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Abstract
A cyclic base ordering of a matroid M = (E, I) is a cyclic ordering of the elements of

E such that every r(E) consecutive elements form a base, where r is the rank function
of M . An area of research in matroid theory asks which matroid classes exhibit cyclic
base orderings under certain conditions. In this paper, we provide several necessary
conditions for matching and graphic matroids to have cyclic base orderings. We also
provide graph operations that preserve the existence of cyclic base orderings on graphic
matroids.

1 Introduction
In 1935, Whitney [8] introduced the notion of matroids, which are combinatorial objects
that generalize both the notion of linear independence from linear algebra and the notion of
spanning trees from graph theory. Matroids are of significance in various mathematical fields.
For example, matroids characterize problems that can be solved by greedy algorithms in the
sense that a maximum weight problem in a downward closed set system can be solved by
the greedy algorithm if and only if the system is a matroid. Moreover, matroid partition and
matroid intersection algorithms give rise to combinatorial algorithms in concrete problems
as specific cases. Other applications of matroids may be found in topology, network theory,
and coding theory.

In this paper, we study the notion of cyclic base orderings of matroids. We defer basic
definitions from matroid theory to Section 2. A cyclic base ordering of a matroid M = (E, I)
is a cyclic ordering of the elements of E such that every r(E) consecutive elements form a
base, where r is the rank function of M .

In this paper, we provide several conditions for the existence and structure of cyclic base
orderings on graphic and matching matroids. We also look at graph operations that preserve
the existence of cyclic base orderings on graphic matroids.

1.1 Prior Results
In 1988, Kajitani et al. [4] initiated the study of cyclic base orderings. They proved the
existence of cyclic base orderings on various matroid classes and conjectured a character-
ization for matroids that exhibited cyclic base orderings. In particular, they showed that
any graphic matroid whose corresponding graph can be decomposed into two edge-disjoint
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spanning trees exhibits a cyclic base ordering. It is then natural to ask which matroid classes
have cyclic base orderings, given that the ground set of the matroid can be partitioned by
some number of bases.

Problem 1.1 (Kajitani et al. [4]). Let M = (E, I) be a matroid. Suppose E can be par-
titioned into k bases. Is there a cyclic ordering of the elements of E such that any |E|/k
consecutive elements in the ordering form a base?

Cyclic base orderings give stronger conclusions than linear orderings of the elements of
the ground set. In fact, replacing “cyclic ordering” with “linear ordering” in the statement of
Problem 1.1 makes the problem considerably easier. Kajitani et al. [4] provided a complete
characterization for any matroid M = (E, I) with rank function r that exhibits a linear
ordering of E such that every w consecutive elements form an independent set for all positive
integers w ≤ r(E).

Some progress has been made on Problem 1.1. Kajitani et al. [4] proved the case when
k = 2 and M is graphic.

Theorem 1.2 (Kajitani et al. [4]). Suppose a graph G = (V, E) can be decomposed into two
edge-disjoint spanning trees. Then there is a cyclic ordering of the edges of G such that every
|V | − 1 consecutive edges in the cyclic ordering induces a spanning tree.

Despite this result from the very beginning of the quest to answer Problem 1.1, much
is unknown. For instance, the case where k ≥ 3 and M is graphic is still open. Another
natural class of matroids is the class of linear matroids. Indeed, this special case is also open
even when k = 2. Other attempts in the literature studied the case where the assumption in
Problem 1.1 that the ground set can be partitioned into k bases is dropped or replaced with
stronger assumptions. For instance, van den Heuvel and Thomassé [7] proved a necessary
and sufficient condition for all matroids M = (E, I) with gcd(|E|, r(E)) = 1 to have cyclic
base orderings, where r is the rank function of M .

Theorem 1.3 (van den Heuvel and Thomassé [7]). Let M be a matroid on ground set E
with rank function r such that gcd(|E|, r(E)) = 1. Then there is a cyclic ordering of the
elements of E such that any consecutive r(E) elements form a base if and only if

r(E) · |X| ≤ |E| · r(X) (1)

holds for every X ⊆ E.

In 2013, Bonin [2] proved that any sparse paving matroid M = (E, I) with rank function
r has a cyclic base ordering if and only if (1) holds for all X ⊆ E, and very recently, in 2023,
McGuiness [6] proved that any paving matroid M = (E, I) with rank function r has a cyclic
base ordering if and only if (1) holds for all X ⊆ E.

