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Abstract
DNA loop extrusion, mediated by cohesin protein complexes, plays a central role in genome

organization. However, direct observation of loop extrusion in vivo remains challenging. This
study investigates a novel methodology using time reversal asymmetry and machine learning
to detect loop extrusion in microscopy data. I aim to do this by analyzing DNA motion in
microscopy data, hypothesizing that movies of DNA under loop extrusion appear differently
when played forward versus backward. Simulations with and without loop extrusion generate
a synthetic dataset to test this hypothesis and determine the feasibility of detection. A
Convolutional Neural Network (CNN) is employed to process these DNA motion movies,
trained through supervised learning to distinguish between normal and reversed trajectories.
The CNN’s performance, measured by its accuracy in identifying reversed motion, serves as
an indicator of loop extrusion presence in the DNA. The test CNN used here achieved an
accuracy consistent with random guessing on simulated data with loop extrusion, suggesting
great difficulty in the prediction task. I propose further optimizations such as increasing
the frame rate, change in network architecture, and extrusion parameters which may make
the task easier. With additional optimization, this approach may enable time reversal and
machine learning to analyze the presence of loop extrusion.
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1 Introduction
DNA loop extrusion is the process by which protein complexes reel in DNA to extrude a

loop. By appropriate placement of boundaries, the loops may be directed to obtain locally
compared regions of DNA. This is a fundamental process that contributes to the spatial
organization of the genome and plays critical roles in gene regulation, somatic recombination,
and DNA repair.

The loop extruder cohesin and its interaction with the boundary protein CTCF have
been found to lead to the establishment and regulation of compacted regions of DNA known
as topologically associated domains (TADs). These domains have been implicated in the
control of gene expression by contacting distal enhancer DNA sequences with their target
gene promoters, bringing them into close proximity. This spatial proximity could allow for
efficient and specific regulation of gene expression (Popay, Dixon, 2022).

Various studies have demonstrated the importance of TADs and loop formation in the
development and function of biological organisms. A recent study investigated the impact of
altering TAD structure on limb development in mice. They found that deletions, inversions,
duplications, and rewiring of TAD boundaries led to changes in gene expression patterns
and resulted in limb malformations (Lupianez et al., 2015).

Furthermore, the loop extrusion process has been implicated in somatic recombination
and DNA repair. Somatic recombination involves the rearrangement of DNA segments in
immune cells to generate diverse antigen receptor genes. Loop extrusion has been implicated
in the facilitation of the spatial proximity between antigen receptor gene segments, enabling
efficient recombination events that contribute to immune system diversity. Similarly, during
DNA repair processes, damaged DNA segments and their repair machinery can be brought
into close proximity through loop extrusion, facilitating the repair of DNA lesions (Gabriele
et al., 2022).

DNA loop extrusion mediated by cohesin protein complexes is a central organizing prin-
ciple of our genomes. As such, understanding the mechanisms and functional consequences
of loop extrusion provides insights into the fundamental principles governing genome orga-
nization and their impact on cellular processes. Further research in this field holds promise
for unraveling the intricate relationship between chromatin architecture and genome func-
tion. However, the process of loop extrusion has not been observed in vivo and has only been
directly observed outside living systems in single-molecule reconstitution assays. Indirect ev-
idence of loop extrusion in vivo has been obtained through the analysis of Hi-C data, which
provides information about the genome’s spatial organization. Hi-C data scaling analysis
has revealed the presence of TADs and suggested the involvement of loop extrusion in their
formation.

