
Canonical Forms and Equivalence Classes of QECC’s in ZX Calculus

Andrey Boris Khesin1 and Alexander M. Li2

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
2C. Leon King High School
(Dated: February 4, 2024)

Quantum error-correcting codes (QECC’s) are needed to combat the inherent noise affecting
quantum processes. Using ZX calculus, we represent QECC’s in a form called a ZX diagram,
consisting of a graph made up of nodes and edges. In this paper, we present canonical forms for
the ZX diagrams of the toric codes and certain surface codes. We derive these forms by rewriting
them using the bialgebra rule, which removes extra internal nodes and was implemented through
Quantomatic, and edge local complementation rule, which exchanges the colors of two nodes. Next,
we tabulate the equivalence classes, including properties such as their size and the presence (or lack)
of bipartite forms, of generic ZX diagrams of QECC’s. This work expands on previous works in
exploring the canonical forms of QECC’s in their ZX diagram representations.

Keywords: canonical form, Clifford codes, error-correcting codes, graph states, quantum com-
pilers, quantum computing, quantum mechanical system, surface code, toric code, ZX calculus, ZX
normal form

1. INTRODUCTION

The work done in the past half century on quan-
tum computing have brought large-scale quantum
computers closer to reality. Today, quantum com-
puters can employ a low number (up to a few hun-
dred) of qubits, in the form of photons and nu-
clear spins [1], but they have been used mainly
for experiments. These quantum computers differ
from classical computers and classical supercomput-
ers by employing the use of qubits rather than bits.
The properties of quantum mechanics inherent in
qubits, including superposition and entanglement,
allow quantum computers to simulate quantum sys-
tems, which can make certain calculations much
more efficient than classical computers [2].

However, as with classical information processing
systems, quantum information processing systems
also face noise that can disrupt information trans-
mission between a sender and receiver. One of the
principal challenges in quantum computing is to ac-
count for this noise, due to the fragility of quantum
bits [3]. To this end, quantum error-correcting codes
are used to transmit quantum information success-
fully in the presence of noise [2]. While classical
computers can copy bits, quantum mechanics does
not allow the cloning of unknown qubits, and the
measurement of a qubit eliminates the information
available in the qubit. As such, the construction
of suitable quantum error-correcting codes presents
new challenges when compared to the construction
of classical error-correcting codes. For decades, a
quantum error-correcting code against general errors
seemed impossible, until the Shor code [4] was first

published in 1995 and Steane code [5] in 1996. Other
examples of quantum error-correcting codes are the
five qubit code [6] and the toric code [7].

A number of approaches have been created to rep-
resent the components of quantum error-correcting
codes. The stabilizer formalism is a method that
expresses quantum error-correcting codes in terms
of stabilizers, operators that, when applied to cer-
tain stabilizer states, preserve the state [8]. This
approach borrows ideas from group theory to rep-
resent the whole class of stabilizers with a finite
number of generators. To make the idea of quan-
tum error-correcting codes visual, recent advances
have made progress on the topic of presenting graph
states [9, 10].
Following the work on graph states, work has been

done on representing Clifford codes using ZX cal-
culus [11? –13]. The properties of ZX calculus
that allow it to replace the stabilizer tableau for-
malism (a tabulated form of the generators of the
stabilizers) are its universality (it can express every
quantum operation), soundness (tableaus can derive
equivalence of ZX calculus diagrams), and complete-
ness (ZX calculus diagrams can derive equivalence of
tableaus) [11, 13]. This graphical language has had
various applications in quantum information [14–17]
and quantum computation problems [18, 19].

Expressing quantum Clifford circuits as graphs
and finding canonical forms for equivalent graphs
has had recent advances in the past few years. The
Hu-Khesin (HK) form from [10] provides a canonical
form for quantum Clifford states. In the context of
quantum encoders, this is equivalent to having no
inputs and only outputs. Then, the Khesin-Lu-Shor

2

FIG. 1: Shown is a Venn diagram classifying quantum Clifford circuits as graphs, with the universal set of
graphs surrounding the diagram. Khesin-Lu-Shor (KLS) forms are determined based on equivalence through
permuting inputs and local complementation. The Hu-Khesin (HK) form is in the category of only local
complementation because the HK states do not have inputs to permute. Adcock, Morley-Short, Dahlberg,
and Silverstone (AMDS) considered equivalence of graph states under local complementations and the effects
of relabelling the nodes. The graphical forms in X have the most general definition of equivalence, allowing
all four operations. On the other hand, the forms in Y do not consider the removal of extra states in the
output nodes, and they will be explored in Sections 4 to 8.

(KLS) form from [20] built on the HK form, pro-
viding a canonical form for Clifford encoders. The
KLS paper gives a detailed process of transforming
stabilizer tableaus into ZX calculus, then perform-
ing operations that preserve equivalence to find a
canonical form. Section 3 of this work expands on
the results from KLS and focuses more topologically
on the general shape the vertices and edges that the
ZX diagram forms. Specifically, we analyze selected
surface and toric codes to see how we can simplify
the diagram into an intuitive canonical form. The
second part similarly focuses on the general prop-
erties of the ZX graph, taking into account the bi-
partite portion of the graph between the input and
output nodes while also allowing the permutation of
output nodes to stay in the same equivalence class.

See Figure 1 for a summary of the work done
in quantum Clifford encoders’ graphical representa-
tions. The set of all quantum Clifford circuits as
graphs is split into sectors depending on whether
we consider the operation as giving equivalent Clif-
ford codes. For example, the sector labeled KLS is
positioned at the intersection of “permute inputs”
and “local complementation.” Therefore, the KLS
canonical form relied on the encoders staying in

the same equivalence class upon these two opera-
tions while the encoders changed equivalence classes
when the output nodes are permuted or extra states
(nodes unconnected to input nodes) are removed
from the output nodes. The second part of this pa-
per considers the sector labeled Y, as output nodes
will be allowed to permute.

In this paper, Section 2 contains key definitions
and background on ZX calculus and Clifford en-
coders. Section 3 contains our work on Calderbank-
Shor-Steane (CSS) codes, specifically surface and
toric codes, in making an intuitive canonical form
for select encoders. This builds on recent work from
Kissinger [21, 22] that introduced the normal form
of of CSS codes, which are “explainable” in that it
is efficient to determine the stabilizers from the ZX
normal form. For an (n−2k)-to-n encoder with k X-
checks and k Z-checks, the resulting normal form will
consist of (n−2k)+n+k = 2n−k nodes, which are
the input nodes, output nodes, and internal nodes
representing the X-checks (for the ZX normal form)
or the Z-checks (for the XZ normal form). Section 3
focuses on presenting a canonical form of the codes
that eliminates these internal nodes while keeping

3

the diagram for the encoder as intuitive and elegant
as possible.

Section 4 provides another definition of equiva-
lence, permitting outputs to be permuted as a valid
operation among equivalent graphs. The reason this
definition of equivalence is also considered is that
changing the order of the outputs does not change
the “amount” of entanglement that the encoder puts
the input qubits through. Section 5 expands on this
definition by omitting parts of the set of quantum
encoders that will not be necessary for the remain-
der of the paper. Sections 6 and 7 provide the work
we have done towards identifying equivalence classes
and finding representative forms. Section 6 explains
a method of representing encoders as integers so as
to sort them into equivalence classes. Then, it goes
on to revealing more information about these equiv-
alence classes, including sizes and the presence or
lack of bipartite forms. Section 7 expands on the
equivalence classes containing bipartite forms.

2. BACKGROUND

In this section, we define key terms and back-
ground on error-correcting codes and ZX calculus.

First, we define the following matrices.