Another line of research studied special classes of graphs whose associated graphic ma-
troids have cyclic base orderings without the partition assumption. This started from the
paper of Kajitani et al. [4]:

Theorem 1.4 (Kajitani et al. [4]). The graphic matroid of each of the following classes of
graphs has a cyclic ordering in which every w consecutive edges of the cyclic ordering form
an independent set:
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• graphs decomposable into two disjoint spanning trees for all positive integers w ≤ r,

• simple graphs for w = 3, 4,

• complete graphs for all positive integers w ≤ r,

• 2-trees1 for all positive integers w ≤ r,

where r denotes the rank of the corresponding graphic matroid.

In 2014, Gu et al. [3] constructed cyclic base orderings for the graphic matroids of com-
plete bipartite graphs, k-maximal graphs, and 3-trees. In 2021, Li et al. [5] proved that
the graphic matroids of squares of cycles, wheel graphs, double wheel graphs all have cyclic
base orderings. In 2022, Xia et al. [9] proved that the existence of a cyclic base ordering is
closed under taking the series composition of two graphs with the same numbers of vertices
and edges; they also proved the cases of generalized theta graphs and small triangular grid
graphs.

1.2 Organization of the Paper
This paper is structured as follows. In Section 2, we introduce definitions and results from
matroid theory used in subsequent sections. In Section 3, we give conditions that are nec-
essary for the existence of cyclic base orderings in matching matroids and graphic matroids.
We also investigate graph operations that preserve the existence of a cyclic base ordering in
graphic matroids. In Section 4, we revisit Theorem 1.2 and prove an extension of it. Finally,
in Section 5, we discuss possible future directions.

2 Preliminaries
First, we introduce basic definitions and properties from matroid theory.

Definition 2.1. A matroid M is an ordered pair (E, I), where E is a finite set which we call
the ground set, and I is a collection of subsets of E, whose elements we call the independent
sets, such that the following two axioms are satisfied:

(I1) If X ⊆ Y and Y ∈ I, then X ∈ I.

(I2) If X, Y ∈ I and |Y | > |X|, then there exists u ∈ Y \X such that X + u ∈ I.2

The rank function of M is a set function r : 2E → Z≥0 which is defined as follows for all
X ⊆ E:

r(X) := max{|Y | : Y ⊆ X, Y ∈ I}.

In addition, we define the bases of M to be its maximal independent sets.
1A graph G is a k-tree if it is either the complete graph on k vertices or if G has a vertex v with degree

k − 1 such that v and its neighbors form a k-clique and G − v is also a k-tree. 1-trees are simply trees
themselves, and 2-trees are maximal series-parallel graphs.

2For a set X and an element u, we write X + u = X ∪ {u}.
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Note that all bases of a matroid have the same cardinality. The following example
illustrates the aforementioned definitions.

Example 2.2. Let E be a set and let I be the power set of E. Then, M = (E, I) is said to
be the trivial matroid. All subsets of E are independent and the only base of M is E itself.

Recall that a cyclic base ordering of a matroid M = (E, I) with rank function r is
an ordering of the elements of E such that every r(E) consecutive elements form a base.
Concretely, if E = {x1, . . . , x|E|}, we say O = (xπ(1), . . . , xπ(|E|)) is an ordering, where π is a
permutation of {1, . . . , |E|}, and we define O(i) = xπ(i), and O−1(xπ(i)) = i. Moreover, we
say O is a cyclic base ordering if {xπ(j), . . . , xπ(j)+r(E)−1} forms a base for j = 1, . . . , |E| and
all indices are taken modulo |E|. In this paper, we focus on two matroid classes that are
defined on graphs, specifically, graphic matroids and matching matroids.

Definition 2.3 (Graphic matroids). Let G = (V, E) be a graph. Define

I := {S ⊆ E : (V, S) does not contain a cycle}.

Then M := (E, I) is called the graphic matroid associated with G. It can be checked that
graphic matroids do indeed satisfy the matroid axioms.

It turns out that the independent sets of the graphic matroid associated with a graph are
exactly the forests of the graph. Moreover, the bases of a graphic matroid are precisely the
maximal acyclic subgraphs of the associated graph. In particular, if a graph is connected,
then the bases of its graphic matroid are exactly the spanning trees of the graph. If κ(G)
denotes the number of connected components of G, then the size of a base is |V | − κ(G).

Now, we introduce matching matroids.

Definition 2.4 (Matching matroids). Let G = (V, E) be a graph. Define

I := {S ⊆ V : S is covered by some matching of G}.

