Geographic Risk Model
- 4 Tunable Weights and Gradient Descent

Geo Scores

- Risk assignment for geographical regions
 - 7IP Codes in NYC
- Exponential Geo Score calculated from
 - Vaccination rate
 - Population density
 - Socioeconomic status (SES): median annual household income
- 7 scores: all combinations of 1, 2, or 3 variables

Tunable Weights and Gradient Descent

Geo Scores, cont.

Catherine Li Mentor: Daniel Lazarev

• Percentiles v_i, d_i, s_i in ZIP Code i

Geo Score
$$1_i = 10^{v_i}$$
,
Geo Score $2_i = 10^{d_i}$,
Geo Score $3_i = 10^{s_i}$,
Geo Score $4_i = \frac{10^{v_i} + 10^{d_i}}{2}$,
Geo Score $5_i = \frac{10^{v_i} + 10^{s_i}}{2}$,
Geo Score $6_i = \frac{10^{d_i} + 10^{s_i}}{2}$,
Geo Score $7_i = \frac{10^{v_i} + 10^{d_i} + 10^{s_i}}{3}$.

Geo Score Performance

- Compared against 2 ground-truth metrics: test positive rate, death rate
 - Same exponential percentiles method to compare scores with metrics on a 1-10 scale

Tunable Weights and Gradient Descent

 Geo Score 5 (vaccination rate and socioeconomic status) performed best in Mean Absolute Error

	Test Positive Rate	Death Rate
Geo Score 1	2.001	2.225
Geo Score 2	3.093	2.908
Geo Score 3	2.254	1.969
Geo Score 4	2.261	2.224
Geo Score 5	1.881	1.833
Geo Score 6	2.444	2.187
Geo Score 7	2.102	1.979

Geo Score Performance, cont.

Geo Scores

Geo Score 5 by ZIP Code Geo Score 5 (vaccination, income) Powered by Bing Geo Score 2 by ZIP Code

Metrics

Tunable Weights and Gradient Descent

Table of Contents

- Tunable Weights and Gradient Descent

Tunable Weights

- Let p₁, p₂, p₃ be the distributions of the exponential scores for vaccination rate, population density, and SES across the ZIP codes
- \bullet Find parameters 0 $\leq \alpha, \beta, \gamma \leq 1$ such that $\alpha + \beta + \gamma = 1$ and

$$p = \alpha p_1 + \beta p_2 + \gamma p_3$$

best predicts test positive/death rate distributions

• Minimize L_1 (total absolute error) or L_2 distance (squared error)

Gradient Descent

- Optimization algorithm often used to train machine learning models
- Loss function f

- Gradient: $\langle f_x, f_y \rangle$ (direction of steepest ascent)
- Learning rate/step size

Exponential Risk Scores

Results

- Split dataset in half: training and evaluation
- Compared against linear regression and neural network
- $\beta \approx 0$; $\alpha \approx 0.5$ for test positive, $\alpha \approx 0.7$ for death

Summary

- Geographical risk assignment with exponential scores
- Gradient descent algorithm performs better than linear regression and neural network models
 - Provides interpretable results

Tunable Weights and Gradient Descent

Acknowledgements

Exponential Risk Scores

I would like to thank:

- My mentor, Daniel Lazarev
- Dr. Tanya Khovanova, Prof. Patel Etingof, Dr. Slava Gerovitch, and the MIT PRIMES-USA Program
- My family

References

- M. C. Maher, I. Bartha, S. Weaver, J. Iulio, E. Ferri, L. Soriaga, F. A. Lempp, B. L. Hie, B. Bryson, B. Berger, D. L. Robertson, G. Snell, D. Corti, H. W. Virgin, S. Pond, and A. Telenti. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. *Sci. Transl. Med.*, 14 (633), 2022.
- C. Bishop. Pattern Recognition and Machine Learning.
 Springer Science+Business Media, 2006.
- PRIMO.ai. Gradient Descent Optimization and Challenges. 2023.