Definition 2.1. The Pauli matrices are

I ≡
(
1 0
0 1

)
X ≡

(
0 1
1 0

)

Y ≡
(
0 −i
i 0

)
Z ≡

(
1 0
0 −1

)
.

The Pauli matrices numerically represent quan-
tum gates that can act on qubits and alter their
state. Then, the Pauli operators on n qubits are
n-fold tensor products of Pauli matrices, multiplied
by a factor of the form ik where k ∈ {0, 1, 2, 3} and
i =

√
−1.

The Pauli operators are all equal to their conju-
gate transposes, making them Hermitian and uni-
tary. The Pauli operators form a group, called the
Pauli group.

Pauli operators can act on states in multi-qubit
systems. For example, in a three qubit system, the
tensor product Z ⊗ Z ⊗ I will make Z act on the
first qubit, Z act on the second qubit, and I act on
the third qubit. The notation for the tensor product
can be simplified to Z1Z2, with the subscripts show-
ing which qubit the operators are acting on. We

can similarly denote other tensor products of Pauli
operators.

Other quantum gates that are useful are the
Hadamard, controlled-NOT, phase, and π/8 gates,
denoted as H, CNOT, S, and T , respectively:

H =
1√
2

(
1 1
1 −1

)
, CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
,

S = (1 0
0 i) , T =

(
1 0
0 eiπ/4

)
.

These operations have the property of universal-
ity, the ability to approximate any operator to arbi-
trary accuracy [2].

Clifford codes can be represented as a group of
generators of stabilizers. These stabilizers are Pauli
operators on n qubits and listing out the generators
determines the whole encoder. In this paper, the
encoders take n− k inputs, which are logical qubits,
and give n outputs, which are physical qubits. The
generators are chosen to be independent, so each de-
gree of freedom going from inputs to outputs requires
an additional generator for the stabilizers, implying
there are k generators for an (n− k)-to-n code.

FIG. 2: Example of an encoder in ZX calculus. The
incoming edges from the left side are input edges
(sending quantum information in) and the outgoing
edges on the right side are output edges (sending
encoded quantum information out). Note the local
operations applied on the output qubits, with blue
edges representing Hadamarded edges.

ZX calculus makes the representation of Clifford
codes graphical, and we use the conventions as de-
scribed in [13, 20]. The green and red nodes
represent quantum processes, which could be qubits,
gates, or measurements. Each node has a phase,
with empty nodes representing a phase of 0. By con-
necting edges between nodes, the quantum processes
can be linked together, as in circuits. It is possible

4

to convert quickly between quantum circuits and ZX
diagrams, with a specific example given in Appendix
C. Hadamard gates, , can be placed on edges be-
tween nodes or free edges. In this work, Hadamarded
edges will be represented with blue edges while un-
Hadamarded edges will be represented with black
edges. Two Hadamard gates on one edge can be
reduced to the identity, since HH = I.
An example of a Clifford code expressed in ZX

calculus is shown in Figure 2. For an (n − k)-to-n
encoder, the n − k input nodes are connected with
edges to the n output nodes, and the output nodes
share edges amongst each other. There are local
operations on the output edges, as shown by the
blue free edges and red π/2 gate. There are internal
edges in the graph between the input and output
nodes and amongst the output nodes. Two qubits of
information are encoded into four qubits by applying
this encoder.
The canonical forms described in Section 3 are

based on the KLS canonical form [20], which consists
of four rules that can be efficiently checked on a given
ZX diagram.

Theorem 2.1. (Khesin-Lu-Shor) There is a canon-
ical form for the ZX diagrams of an encoder, where
the ZX diagrams in the same equivalence class have
identical stabilizers. Suppose the output nodes are
numbered using the integers 1 to n, inclusive. The
canonical form satisfies the following four rules:

1. Edge rule: All internal edges have Hadamards,
and there is exactly one Z node per free edge.

2. Hadamard rule: Output nodes with Hadamards
on their free edge cannot share an edge with a
lower-numbered output node or with an input
node.

3. RREF rule: The adjacency matrix represent-
ing the edges between input nodes and output
nodes is in row-reduced echelon form.

4. Clifford rule: In the RREF form, the pivot
columns of the input to output adjacency ma-
trix correspond to output nodes. There are no
local Clifford operations on the pivot or input
nodes, or their free edges. There are also no
input-input edges or pivot-pivot edges.

A ZX diagram satisfying these four rules is the
unique KLS canonical form for the equivalence class
where all the ZX diagrams have the same stabilizers.
Also, a given ZX diagram can be efficiently trans-
formed to its KLS canonical form using a series of
operations. In our derivation of the toric code and

surface code ZX diagrams, we will be using the fol-
lowing rules in ZX calculus:

1. Merging/un-merging rule: Two green (or red)
nodes with phases α and β and connected by
edges with no Hadamards may be combined
into a node with phase α + β. The resulting
node has all external edges of the two original
nodes. A node may also be un-merged, and
the external edges connected to each of the
two resulting nodes may be chosen at will.

2. π-copy rule: A green (or red) node of phase
π slides through and copies onto all the other
edges of a red (or green) node. The red (or
green) node has its phase negated. Shown be-
low is an example with a green π node.

3. Loop rule: Self-loops on a node can be re-
moved. If the self-loop has a Hadamard, then
removing the loop adds a phase of π to the
node.

4. Hopf rule: If a red node and green node share
two non-Hadamarded edges, both edges can be
removed.

5. Bi-algebra rule: By acting on an edge between
a red and a green node, each external edge gets
one node, and a complete bipartite graph is
formed between these new nodes. An example
is shown below. There may be one or more
(rather than two) edges coming in from the
left side of the graph, and there may be one
or more edges exiting on the right side of the
graph.

6. Hadamard-sliding rule: This rule allows the
colors of two adjacent vertices to be swapped
while switching neighbors and toggling the
edges between the neighbors of the two ver-
tices. See Appendix B for more about this
rule.

5

The KLS canonical forms may be transformed into
quantum circuits by the following steps. Suppose we
are considering an (n− k)-to-n encoder.

1. Start with n − k open wires representing the
inputs of the circuit.

2. Add a |0⟩ state for each of the k non-pivot
output nodes.

3. Apply an H gate to all n wires.

4. Apply a CX gate between the wires corre-
sponding to the edges between inputs and non-
pivot outputs. The input node is the target
qubit, and the output node is the controlled
qubit.

5. Apply a CZ gate between the wires corre-
sponding to the edges between only outputs.

6. Apply the local operations attached to the out-
puts.

This procedure works by building up the encoder’s
quantum circuit representation in layers, starting
from the input qubits, which correspond to the ZX
diagram input nodes, adding auxiliary qubits that
encode the information from the input qubits, and
connecting the wires using the appropriate gates.
More details on the proof of this procedure can be
found in Appendix C.
The neighborhood N(v) of a vertex v in a graph

G = (V,E) is the set of all vertices in V adjacent to
v. An operation commonly used to transform equiv-
alent ZX diagrams between each other by transform-
ing the neighbors of a vertex is defined below.

Definition 2.2. Consider a simple graph G =
(V,E), where V is the set of vertices and E is the
set of undirected edges between vertices. Take a ver-
tex v ∈ V . By performing a local complementation
about vertex v, all edges connecting two vertices in
N(v) are toggled. That is, if the edge existed before
the local complementation, it is removed; if it did
not exist before, it is added.

Suppose a graph G has vertices v1 and v2 con-
nected by an edge. Local complementation about a
vertex from Definition 2.2 can be applied on vertices
v1, v2, then v1. This new operation is defined below.

Definition 2.3. Consider a simple graph G =
(V,E), where V is the set of vertices and E is the set
of undirected edges between vertices. Take an edge
v1v2 ∈ E, where v1 and v2 are distinct vertices in V .
By performing an edge local complementation about
edge v1v2, the neighbors of v1 and v2 are swapped,
and any connections from N(v1) to N(v2) are tog-
gled.