Then we call M := (V, I) the matching matroid associated with G. It can be checked that
matching matroids do indeed satisfy the matroid axioms, but the proof is nontrivial.

The bases of a matching matroid are the vertices of maximum matchings and the inde-
pendent sets are the subsets of vertices that are covered by a matching.

3 Conditions for Existence of Cyclic Base Orderings
In this section, we provide several necessary conditions for the existence of cyclic base order-
ings on matching matroids and graphic matroids. We also provide several operations which
preserve the existence of cyclic base orderings on graphic matroids.
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3.1 Matching Matroids
In this subsection, we focus on matching matroids on bipartite graphs. First, it is easy to
verify that there indeed exists a bipartite graph of arbitrarily large size whose matching
matroid exhibits a cyclic base ordering.

Proposition 3.1. The matching matroid associated with the complete bipartite graph Kn,n

has a cyclic base ordering.

Indeed, this is true because the only base of Kn,n’s associated matching matroid is the
entire vertex set. In the following two theorems, we give necessary conditions for matching
matroids to have cyclic base orderings.

Theorem 3.2. Let G = (V, E) be a graph, and let ν(G) be the matching number of G, i.e.,
the maximum cardinality of a matching in G. The matching matroid M of G has no cyclic
base ordering if 4ν(G) ≤ |V |.

Proof. Suppose, for the sake of contradiction, that 4ν(G) ≤ |V | and a cyclic base ordering
of M exists. Note that the size of a base of M is 2ν(G). If 4ν(G) ≤ |V |, then the cyclic base
ordering contains two disjoint cyclic intervals of length 2ν(G). Hence, there exist two disjoint
bases, V1 and V2. Let E1 and E2 be the two matchings that cover V1 and V2, respectively.
Consider E1 ∪ E2. Since the sets of vertices that E1 and E2 cover, respectively, are disjoint,
it follows that E1 ∪ E2 is also a matching. However, E1 ∪ E2 covers vertices from both bases,
which contradicts the maximality of bases.

Theorem 3.3. Let G be a bipartite graph with vertex partition (A, B). Then the matching
matroid of G does not have a cyclic base ordering if |A| ≠ |B|.

Proof. Suppose that |A| ≠ |B|. Let M be the matching matroid of G, and let the size of a
base in M be s. Suppose, for the sake of contradiction, that a cyclic base ordering exists.
Note that every base in M contains an equal number of vertices in A and in B. We count
the number of vertices from A that are included in the cyclic base ordering. There are
|A| + |B| different bases in the cyclic base ordering. Since each base has exactly s

2 vertices
from A, there are s

2 · (|A| + |B|) elements from A with overcounts. However, since each
element is represented in s different bases, the number of vertices from A with no overcounts
is s

2 · (|A| + |B|) divided by s. Hence, we have

|A| =
s
2 · (|A| + |B|)

s
= |A| + |B|

2 .

This implies that |A| = |B|, a contradiction.

Theorems 3.2 and 3.3 give necessary but not sufficient conditions for matching matroids
to have cyclic base orderings. Figure 1 shows an example of a graph that satisfies both of
the conditions stated in Theorems 3.2 and 3.3. However, as the graph is disconnected, the
two isolated vertices can never be covered by an edge; thus, its matching matroid does not
have a cyclic base ordering.

Next, we describe a necessary condition in the structure of cyclic base orderings of a class
of matching matroids.
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Figure 1: A bipartite graph with vertex partition (A, B) such that |A| = |B| whose matching
matroid has no cyclic base ordering.

Proposition 3.4. Let G = (V, E) be a bipartite graph with vertex partition (A, B). Let M
be the matching matroid of G with rank function r. Suppose that |A| = |B| and r(V ) =
|A| + |B| − 2. If M has a cyclic base ordering, then no two consecutive vertices in the cyclic
base ordering can be both from A or both from B.

Proof. Let A = {u1, u2, . . . , un} and B = {v1, v2, . . . , vn}. Let O = {t1, t2, . . . , t2n} be a
cyclic base ordering of M . First, since the set {t1, t2, . . . , t2n−2} is a base, it must contain an
equal number of vertices from A and from B. Thus, one of t2n−1 and t2n is from A and the
the other is from B. Hence, without loss of generality, ti is from A if i is odd, and from B
if i is even. Applying the same argument for all consecutive pairs of vertices shows that no
two vertices in the cyclic base ordering can be both from A or both from B. In particular,
the vertices in the cyclic base ordering must alternate between coming from A and coming
from B.