The fundamental goal behind this study is to study a novel method for the detection
of loop extrusion in living systems. The idea is to use the fact that movies of DNA under
the action of loop extrusion would look different when played forward in time compared to
backward. Microscopy data of DNA otion could therefore be used to detect the presence
of loop extrusion based on our ability to discern reversed movies from regular movies. To
explore the feasibility of this approach, it is necessary to perform simulations both with and
without loop extrusion to generate a synthetic dataset. By conducting these simulations, I
can assess whether detectability is possible, and if possible, which experimental conditions
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would be needed to see loop extrusion in living systems.
The methodology rlies on a way to quantify our ability to separate reversed from non-

reversed movies of DNA motion. Due to the complexity of the motility, and the need for
efficient deployment across large datasets, a convolutional neural network (CNN), which is
a type of artificial neural network designed for processing and analyzing multi-dimensional
data, including images and videos, is employed. CNNs are trained through a process called
supervised learning, where they are presented with labeled training data (here data would
be a time-series of DNA motion and the label would be whether the time series was played
forward or backward in time) and learn to associate input data with their corresponding
output labels. By adjusting the weights and biases through the iterative training process,
the CNN gradually learns to recognize and extract relevant features from the input data,
enabling it to make accurate predictions or classifications on new, unseen data. The ability
of the trained CNN to identify whether it "sees" a difference between flipped and unflipped
trajectories based on the time series can be quantified by the prediction accuracy which gives
us a measure of the presence of loop extrusion in the trajectories.

2 Methods

2.1 Generation of an Equilibrated System with No Loop Extrusion

Simulations of a polymer were run with 750 base pairs per bead, and locus sizes of
1,515,000 base pairs. Forces such as the bond angle stiffness, radius for contact, bond
length, and bond force were applied to the polymer, and run for 1,000 time steps, with the
goal of running the polymer simulation to equilibrium without loop extrusion acting upon
the system. This data obtained from the equilibrated system with no loop extrusion was
used as the basis to start running the simulation with loop extrusion.

2.2 Polymer Simulations with Loop Extrusion

The simulations with loop extrusion maintained the same format of repeating 2,020
beads 50 times, with each repeat containing two CTCF sites, resulting in a total of 100 CTCF
locations across the polymer. To conduct these simulations with cohesins loaded to form loop
extrusion required a multi-step process in which first (i) generated a 1D simulation to obtain
coordinates for cohesin positions, and using that data, (ii) created a 3D simulation, applying
all forces necessary to satisfy the cross links implied by the cohesin positions. Finally, we
(iii) regularly collected coordinate information regarding CTCF locations in space.
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2.3 1D Simulation

The 1D simulation generates information regarding loop growth on the polymer. An
array that represents the polymer is generated, with loop extruders initialized in randomized
locations on the array. The simulation takes into account the location and direction of the
CTCF sites. If the direction of the loop does not align with the CTCF site, the loop will
continue to grow (Figure 1a). If two loops intercept at adjacent array values, growth will
halt in the direction that is in contact with the other loop, whereas it will continue in the
other direction, representing that the loops have joined (Figure 1b). When the loop is in
contact with a CTCF site in the direction that stops further growth of the loop, growth
of the loop will halt in that direction for future time-steps, while continuing in the other
direction (Figure 1c.).

Figure 1: A visualization of the 1D trajectory of the loop formation and growth across 500
time steps and 2020 beads. The vertical lines represent the locations of the CTCF on the
polymer strand. The part at a) shows the unidirectionality of the CTCF protein, thus the
growth of a loop from the opposite direction is not stopped by the protein. b) is an example of
a collision between two separate loops. c) represents a loop where the position of the CTCF
has halted the growth. The red line represents a right-facing CTCF site, and the blue line, a
left-facing CTCF site.
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2.4 3D Simulation

The 3D simulation loads the equilibrated system obtained in the simulation with no loop
extrusion, and builds upon the results obtained from the 1D simulation. The 3D simulation
adds the various forces that act upon the polymer that mimics the physical interactions
within DNA, allowing it to undergo conformational changes and dynamics that reflect its
behavior in a real biological system. The output of this simulation is a series of files, for
each time step, containing coordinate information for every bead.

This graph compares the contact probability to the step separation of the polymer
simulation that contains loop extrusion. The bump at around 15 units for the step separation
is caused by the bond angle stiffness set in the simulation, which was modulated to ensure
the random walk simulation can better emulate the properties of a polymer in a living
cell (Figure 2a). The convergence of the curves at approximately 1500 units demonstrates
that the system is approaching equilibrium (Figure 2b). The various data points represent
different blocks.