FIG. 3: A section of the torus after placing it onto a
2-dimensional plane. The stabilizers corresponding
to the vertices (v is an example) have X gates on
the nodes immediately surrounding the vertex. The
stabilizers corresponding to the plaquettes (p is an
example) have Z gates on the nodes immediately
surrounding the plaquette. All nodes have a default
green color.

3. SURFACE AND TORIC CODES

Calderbank-Shor-Steane (CSS) codes are an im-
portant class of Clifford codes which are constructed
from two classical linear codes [2]. These quantum
error-correcting codes used classical computing ideas
and applied them to quantum computing.

To find the canonical forms of CSS codes based on
the ZX normal forms, we first consider toric codes,
a specific class of surface codes as introduced in
[23], and certain surface codes, as explained in [22].
The canonical forms presented here have 0 internal
nodes, so that each node corresponds to an input or
output edge.

We begin with a definition of toric codes.

Definition 3.1. A toric code is a quantum error-
correcting code that can be represented on a three-

6

FIG. 4: The nodes in the 3-by-3 toric code. The two
input nodes are labelled I1 and I2, and the output
nodes are labelled with integers 1 through 18. Note
that these labels are not the phases of the nodes. In
the ZX diagram, each node is a qubit.

dimensional torus T . For an m× n toric code, T is
wrapped by m−1 circles parallel to the plane of the
major circle and n − 1 circles perpendicular to the
plane of the major circle.
A node is placed at the midpoint of each of the

2mn edges on T . The stabilizers are defined as fol-
lows.
The four nodes surrounding each of the mn four-

sided faces form a Z-check (stabilizer with only Z’s
and I’s) consisting of Z’s on these four nodes and
I’s on all other nodes.

The four nodes surrounding each of the mn inter-
sections form an X-check (stabilizer with only X’s
and I’s) consisting of X’s on these four nodes and
I’s on all other nodes.

We now turn to the 3-by-3 toric code. The 18
nodes corresponding to the output edges and the 2
nodes corresponding to the input nodes are shown in
Figure 4. The stabilizers of the 3-by-3 toric code are
analogous to those shown in Figure 3. Note that, in
Figure 4, the Z-check corresponding to the plaquette
with nodes 3, 6, and 12 would also have node 10,
which wraps around the torus. Similarly, nodes 7,
16, 17, and 1 are part of the same Z-check.

We now determine the structure of the 3-by-3 toric
code’s ZX diagram by deducing the placements of
Hadamards on output edges and using the stabilizers
to force the connections between output nodes.

FIG. 5: The 2-by-2 toric code in ZX calculus.
Longer-dashed edges represent edges that wrap
around the torus. For example, the vertical dashed
edge coming from node 5 meets node 7 and the
dashed edge from node 2 meets node 5. The shorter-
dashed edges are input-output edges. The free input
and output edges are not shown.

FIG. 6: The 3-by-3 toric code in ZX calculus.
Longer-dashed edges represent edges that wrap
around the torus. For example, the vertical dashed
edge coming from node 10 meets node 16 and the
dashed edge from node 3 meets node 10. The
shorter-dashed edges are input-output edges. The
free input and output edges are not shown.

7

(a) The ZX normal form [22]. The output nodes, which
are all the green nodes, are shown with free edges pro-
truding from them. The red nodes in the toric grid are
internal nodes.

(b) The canonical form of the 4-by-4 toric code.
There is a symmetery between the red and green
nodes. Though this is not in KLS form, it is
easily converted into the KLS form.

FIG. 7: The 4-by-4 toric code, shown in two equivalent ZX diagrams. Note that, while the ZX normal form
is local in both the vertical and horizontal directions, it has 42 = 16 more nodes than the canonical form in
(b).

By similar methods, we can also present the ZX
calculus form of the 2-by-2 toric code. The dia-
gram is shown in Figure 5. This has an arrow-like
structure among the output-output edges, as seen
by nodes 1, 3, 5, and 6, as well as nodes 2, 4, 5, and
6.

The final 3-by-3 toric code is shown in Figure 6,
with its full derivation given in Appendix A. Note
that, by wrapping this pattern around a torus, it
would be horizontally periodic. The edges among
vertices 1, 4, 10, and 11 form an upward-arrow-like
figure. Similarly, nodes 2, 5, 11, and 12 form this
figure and, on a torus, nodes 3, 6, 10, and 12 for this
figure as well. By the simplicity of this diagram, it
is relatively easy to read off the stabilizers by noting
how the π-copy rule causes certain stabilizers to ex-
ist. Not much more work has to be done to convert
this to the KLS form of the encoder.

The KLS form specifies labeling the vertices,
which would bias the resulting canonical form into
a strict ordering of vertices. On the other hand, the
symmetric forms shown in Figure 5 and Figure 6 ig-
nore a strict labeling of vertices; the numbers inside
the nodes may be removed at will. Instead, these
highly symmetrized versions of the KLS form clearly
show the structures formed by the nodes and edges

to satisfy the stabilizers.

For larger toric codes and the surface codes, we
use the ZX calculus software Quantomatic [24] to
simplify the known ZX normal form [22] of a code
into its canonical form. In our algorithm, the main
focus is on performing the bialgebra rule on internal
nodes, so that, after running the first part of the
algorithm, all internal nodes will be removed from
the diagram, leaving only input and output nodes.
Then, the Hadamard sliding rule, Eq. (10) from [10],
will provide the operation that can repeatedly move
Hadamards until the encoder diagram is symmetric.

The procedure we follow may be written as the
following algorithm.

1. Use basic simplifications, by merging red
nodes, merging green nodes, applying the red-
copy rule, applying the green-copy rule, apply-
ing the Hopf rule, removing scalars, removing
loops, or combining two Hadamards into the
identity [13].

2. Apply one iteration of the bialgebra rule
(any variation) that removes an internal node.
Then, apply step 1 again.

8

FIG. 8: An example of the bialgebra rule removing
an internal node. The bialgebra rule is applied to
the edge within the dotted box.

3. Apply step 2 until all internal nodes are re-
moved.

4. Apply the Hadamard-sliding rule until the
colors of the nodes are (mostly) alternating.
(Note: In the toric code, it turns out that it
is impossible for the colors to alternate every
row, but the main section of nodes have alter-
nating colors every row.)

The reason step 2 works is that internal nodes
are absorbed into neighboring nodes in the bialgebra
rule. An example is shown in Figure 8.
In the diagrams for the 4-by-4 toric code (Fig-

ure 7) and the 5-by-5 surface code (Figure 9), in-
stead of depicting all nodes as green and drawing
dashes within the nodes to indicate Hadamards on
free edges, we will instead use the standard red and
green nodes in ZX calculus.
To this end, we use the above algorithm to derive

the general ZX diagram for the m-by-n toric code.
First, we present the canonical form of the 4-by-4

toric code, which was derived from the ZX normal
form. These are both shown in Figure 7. As can be
seen in the diagrams, the number of output nodes
is reduced by a factor of 2, and the diagram in Fig-
ure 7(b) retains a high degree of symmetry. When
moving horizontally, it can be seen that there is are
periodic patterns of nodes, with one column having
3 green nodes and 1 red node and the next having 3
red nodes and 1 green node. Also, the edges between
the columns of nodes are local in one direction, as
their length does not scale with the horizontal di-
mension of the toric code.
Using the algorithm on larger dimension m-by-n

toric codes shows that they have the same general
structure as that of Figure 7(b). To construct it
geometrically, first place a red input node at the top
of the diagram and a green input node at the bottom
of the diagram.
Then, on the unfolded toric grid, the first and sec-

ond layers (out of 2n layers) ofm nodes each are des-
ignated as green. Then, the colors alternate between
red and green until the very bottom two layers of the

FIG. 9: The 5-by-5 surface code in its ZX canoni-
cal form. Note its resemblance with the toric code
diagram when tilted by 45◦. The red input node
connects to all 5 green nodes along the bottom-left
to top-right diagonal.

output nodes, which are both red. This is reflected
in the 4-by-4 example.