This conclusion only follows with the assumption that r(V ) = |A| + |B| − 2. If the rank
was any less, then the conclusion would not hold in general. This is because if the rank was
r(V ) = |A| + |B| − 2k for k > 1, then the cyclic base ordering could alternate vertices from
A and B every k vertices. We hope these results on matching matroids can shed more light
on which matching matroids contain cyclic base orderings.

3.2 Graphic Matroids
In this subsection, we study conditions for the existence of a cyclic base ordering in a graphic
matroid. In particular, we are interested in graph operations that preserve the existence of
a cyclic base ordering.

Theorem 3.5. Let G = (V, E) be a graph whose graphic matroid contains a cyclic base
ordering. Then no vertex has degree less than

⌊
|E|

|V |−κ(G)

⌋
.

Proof. Let M be the graphic matroid of G and let O be a cyclic base ordering for M . Since
there are |E| elements in O and the size of a base is |V |−κ(G), there exist at least

⌊
|E|

|V |−κ(G)

⌋
disjoint bases in O. Let v ∈ V be an arbitrary vertex. Since the edges in each base induce
a spanning tree in every connected component of G, there exists an edge in each base that
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is connected to v. Hence, there exist at least
⌊

|E|
|V |−κ(G)

⌋
edges connected to v, which means

its degree is at least
⌊

|E|
|V |−κ(G)

⌋
, as desired.

Now, we study operations that preserve the existence of cyclic base orderings on graphic
matroids.

Theorem 3.6. Let G = (V, E) be a graph whose graphic matroid contains a cyclic base
ordering and suppose |V | − κ(G) divides |E|. Furthermore, assume there exists a vertex v of
degree k := |E|

|V |−κ(G) . Then G − v contains a cyclic base ordering.

Proof. Let M be the graphic matroid associated with G and let O be a cyclic base ordering
of M . First, partition O into k disjoint bases. Since each base must contain at least one edge
that is connected to v and deg(v) = k, it follows that each base contains exactly one edge
connected to v. We claim that removing all edges connected to v in O results in a cyclic
base ordering for G − v. Let B be a base consisting of arbitrary, consecutive k elements in
O. Let e be the only edge in B that is connected to v, and let T be the induced spanning
tree of the connected component in which e is located in. There only exists one edge, namely
e, connected to v in T , so removing e will result in a spanning tree. Hence, the new cyclic
ordering is a cyclic base ordering for G − v.

Theorem 3.7. Let G = (V, E) be a graph whose graphic matroid contains a cyclic base
ordering and assume |V | − κ(G) divides |E|. Let G′ be a graph obtained by adding a new
vertex v with k := |E|

|V |−κ(G) edges connecting it to some connected component of G. Then G′

contains a cyclic base ordering.

Proof. Let M be the graphic matroid of G and let O be a cyclic base ordering of M . Partition
O into k disjoint bases, and insert an edge connected to v in between every two consecutive
disjoint bases. We claim that this creates a new cyclic base ordering. Let us show that every
consecutive |V | + 1 edges creates a base. Note that every consecutive |V | + 1 edges contains
exactly one edge, e, that is connected to v. Let H be the graph induced by the other |V |
vertices. If we include e in H, then the induced spanning tree in the connected component
that includes e still stays an induced spanning tree. Hence, the new cyclic ordering is a cyclic
base ordering.

4 Revisiting the k = 2 Case of Graphic Matroids
Theorem 1.2 states that if a graph can be decomposed into two edge-disjoint spanning trees,
its associated graphic matroid contains a cyclic base ordering. In this section, we prove that
there exists a cyclic base ordering that must have a specific structure.

Theorem 4.1. Suppose a graph G = (V, E) can be decomposed into two edge-disjoint span-
ning trees, T1 and T2. Then there exists a cyclic base ordering where |V | − 1 consecutive
elements are the edges of T1 and the other |V | − 1 consecutive elements are the edges of T2.
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Proof. Let r = |V | − 1 and note that |E| = 2r. We induct on r. If r = 1 (the graph has two
vertices), then the theorem is vacuously true. Suppose r ≥ 2. By Theorem 3.5, each vertex
has degree at least 2. Moreover, we have∑

v∈G

deg(v) = 2|E| = 4(|V | − 1) = 4|V | − 4.