Figure 2: Contact probability vs step separation

2.5 Obtaining CTCF Location Coordinates

The 3D simulation program focuses on obtaining CTCF location coordinates and gen-
erating trajectory information. The positions of CTCF sites within the polymer are tracked
more frequently than the overall coordinates for the entire polymer. To organize and store
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the collected data, the 3D simulation program writes the trajectory information to a CSV
file. This increased frequency of data collection captures the precise movements and interac-
tions of CTCF sites with the polymer but reduces storage requirement as the whole polymer
configuration isn’t required with such high time-resolution.

Prior to using the data for machine learning, a ’hump’ behavior was noted in the
probability versus separation curve of chromatin loops (Figure 2b). Analysis of the distance
versus time graphs across all three axes revealed converging distances towards zero. This
indicates that the cohesin movement stopped at the CTCF boundaries. This convergence
confirms that enhancer-promoter distances displayed signatures of binding together.

Figure 3: X, Y, and Z distances between the two trajectories vs time step

2.6 Convolutional Neural Networks

The subsequent phase in the project involves the use of time reversal as a method to
ascertain whether the trajectories of DNA are impacted by loop extrusion. The movement
of a DNA polymer without loop extrusion is passive and isotropic, and thus, the relative
motion between any two positions on the DNA would be independent of whether it is observed
forward or backward in time. This is not the case for simulations that include loop extrusion,
as the process of zipping two loci together generally causes the distance to decrease over time
(although this effect can be subtle). The goal would be to observe how well the trained CNN
model is able to predict and distinguish the flipped and non-flipped trajectories, which is
only possible if there is loop extrusion in the simulation.
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Both forward and reverse temporal trajectories of DNA motion are utilized to train the
CNN. CNNs utilize supervised learning, where the network is exposed to labeled training data
– in this case, a time-series dataset of DNA trajectories is labeled based on whether it is run
forward or backward in time, enabling the CNN to associate input data with corresponding
output labels. CNN’s ability to discern differences between flipped (reversed) and unflipped
(forward) trajectories based on the time series data provides a quantitative measure of loop
extrusion presence in the observed trajectories.

3 Results and Discussion

Figure 3: Loss (left) and accuracy (right) curves as a function of epoch from the convolu-
tional neural network. The dashed line represents the epoch that resulted in the lowest loss,
to prevent over-fitting.

The primary objective of using the Convolutional Neural Network (CNN) model in this
study was to determine whether it is possible to accurately distinguish between forward and
reverse chromatin loops. This low loss rate reflects the model’s ability to closely align its
predictions with the actual data, demonstrating a high level of accuracy and reliability in
its output. Such an outcome signifies the effectiveness of the model’s learning algorithm and
demonstrates potential applicability in real-world scenarios. However, the accuracy results
indicate a limitation in this capability. With an accuracy of only 53%, the model does not
significantly exceed the performance of random guessing (which would be 50% in a binary
classification task like this). This outcome suggests that the current CNN model is not
effectively differentiating between the two types of loops.

This study’s findings, particularly the Convolutional Neural Network (CNN) model’s 53%
accuracy rate in differentiating forward and reverse trajectories, suggest two possibilities:

8



either an absence of observable asymmetry in the process or a limitation in the model’s
capability to detect such asymmetry. Given the inherent asymmetry in the loop extrusion
process, it’s plausible that this can be attributed to the slow extrusion speed of the simulation,
which could potentially be hard to distinguish from the noise.

The primary goal moving forward is to enhance the model’s accuracy, ensuring more
reliable and definitive distinctions between loop types. The current model may require
refinement. This could involve utilizing more layers or different types of layers, or exploring
alternative CNN architectures. The field of deep learning is rapidly evolving, with new
algorithms and approaches being developed continually. Investigating these new algorithms
could provide a fresh perspective on the problem. A faster frame rate in the data collection
process might also reduce the noise-to-signal ratio, offering clearer insights into the dynamic
behavior of chromatin loops. By refining the model, future studies can aim to significantly
increase the accuracy of chromatin loop classification. This could potentially advance our
understanding of chromatin dynamics and contribute to the broader field of genomic research.
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