To draw out the edges, each of the top layer’s
green nodes has one edge to each of the red nodes
within its column. Furthermore, the second layer’s
green nodes have edges connecting them to each of
the red nodes in the neighboring columns, as well as
one edge connecting it to the bottommost red node
in the same column. The next layer of green nodes
(the fourth layer ofm nodes from the top) have edges
to all the red nodes in the neighboring columns that
are in rows strictly below it, as well as one edge to
the bottommost red node in the same column. This
pattern follows for the other green layers.

Since there is a symmetry between the green and
red nodes, the same arrow-shaped patterns can be
seen extending upwards from layers of red nodes.

We can also extend our results to the rotated sur-
face codes, shown in Eq. (12) from [22].

In Figure 9, we show the result of simplifying the
5-by-5 surface code. If it is rotated by 45◦ counter-
clockwise, it heavily resembles the patterns of edges
and colors seen in the general toric code. The neigh-
boring diagonals (from bottom-left to top-right) of
nodes of different colors connect in arrow-shaped
patterns, just as in the toric code.

In general, the (2k + 1)-by-(2k + 1) surface code
can be made to have a similar structure as shown in
Figure 9.

More work done on CSS states (CSS codes with 0
input nodes) can be found in Appendix D.

9

Transforming the
adjacency matrix:

0 0 1 0 1 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 0

FIG. 10: In the adjacency matrix, the first row corresponds to the first input, the second row corresponds
to the second input, and so on. After the inputs, the following row corresponds to the first output, and the
other outputs follow. In the ZX diagram on the right, all edges shown are internal edges. For clarity, the
Hadamard gates are not shown.

4. ANOTHER DEFINITION OF
EQUIVALENCE

Previous works have examined the equivalence
classes of graphs under local complementation [25–
27]. In Clifford codes, the presence of designated
input and output vertices makes the definition of
equivalence more exotic.
In the following sections, we consider only the ZX

diagrams for Clifford codes that have no local oper-
ations on the free output edges.

Definition 4.1. Two ZX diagrams are locally equiv-
alent if and only if one can be converted to the other
through a sequence of local complementations and
local operations on the free output edges.

Definition 4.2. Two Clifford codes C1 and C2 are
equivalent if and only if the ZX diagrams are locally
equivalent or locally equivalent after some permuta-
tion of the output nodes and/or applications of any
unitary operators on the inputs.

We now list five different operations which keep
encoder graphs equivalent.

Conjecture 4.1. The ZX diagrams for two Clifford
codes C1 and C2 are equivalent if and only if the
diagram for one of the codes can be reached by the
other after a sequence of operations consisting of the
following operations:

1. Local complementing about any vertex of the
graph.

2. Permuting the output vertices.
3. Permuting the input vertices.
4. Performing linear operations on the adjacency

matrix of input to output edges.
5. Removing an input-input edge.

6. Applying local operations on the output edges.

All of the operations in Conjecture 4.1 are re-
versible, so, if code C1 can be made equivalent to
C2, the reverse is also true.
Operation 1, local complementation as in Defini-

tion 2.2, is included to account for equivalence of
encoder graphs based on their entanglement [25].

Two encoder diagrams should also be equivalent if
the information they produce can be ordered differ-
ently to become the same. In this way, operations 2
and 3 reflect this, since connections among the ver-
tices of the graph remain the same and these opera-
tions only change the order in which the information
is inputted or outputted.

Operation 4 consists of adding rows of the adja-
cency matrix between input and output vertices in
modulo 2. By [20], after linear operations on the ad-
jacency matrix, the following property remains pre-
served across all stabilizers and input nodes: there
is always an even number of connections between a
given input node and output nodes that allow the
π-copy rule for an X or Y gate of a given stabi-
lizer. Since the parity of these connections remains
the same, all the stabilizers will continue to stabilize
the encoder.

Operation 5 takes away a unitary operation from
the input vertices, which is allowed by Definition
4.2. Lastly, operation 6 preserves equivalence since
all local operations can be removed by multiplying
by their corresponding conjugate, which is allowed
by Definition 4.1.

Note that this definition of equivalence does not
allow two encoders to be in the same equivalence
class if they only differ by an extra output (which is
not connected to anything else). That is, if the two
encoders differ by a quantum state, this definition of

10

equivalence marks them as different. Therefore, this
implies we focus on section Y of Figure 1, instead of
section X.
As an example of these extra outputs/states, see

Figure 10. The output vertex labeled 4 is not con-
nected to any input or output. It does not provide
any more encoding of information from the inputs
than if it was not present. For this reason, section
X of Figure 1 is more useful for practical purposes.

5. SIMPLIFICATIONS

There are some simplifications that can be made
using the above operations so we consider only en-
coder graphs that could possibly be non-equivalent.
Operations 3 and 4 of Conjecture 4.1 allow the

input-to-output portion of the encoder diagram to
be expressed in row-reduced echelon form (RREF).
All encoder diagrams considered from here on are
expressed in RREF form, as in the RREF rule from
[20]. In the RREF form, each non-zero row has a
leftmost non-zero entry of 1. Each column with these
1’s is then a pivot column. Since the columns of the
input-output edge adjacency matrix correspond to
output nodes, each pivot column corresponds to a
pivot node. Therefore, the input nodes have corre-
sponding output nodes that represent the pivots of
the RREF. These particular output nodes are called
pivot nodes.

Continuing from the RREF form of the encoder
graph from the above paragraph, operation 2 from
Conjecture 4.1 can be used to move the pivot nodes
to be at the front of the line of the sequence of
output nodes. In this way, the first output node
can be made into the pivot node corresponding to
the first input node, the second output node can be
made into the pivot node corresponding to the sec-
ond input node, and so on. Thus, these n− k pivot
nodes are fixed among the top of the output nodes.
For brevity, the other k non-pivot output nodes are
called free output nodes.
In Conjecture 4.1, no operation was included that

affected local Clifford gates at the nodes. Therefore,
this definition of equivalence neglects the presence
of phase changing gates at vertices of the encoder’s
graph. This is because local Clifford gates change
the qubits using a unitary operation but does not
contribute to changes in entanglement of the qubits
in any way. Therefore, for our purposes, we remove
all local Clifford gates present at the nodes of the
ZX diagram for the encoder.
Furthermore, to simplify the diagrams we draw,

the incoming and outgoing edges (i.e. free edges from

[20]) will be omitted. They are implied, since the
diagrams for (n − k)-to-n encoders will be drawn
with n − k input nodes on the left side and n out-
put nodes on the right side. Furthermore, for the
internal edges that are included in the diagram, all
edges have Hadamard gates as detailed in the Edge
Rule from [20], but these gates will be omitted in
our diagrams.

A further simplification, carried over from [20],
is that graphs with pivot-pivot edges are omitted,
since they can always be transformed into a graph
without pivot-pivot edges using a sequence of local
complementations.

As an example of the simplifications on the dia-
grams, as well as how the adjacency matrices trans-
form into encoders, see Figure 10.

6. TABULATIONS FROM CODE

After considering the simplifications to the en-
coders from Section 5, the encoders were sorted into
equivalence classes. To do this, we used the dis-
joint set algorithm to split encoders into equivalence
classes based on whether an operation from Conjec-
ture 4.1 caused one encoder to change into another.