Thus, by the pigeonhole principle, there exists a vertex with degree less than 4. Hence, there
exists a vertex v of degree 2 or 3.

Suppose deg(v) = 2. Let its two neighbors be a and b. Assume, without loss of generality,
that (v, a) ∈ E(T1), (v, b) ∈ E(T2). Note that G − v can be decomposed into two edge-
disjoint spanning trees, T1 − (v, a) and T2 − (v, b). By the inductive hypothesis, there exists
a cyclic base ordering O′ for the graphic matroid of G−v such that {O′(1), . . . , O′(r −1)} =
E(T1 − (v, a)) and {O′(r), . . . , O′(2r − 2)} = E(T2 − (v, b)). Now, we define a cyclic base
ordering O for the graphic matroid of G as follows:

O−1(e) =


O′−1(e) e ∈ E(G − v) and O′−1(e) ≤ r − 1
r e = (v, a)
O′−1(e) + 1 e ∈ E(G − v) and O′−1(e) ≥ r

2r e = (v, b).

Let S be a set of r consecutive elements in O. Note that there is exactly one edge in S that
is connected to v. Let this edge be e. Moreover, note that the r − 1 edges in S − e are
consecutive elements in O′ and induce a spanning tree in G − v. Adding e to the r − 1 edges
induces a spanning tree in G. Thus, O is indeed a cyclic base ordering. Moreover, note that

E(T1) = {O(1), . . . , O(r)},

E(T2) = {O(r + 1), . . . , O(2r)},

completing the inductive step.
Suppose deg(v) = 3. Let a, b, c be the three vertices that are adjacent to v. Without

loss of generality, suppose (v, a), (v, b) ∈ E(T1) and (v, c) ∈ E(T2). Let G′ = G − v + (a, b).
By the inductive hypothesis, G′ can be decomposed into two edge-disjoint spanning trees
so it has a cyclic base ordering O′. Without loss of generality, set O′−1((a, b)) = 1. By the
inductive hypothesis, we may also assume that {O′(1), . . . , O′(r − 1)} = E(T1 − v + (a, b))
and {O′(r), . . . , O′(2r − 2)} = E(T2 − v). Thus, we can define an ordering O for the graphic
matroid of G as follows:

O−1(e) =



1 e = (v, a)
O′−1(e) e ∈ E(G′) and 2 ≤ O′−1(e) ≤ r − 1
r e = (v, c)
O′−1(e) + 1 e ∈ E(G′) and O′−1(e) ≥ r

2r e = (v, b).

Let S be a set of r consecutive elements from O. If S contains only one edge connected to
v, then the other r − 1 edges induce a spanning tree in G − v + (a, b). Thus, adding the
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edge connected to v to the r − 1 edges induces a spanning tree in G. If S contains both
(v, a) and (v, b), then the edges in the set S − (v, a) − (v, b) + (a, b) induce a spanning tree
in G − v + (a, b). Removing (a, b) and adding (v, a) and (v, b) induces a spanning tree in G.
Thus, O is a cyclic base ordering. Moreover, note that

E(T1) = {O(2r), O(1), . . . , O(r − 1)},

E(T2) = {O(r), . . . , O(2r − 1)},

completing the inductive step.

Our hope is that Theorem 4.1 can potentially be useful in the k = 3 case of Problem 1.1
when M is graphic. If we approach the k = 3 case in the same way as the k = 2 case, we
start out by noting that there exists a vertex of degree 3, 4, or 5. When the degree is 3 or
4, the solution is analogous to the degree 2 and 3 cases when k = 2, respectively. The more
difficult case is when the degree is 5. This case is especially nontrivial because the inductive
step does not work as expected; the operation preserving the cyclic base ordering from r − 1
to r is not readily apparent. Perhaps Theorem 4.1 can be the missing piece in the puzzle
and provide a potential way to complete the inductive step.

5 Concluding Remarks
In this paper, we first investigated necessary conditions for matching matroids and graphic
matroids to exhibit a cyclic base ordering. We also looked at operations that preserve the
existence of cyclic base orderings on graphic matroids. In addition, we were able to apply
some of our results to obtain more specific structures on a result by Kajitani et al. [4]. We
now discuss other open questions related to Problem 1.1.

Problem 5.1. Do graphic matroids have an affirmative answer to the k = 3 case of Problem
1.1?

Problem 1.1 is connected to other important open problems in the literature. For in-
stance, the following problem is related to the k = 2 case of Problem 1.1.