We will call the non-pivot output nodes free nodes.
Each encoder graph is converted into an integer
based on the variable edges present in the graph,
which are the input-free edges, pivot-free edges, and
free-free edges. Note that the input-pivot, input-
input, and pivot-pivot edges are fixed, so these are
not included among the variable edges.

The variable edges’ values in the adjacency matrix
are made into a single integer using a binary repre-
sentation. Note that this adjacency matrix includes
all vertices, so it is a (2n− k)× (2n− k) matrix.

For example, in the 2-to-5 codes, the 7 × 7 adja-
cency matrix would look like the following:

0 0 1 0 a14 a13 a12
0 0 0 1 a11 a10 a9
1 0 0 0 a8 a7 a6
0 1 0 0 a5 a4 a3
a14 a11 a8 a5 0 a2 a1
a13 a10 a7 a4 a2 0 a0
a12 a9 a6 a3 a1 a0 0

The top-left 4 × 4 submatrix reflects the fixed

input-pivot edges, as well as the lack of input-input
edges and pivot-pivot edges. We place a0 near the
bottom-right corner and fill in the rows above from
right to left.

After converting the ZX diagrams into integers,

11

n = 2 n = 3 n = 4 n = 5 n = 6

1 3 11 40 185

(a) Number of equivalence classes for 2-to-n codes.

Rep:

Size: 1 6 9

(b) 2-to-3 codes equivalence classes and sizes.

Rep:

Size: 1 1 6 12 18

18 36 42 45 99 234

(c) 2-to-4 codes equivalence classes and sizes.

1 3 4 6 18 18 18 27

27 54 54 60 63 90 108 108

108 126 135 144 168 297 378 396

414 459 486 540 702 972 1080 1080

1152 1188 1620 2268 2484 4896 5184 5832

(d) 2-to-5 codes equivalence classes showing the size of the class underneath a representative.

FIG. 11: (a) shows the number of equivalence classes for 2-to-n encoder graphs. (b-d) show an element of
the equivalence classes to denote the representative of the class and gives the size of the class.

we use the disjoint set algorithm, which is useful for separating the whole set of possible encoder graphs

12

FIG. 12: The 2-to-3 encoders classes with bipartite
forms. A representative of the class and the number
of such bipartite forms in the class is shown.

FIG. 13: The 2-to-4 encoders classes with bipartite
forms. A representative of the class and the number
of such bipartite forms in the class is shown.

into equivalence classes.

Our code takes an integer representation, say n,
of an encoder graph, performs one operation from
Conjecture 4.1 on the encoder graph, then merges
the disjoint sets of n and the integer representing
the resulting encoder graph. All possible operations
are applied, and the resulting values are merged with
n’s disjoint set.

When a local complementation is performed on a
free output, it is possible that an input-pivot edge
is removed. Furthermore, some input-input edges
could be added. To fix this, we first employ op-

FIG. 14: The 2-to-5 encoders classes with bipartite
forms. A representative of the class and the number
of such bipartite forms in the class is shown.

eration 5 from Conjecture 4.1 to set all input-input
edges to 0. Then, operations 3 and 4 are used to turn
the submatrix representing the input-to-output ad-
jacency matrix into RREF form. Operation 2 is used
to put the pivots back into their fixed positions, so
they once again correspond to their input vertices.

By looping the code to run through all integers
in the set of representatives of the possible encoder
graphs, all the encoder graphs are grouped into an
equivalence class.

The results of the code are shown in Figure 11. As
shown in Figure 11(a), the number of equivalence
classes increases quickly as the number of output
vertices increases. Furthermore, in Figure 11(b-d),
the equivalence classes show a variety of sizes, with
many of the sizes in (c-d) divisible by 9.

Due to the nature of the weights of the edges in
the adjacency matrix, it is also possible to find out
which equivalence classes have a bipartite form. For
example, in the 2-to-5 codes, since a bipartite form
would need a0, a1, . . . , a8 to all equal 0, we look for
the integer representations that are 0 mod 512.

By running a conditional statement in this way,
we find the equivalence classes that have bipartite
forms and write down the number of bipartite forms
in these classes.

We tabulate the equivalence classes with bipartite
forms and the number of bipartite forms in these
classes for the 2-to-3, 2-to-4, and 2-to-5 encoders in
Figure 12, Figure 13, and Figure 14.

Note that, for 2-to-n encoders, the total number
of bipartite encoders is (2n−2)2 = 22n−4 since the

13

two input nodes have 2 choices for each of the n− 2
non-pivot output nodes.

The reason we separated out the equivalence
classes that have bipartite forms from those that do
not is that bipartite forms are simpler from their
non-bipartite counterparts. Bipartite forms avoid
including output-output edges. For the equivalence
classes that have bipartite forms, it is possible that
the simplest form of the ZX diagrams is a bipartite
form.

7. EQUIVALENCE CLASSES WITH
BIPARTITE FORM(S)

Building off of Section 6, we now turn to choosing
a specific bipartite form in an equivalence class that
can serve as a simple representative.

First, consider the small case of 2-to-4 codes. The
adjacency matrix of a bipartite form, taking into ac-
count the RREF and pivot simplifications from sec-
tion IV, would look like:(

1 0 1 1
0 1 0 1

)
By changing the bolded entries between 0s and

1s, there are 16 possible bipartite forms among all
2-to-4 codes.

In some encoder diagrams, the graph can be split
into separate parts; that is, some vertices are not
entangled in any way with some other vertices.

Definition 7.1. Suppose a graph G = (V,E) has
two distinct vertices a and b such that there is no
path between them. Then, graph G is a disjoint
graph.

In the form of an adjacency matrix for 2-to-n, the
graph is not disjoint if and only if there exists a
column in which both entries are 1 and there ex-
ists no column in which both entries are 0. This is
clear, since this means the two parts of the graph
(one containing all input-output edges from the first
input, the other containing all input-output edges
from the second input) are entangled at some ver-
tex, and there is no output vertex not connected to
anything.

Claim 7.1. Among all non-disjoint 2-to-4 bipartite
graphs, there is only 1 distinct graph up to equiva-
lence through operations 2 through 4 from Conjec-
ture 4.1.

Proof. There are only 5 possible input-to-output ad-

jacency matrices in this case:(
1 0 1 1
0 1 1 0

)
,

(
1 0 1 1
0 1 0 1

)
,(

1 0 1 0
0 1 1 1

)
,

(
1 0 0 1
0 1 1 1

)
,(

1 0 1 1
0 1 1 1

)
.

Consider the first matrix above. Switching the
third and fourth output vertices (corresponding to
the third and fourth columns of the matrix) results
in (

1 0 1 1
0 1 0 1

)
,

which is the second matrix. From here, use opera-
tion 4 to replace the first row with the sum of the
first and second rows modulo 2:(

1 1 1 0
0 1 0 1

)
.

Permuting the outputs achieves the third and fourth
matrices. Lastly, starting from the above matrix, use
operation 4 to replace the second row with the sum
of the current first and second rows modulo 2 to find(

1 1 1 0
1 0 1 1

)
.

This can be permuted to give the fifth matrix. Anal-
ogous sequences of operations can bring any of the
other matrices to another, so all 5 of the graphs are
equivalent, showing the claim.

Using Claim 7.1, the canonical form for the equiv-
alence class that contains these 5 adjacency matrices
can be chosen to be(

1 0 1 1
0 1 1 0

)
.

First, this graph shares the property of having the
least number of edges. Next, to distinguish between
the four matrices with the least number of edges, we
take the one that has more edges reserved for the
first input and first free output, which would be the
one shown above.

By writing one of these input-to-output adjacency
matrices into the full 6 × 6 matrix, we can deduce
the integer representation (as described in Section
6) of the chosen matrix, and display its ZX diagram.
In Figure 15, the ZX diagram is shown in the center
and the representative of the equivalence class of this

14

diagram is shown at left. The rightmost ZX diagram
is another bipartite form in the same equivalence
class.

Now, we present a general method of simplifying
a bipartite 2× n input-to-output adjacency matrix.

Claim 7.2. Consider a 2-to-n encoder graph equiv-
alent to some bipartite form. It is also equivalent to
a bipartite form where the two inputs are both con-
nected to at most

⌊
n
2 − 1

⌋
of the same free outputs.

Proof. In this proof, we only consider encoders that
are equivalent to a bipartite form.
For the sake of contradiction, suppose all bipar-

tite forms of this equivalence class have at least
⌊
n
2

⌋
shared free outputs. In an input-to-output adja-
cency matrix, this would look like(

1 0 1 1 1 1 0
0 1 1 1 1 0 1

)
.

The first two columns are fixed to be input-pivot
edges, as usual. If there are at least

⌊
n
2

⌋
shared

free outputs, the other n − 2 columns must have
a majority of columns containing two 1’s. In this
example, 3 out of 5 columns contain two 1’s.
However, using operation 4 from Conjecture 4.1,

the top row can be replaced with the sum of the top
and bottom row modulo 2.
Note that this means all the free outputs that were

shared by both inputs have their edges with the first
input disconnected, so at least

⌊
n
2

⌋
columns do not

have two 1’s.
Furthermore, after the operation, the first column

cannot possibly have two 1’s, so one additional col-
umn does not have two 1’s. The example matrix
above turns into(

1 1 0 0 0 1 1
0 1 1 1 1 0 1

)
.

We can rearrange output vertices to bring back the
pivots. The following is thus equivalent(

1 0 1 1 1 0 0
0 1 1 1 0 1 1

)
.

Thus, the maximum number of columns with two
1’s is now n− 1−

⌊
n
2

⌋
. However,

n− 1−
⌊n
2

⌋
<

⌊n
2

⌋
,

so we reach a contradiction, since there are now less
than

⌊
n
2

⌋
shared free outputs in an equivalent bipar-

tite form.
Therefore, the claim holds.

Claim 7.2 demonstrates that we can choose a bi-
partite form that has a relatively small number of
shared free outputs. In fact, if the top row is the hor-
izontal vector a and the bottom row is the horizontal
vector b, by linear operations, there are only 3 pos-
sibilities of unordered combinations of two vectors
in the rows. It could be (a,b), (a+b,b), (a+b,a).
Then, we can choose which of these bipartite forms
has the least number of shared free outputs and thus
minimize this number.

Now, we classify operations 2, 3, and 4 from Con-
jecture 4.1 as easy operations, while operations 1
and 5 are hard operations.
In an attempt to show the uniqueness of the bi-

partite forms in an equivalence class, we conjecture
the following:

Conjecture 7.1. In an equivalence class with bi-
partite forms, all such bipartite forms can be trans-
formed from one to another using only easy opera-
tions.

One straightforward approach starts by assum-
ing for the sake of contradiction that two bipartite
graphs, G1 and G2, are equivalent even though they
cannot be transformed from one to another using
only easy operations. Then, we can write down par-
tial traces between all pairs of vertices of one bipar-
tite graph. This quantifies the entanglement of the
whole graph. If the partial traces between all pairs
of vertices of the other bipartite graph are different,
then the entanglement is evidently different and we
would reach a contradiction.

8. OTHER EQUIVALENCE CLASSES

In addition to equivalence classes that have bipar-
tite forms, there are also equivalence classes with no
bipartite graphs, and it is less intuitive to determine
which graphs we call canonical forms.

Definition 8.1. A lacking equivalence class has zero
bipartite forms among its ZX diagrams.

From Definition 7.1, disjoint encoder graphs can-
not be transformed into a non-disjoint encoder graph
using operations from Conjecture 4.1. Therefore, if
there exists a disjoint encoder graph in an equiva-
lence class, all graphs in the equivalence class are
disjoint.

In the 2-to-4 codes, using the tables from Section
5, there are 5 lacking equivalence classes.

15

FIG. 15: In the 2-to-4 equivalence class with the representative shown at left, the possible bipartite forms
are shown above.

FIG. 16: The representatives of the three different
lacking equivalence classes among the classes for 2-
to-4 ZX diagrams.

FIG. 17: A ZX diagram with the minimum num-
ber of output-output edges in its equivalence class.
The equivalence class is lacking and does not contain
any ZX diagrams with 0 output-output edges or 1
output-output edge.

The diagrams for these classes reveal that 3 of
these classes have only non-disjoint ZX diagrams,
which are shown in Figure 16.

Using the code from Section 5, we were able to
determine that the equivalence class of the leftmost
diagram in Figure 16 does not contain any elements
with 0 output-output edges or 1 output-output edge.
Instead, the smallest number of output-output edges
is 2. An example of a ZX diagram in this equiva-
lence class with 2 output-output edges is shown in
Figure 17.

The symmetry of the graph in Figure 17 suggests
that the graph for the representative of the class in
Figure 16 is also symmetrical. Indeed, the inputs

in the leftmost graph of Figure 16 share symmetri-
cal connections, and their pivots share symmetrical
connections. Both pivots, outputs 1 and 2, have
an edge with output 3. Both inputs 1 and 2 share
an edge with output 4, and they also both have an
input-pivot edge. Note that the graph in Figure 17
makes this symmetry more clear.

9. CONCLUSION

This paper presented our work on detailing the
canonical forms and structures of select toric and
surface codes and tabulated results from Java code
that determined the representatives sizes of equiv-
alence classes for ZX diagrams within sector Y of
Figure 1, which allowed equivalence up to permut-
ing output nodes, permuting input nodes, and lo-
cal complementation, but not removing extra states.
Among these equivalence classes, we also analyzed
those that contained bipartite forms among the 2-
to-4 codes.

The work done on toric and surface codes ties in
with the larger goal of finding explainable canoni-
cal forms given the stabilizers of an error-correcting
code. The advantage of the toric and surface codes
presented in this paper are their structural simplic-
ity. As seen by the general toric codes and the se-
lected surface codes derived, the number of internal
nodes in the ZX normal form is reduced to 0 using al-
gorithm we provided. Future works can extend these
simplifications (i.e. of removing internal nodes) to
other CSS codes and find patterns among the struc-
tures of the codes to see if newer definitions of canon-
icity could yield efficient transformations from the
stabilizer formalism to the ZX calculus, as well as
from the ZX calculus to the stabilizer formalism.

Furthermore, the tabulations resulting from con-
sideration of the permutation of outputs and removal

16

of local operations will provide future works a ba-
sis to determining patterns among equivalence class
sizes and representatives. Extending the definition
of equivalence to allow for permutation of outputs is
physically significant as these permutations do not
affect the amount of entanglement the input qubits
go through, and thus the ordering of output qubits
could be considered as a non-fundamental aspect of
a quantum error-correcting code.

10. ACKNOWLEDGMENTS

We would like to thank the MIT PRIMES-USA
program for the opportunity to conduct this re-
search. Thank you to Jonathan Lu for support in
creating the diagrams. ABK was supported by the
National Science Foundation (NSF) under Grant No.
CCF-1729369.

[1] H. Xu, C. Li, G. Wang, H. Wang, H. Tang, A. R.
Barr, P. Cappellaro, and J. Li, Two-photon interface
of nuclear spins based on the optonuclear quadrupo-
lar effect, Physical Review X 13, 011017 (2023).