Problem 5.2. If the ground set E of a matroid can be partitioned into 2 bases, then for any
set X ⊆ E, is there a base B such that E\B is also a base and ⌊|X|/2⌋ ≤ |B∩X| ≤ ⌈|X|/2⌉?

Matroids with an affirmative answer to Problem 5.2 are said to be equitable. Indeed,
equitability is a weaker notion than the existence of cyclic base orderings for the k = 2 case.

Proposition 5.3. If a matroid’s ground set can be decomposed into 2 distinct bases and the
matroid exhibits a cyclic base ordering, it is equitable.

Proposition 5.3 is well-known, but its proof is not found in the literature so we include
it for completeness below.
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Proof. Let M = (E, I) be a matroid that satisfies the aformentioned properties, and let
O = (x1, . . . , x|E|) be a cyclic base ordering. Clearly, the ground set can be partitioned into
2 bases: {x1, . . . , x|E|/2} and {x|E|/2+1, . . . , x|E|}. Let X ⊆ E.

We first claim that there exists a base B1 = {xa, . . . , xa+|E|/2−1} such that |B1 ∩ X| ≤
⌈|X|/2⌉. Suppose, for the sake of contradiction, that |B ∩ X| > ⌈|X|/2⌉ for all bases B.
Then, summing |B ∩ X| over all bases B = {xj, . . . , xj+|E|/2−1}, where 1 ≤ j ≤ |E|, we have

∑
B={xj ,...,xj+|E|/2−1}

|B ∩ X| > |E| ·
⌈

|X|
2

⌉
.

Each element of X is counted |E|/2 times in the sum, so the inequality becomes

|E|
2 · |X| > |E| ·

⌈
|X|
2

⌉
.

This implies that |X|/2 > ⌈|X|/2⌉, a contradiction. Similarly, there exists a base B2 =
{xb, . . . , xb+|E|/2−1} such that |B2 ∩X| ≥ ⌊|X|/2⌋. Without loss of generality, suppose b ≤ a.
Let S = {xb, . . . , xb+|E|/2−1} be a base that is initially equal to B2. Then |S ∩ X| ≥ ⌊|X|/2⌋.
We want to gradually change S to be identical to B1 by adding and removing one element at
a time. More specifically, if S = {xi, . . . , xi+|E|/2−1} for some i, then we will remove xi from S
and add xi+|E|/2. We will repeat this process until S = B1 at which point |S ∩X| ≤ ⌈|X|/2⌉.
It is clear that throughout this process, S remains a base because O = (x1, . . . , x|E|) is a
cyclic base ordering. Moreover, at each step, |S ∩ X| changes by at most 1. Thus, since
|S ∩ X| is initially at least ⌊|X|/2⌋ and ends up at most ⌈|X|/2⌉, |S ∩ X| must equal either
⌊|X|/2⌋ or ⌈|X|/2⌉ at some point in the process, as desired.

It should be noted that the technique used in the above proof can be regarded as a
discrete analog of the intermediate value theorem, and is often used to prove the existence
of something that satisfies two properties simultaneously. This problem and other variations
of it have been studied in the literature. Aharoni et al. [1] studied a matroid intersection
variant of Problem 5.2. Specifically, they proved the following weaker inequalities:

Theorem 5.4 (Aharoni et al. [1]). Let M1 and M2 be two matroids on the same ground set
E and suppose that E can be partitioned into two independent sets in both M1 and M2. Then
for any set X ⊆ E, there is a set I that is independent in both M1 and M2 such that

|I ∩ X| ≥
(

1
2 − 1

|E|

)
|X| − 1,

|I\X| ≥
(

1
2 − 1

|E|

)
|E\X| − 1.

It would be interesting to improve the coefficient of |X| and |E\X| in Theorem 5.4 to
1/2 − α where α < 1/|E|. Indeed, this could potentially shed more light on equitable
matroids. Aharoni et al. [1] also conjectured the following, which is a strengthening of
Theorem 5.4.
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Conjecture 5.5 (Aharoni et al. [1]). Let M1 and M2 be two matroids on the same ground
set E and suppose that E can be partitioned into two independent sets in both M1 and M2.
Then for any set X ⊆ E, there is a set I that is independent in both M1 and M2 such that

|I ∩ X| ≥ |X|
2 − 1,

|I\X| ≥ |E\X|
2 − 1.

This conjecture is very interesting by itself, and it can potentially lead to a better un-
derstanding of equitable matroids.
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