[2] M. A. Nielsen and I. Chuang, Quantum computa-
tion and quantum information (2002).

[3] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van
Den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Za-
letel, K. Temme, et al., Evidence for the utility of
quantum computing before fault tolerance, Nature
618, 500 (2023).

[4] P. W. Shor, Scheme for reducing decoherence in
quantum computer memory, Physical review A 52,
R2493 (1995).

[5] A. Steane, Multiple-particle interference and quan-
tum error correction, Proceedings of the Royal So-
ciety of London. Series A: Mathematical, Physical
and Engineering Sciences 452, 2551 (1996).

[6] E. Knill, R. Laflamme, R. Martinez, and C. Ne-
grevergne, Benchmarking quantum computers: The
five-qubit error correcting code, Physical Review
Letters 86, 5811 (2001).

[7] A. Y. Kitaev, Quantum error correction with imper-
fect gates, in Quantum communication, computing,
and measurement (Springer, 1997) pp. 181–188.

[8] D. Gottesman, Stabilizer codes and quantum er-
ror correction (California Institute of Technology,
1997).

[9] M. Van den Nest, J. Dehaene, and B. De Moor,
Graphical description of the action of local clifford
transformations on graph states, Physical Review A
69, 022316 (2004).

[10] A. T. Hu and A. B. Khesin, Improved graph formal-
ism for quantum circuit simulation, Physical Review
A 105, 022432 (2022).

[11] B. Coecke and R. Duncan, Interacting quantum
observables, in International Colloquium on Au-
tomata, Languages, and Programming (Springer,
2008) pp. 298–310.

[12] B. Coecke and R. Duncan, Interacting quantum ob-
servables: categorical algebra and diagrammatics,
New Journal of Physics 13(4), 043016 (2011).

[13] M. Backens, The zx-calculus is complete for stabi-
lizer quantum mechanics, New Journal of Physics
16, 093021 (2014).

[14] T. Peham, L. Burgholzer, and R. Wille, Equivalence
checking of quantum circuits with the zx-calculus,
IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 12, 662 (2022).

[15] A. Cowtan and S. Majid, Quantum double aspects
of surface code models, Journal of Mathematical
Physics 63, 042202 (2022).

[16] J. van de Wetering, Constructing quantum cir-
cuits with global gates, New Journal of Physics 23,
043015 (2021).

[17] R. D. East, J. van de Wetering, N. Chancellor,
and A. G. Grushin, Aklt-states as zx-diagrams:
diagrammatic reasoning for quantum states, PRX
Quantum 3, 010302 (2022).

[18] N. de Beaudrap and D. Horsman, The zx calculus is
a language for surface code lattice surgery, Quantum
4, 218 (2020).

[19] A. Kissinger and J. van de Wetering, Reducing the
number of non-clifford gates in quantum circuits,
Physical Review A 102, 022406 (2020).

[20] A. B. Khesin, J. Z. Lu, and P. W. Shor, Graphi-
cal quantum clifford-encoder compilers from the zx
calculus (2023), arXiv:2301.02356 [quant-ph].

[21] J. Huang, S. M. Li, L. Yeh, A. Kissinger, M. Mosca,
and M. Vasmer, Graphical css code transformation
using zx calculus, arXiv preprint arXiv:2307.02437
(2023).

[22] A. Kissinger, Phase-free zx diagrams are css codes
(... or how to graphically grok the surface code),
arXiv preprint arXiv:2204.14038 (2022).

[23] A. Y. Kitaev, Fault-tolerant quantum computation
by anyons, Annals of physics 303, 2 (2003).

[24] Quantomatic, https://quantomatic.github.io/,
accessed: August 5, 2023.

[25] J. C. Adcock, S. Morley-Short, A. Dahlberg, and
J. W. Silverstone, Mapping graph state orbits under
local complementation, Quantum 4, 305 (2020).

[26] M. Bahramgiri and S. Beigi, Enumerating the
classes of local equivalency in graphs, arXiv preprint
math/0702267 (2007).

[27] A. Bouchet, Recognizing locally equivalent graphs,
Discrete Mathematics 114, 75 (1993).

https://arxiv.org/abs/2301.02356
https://quantomatic.github.io/

17

Appendix A: Constructing the 3-by-3 toric code

In Section 3, we provided the 2-by-2 and 3-by-
3 toric codes in ZX calculus. Here, we provide a
more detailed description of the methodology used
to determine the structure of the 3-by-3 toric code.
After placing down the output nodes as in Fig-

ure 4, we expect some of the output edges to contain
Hadamard gates. Suppose the output edge onto ver-
tex 1 has a Hadamard. This implies that applying
the stabilizer Z1Z4Z10Z11 would result in sliding a
Z gate from the end of the output edge, through the
Hadamard (which converts the Z gate to anX gate),
then through vertex 1 itself. By the π-copy rule [13],
the X gate, which is an X node with phase π, copies
itself onto the edges (excluding the output edge) con-
nected to vertex 1. Diagrammatically, applying Z1

onto the vertex 1 is shown in Figure 18a and Fig-
ure 18b since, after passing through the Hadamard
gate, the green π node (representing the Z1) changes
into a red π node. Vertex 1 is shown as the green
node.
Similarly, while continuing the assumption that

output node 1 has a Hadamard, if we instead applied
the stabilizer X1X3X10X16, we slide an X gate from
the end of the output edge, through the Hadamard
(which converts the X gate to a Z gate), then onto
vertex 1. By the spider rule [13], the Z gate, which
is a phase π green node, merges with vertex 1, a
phase 0 green node. This results in vertex 1 gaining
a phase of π.

By the preceding paragraphs, the behavior of the
Z and X gates on a Hadamarded output node is
understood. The analogous behavior occurs on a
non-Hadamarded output node by switching all the
colors used in the processes above.
To determine all of the edges in the 3-by-3 toric

code in Figure 4, we consider these processes of ap-
plying the stabilizers onto the output nodes. Note
that all of the internal edges among nodes in the
diagram must be Hadamarded edges so that the
spider rule cannot be applied to merge multiple
nodes into one. To simplify our work, we set the
Hadamarded output nodes to be 1, 2, 3, 7, 8, 9, and
16, 17, 18. Then, by stabilizer Z1Z4Z10Z11, the
nodes 4, 10, and 11 gain phase π from their Z gates
while node 1 will cause a π-copy rule to moveX gates
onto the internal edges connected node 1. Since all
internal edges are Hadamarded, moving the X gates
through the Hadamards will result in Z gates. If
these Z gates went to any nodes other than nodes
4, 10, and 11, the stabilizer would not have kept the
configuration the same. Therefore, the Z gates must

arrive at only nodes 4, 10, and 11. This works be-
cause the π’s from these Z gates cancel with the πs
already at the nodes. Thus, the only internal edges
to node 1 are from nodes 4, 10, and 11.

Using similar reasoning, we can deduce the rest of
the internal edges among the output nodes. Further-
more, to determine the logical operators (to connect
the input nodes to), we look for sets of nodes that,
when any stabilizer is applied, keep the input node
at phase 0.

Appendix B: Hadamard-sliding rule

In the algorithm given in Section 3, we invoked Eq.
(10) from [10], which we call the Hadamard sliding
rule. The name comes from its ability to move a
Hadamard gate from one output node’s free edge
to a connected output node’s free edge, after some
operation on the nodes connected to these two.

Diagrammatically, it looks like Figure 19. Note
that the colors of the output nodes are swapped.
Also, the connections between the neighbors of the
output nodes are toggled, and the sets of neighbors
are swapped between output nodes. This is equiva-
lent to local complementation about an edge, defined
in Definition 2.3.

Figure 19 is a simplified version of the Hadamard-
slide rule, and it assumes that the graph is bipartite
in red and green nodes, which is appropriate for the
toric and surface codes that we considered.

Appendix C: Converting a KLS canonical form
into a quantum circuit

In Section 2, we described a procedure for convert-
ing a KLS canonical form into a quantum circuit,
which is repeated here.

1. Start with n − k open wires representing the
inputs of the circuit.

2. Add a |0⟩ state for each of the k non-pivot
output nodes.

3. Apply an H gate to all n wires.

4. Apply a CX gate between the wires corre-
sponding to the edges between inputs and non-
pivot outputs. The input node is the target
qubit, and the output node is the controlled
qubit.

5. Apply a CZ gate between the wires corre-
sponding to the edges between only outputs.

18

(a) Passing through the Hadamard gate, the Z gate turns
into an X gate, or red π.

(b) By the π-copy rule, the X gate passes through the
green node and copies itself onto each of the other edges
connected to the green node.

FIG. 18: π-copy rule on a green π node after passing through a Hadamard gate.

FIG. 19: The Hadamard-sliding rewrite rule for switching Hadamard gates from the free edges of connected
output nodes. Note that a red node is equivalent to a green node with a Hadamard on the output edge.
Furthermore, the equality shown above assumes that the graph is bipartite in red and green nodes, which is
the case for the codes considered in Section 3.

6. Apply the local operations attached to the out-
puts.

We will now show why this works.

Consider the example given in Figure 20a. We
will convert this KLS form into a circuit. We can
first move the input nodes to be along the same hor-
izontal wire as their pivots nodes. Then, we split
the non-pivot nodes by un-merging two zero-phase
green nodes. The resulting diagram is in Figure 20b.
From here, the edges from inputs to non-pivot out-
puts can be separated by un-merging nodes and ex-
pressing each edge separately, as in Figure 20c. In
Figure 20d, the Hadamards between the inputs and
pivots are shown explicitly. In Figure 20e, we do
a similar un-merging of nodes to separately express
the edges between nodes.

The steps used in these diagrams hold in general.
We can un-merge each node until all the edges are
expressed separately (and the non-pivot nodes have
an initial state), and, to keep things organized, we
can keep the input-output edges on the left side and
the output-output edges on the right side.

From Figure 20e, note that the Hadamarded edges
between the nodes of a ZX diagram are equivalent to
the CZ gates between the corresponding wires in a
quantum circuit. Also, the green nodes at the start
are equivalent to |+⟩.
Now, consider sliding the two Hadamards in the

middle towards the left of the diagram. Because
ZH = HX, this means each of the CZ’s that the
H’s pass through turns into a CX with the target
qubit on the input’s wire. Also, we may exchange
the green nodes at the start for a red node and an H,

19

(a) The KLS form of a QECC. Blue edges rep-
resent Hadamarded edges. Note that two of the
output edges have local operations. One of the
local operations is a Hadamard gate while the
other is a green π/2 or S gate.

(b) The non-pivot output nodes are un-merged
into two green nodes each, and one of each pair
is placed to the left.

(c) By un-merging the input nodes, the edges
between the inputs and non-pivot outputs can
be shown separately from each other.

(d) The input-pivot edges are exchanged for
edges with a yellow Hadamard gate on them.

(e) Similar to 20c, each of the output nodes
with more than one connection are un-merged
to separate the output-output edges from each
other. Note that the local operations are still
at the very right-hand side of the diagram.

(f) The Hadamards in the middle of 20e are
pushed to the left, and the green |+⟩ states are
exchanged for the equivalent representation of
H |0⟩, which is a Hadamard on a red |0⟩ state.

FIG. 20: Conversion of a KLS form ZX diagram into the equivalent quantum circuit diagram.

since H |0⟩ = |+⟩. This gives Figure 20f. From here,
we can see why the procedure for creating the circuit
from KLS form works, since each of the ZX calculus
components in Figure 20f can quickly be converted
to a circuit diagram component.

Appendix D: Necessary conditions on the
canonical forms of CSS states

In this section of the appendix, we present partial
work on attempting to find a canonical form for CSS
states, which we define as CSS codes with exactly 0
input nodes.

Definition D.1. CSS states are CSS encoders that

20

have 0 input nodes. Their stabilizer tableaus can be
expressed in terms of only X,Z, and I gates, as is
the case for CSS codes.

This is based on the conditions of equivalence es-
tablished in [20] with the additional constraint that
any local operations may be added to the output
nodes. That is, here we will find necessary condi-
tions on canonical forms that are locally equivalent,
as defined in Definition 4.1.

Claim D.1. The following are necessary (but not
sufficient) conditions on the canonical forms of lo-
cally equivalent CSS states in ZX calculus.

1. Edge rule: There is exactly one node per free
edge (i.e. output edge), and every internal
edge has a Hadamard gate on it [20].

2. Bipartite rule: The graph must be bipartite. If
the state’s nodes are labeled from 1 to n, node
1 is type A, and all nodes are split into type A
or B nodes, where the only edges in the graph
are between type A and B nodes.

3. Ordered connections rule: Type A nodes only
connect to nodes that have a higher label.

4. Local operations rule: The graph cannot have
any local operations on any output nodes.
Since all nodes are output nodes, there are no
local operations on any nodes.

Before we begin the proof, we refer the reader to
[25] for the more general discussion of the orbits of
equivalence classes of graph states equivalent under
local complementation. Our work here narrows the
focus to CSS states and presents rules that could be
used to find canonical forms of CSS graph states in
future works.

Proof. Because the definition of equivalence was
based on those used for the KLS form, the edge rule

is satisfied by considering the CSS state as an en-
coder with 0 input nodes.
To show the bipartite rule, consider the ZX nor-

mal form from [22]. In the normal form based on X-
stabilizers, the stabilizers are represented by green
nodes connected to red output nodes that the X-
check acts on. None of the green nodes are con-
nected to each other, and none of the red nodes are
connected to each other. Therefore, the ZX diagram
of a CSS state in ZX normal form is initially bipar-
tite. As outlined in Section 3, we can convert the
ZX diagram into a form with exactly n nodes, with
one node per output edge, using the bialgebra and
Hadamard-sliding rules. It can be easily verified that
both of these rules cannot change a bipartite graph
(with nodes separated by color) into a non-bipartite
graph. Therefore, the final graph can always be bi-
partite.
Now, label the n nodes from 1 to n, and WLOG

suppose that node 1 is an A-type node. Then, the bi-
partite ZX diagram can be split into separate groups
of nodes of A and B-type nodes. Now, we multiply
the graph state by the necessary local operations
such that all A-type nodes have no Hadamard gates
on their output edge while all B-type nodes have
one Hadamard gate on their output edge. By the
Hadamard rule in [20], this means we can necessar-
ily transform the graph using local complementa-
tions so that all B-type nodes are only connected
to A-type nodes that have lower-numbered nodes.
This is equivalent to ordered connections rule listed
in Claim D.1.
After converting the ZX normal form into a bi-

partite ZX diagram with all of the above rules, we
can remove all local operations on the output nodes.
This is because we can multiply the state by any
local operations (by our definition of local equiva-
lence), so we can multiply the state by the conjugate
local operations needed to leave behind only green
Z nodes connected to the output edges.

	Canonical Forms and Equivalence Classes of QECC's in ZX Calculus
	Abstract
	Introduction
	Background
	Surface and Toric codes
	Another Definition of Equivalence
	Simplifications
	Tabulations from code
	Equivalence classes with bipartite form(s)
	Other equivalence classes
	Conclusion
	Acknowledgments
	References
	Constructing the 3-by-3 toric code
	Hadamard-sliding rule
	Converting a KLS canonical form into a quantum circuit
	Necessary conditions on the canonical forms of CSS states

