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Abstract. The self-alignment and organization of small objects in fluids is impor-
tant in many contexts including biology [17, 9], robotics [4], and medicine [3]. In lam-
inar Stokes flow, viscous forces dominate, and Purcell’s theorem forbids time-average
steady flow as a result of oscillation. In turbulent flow, inertial forces dominate. At
intermediate Reynolds numbers, not one of viscous or inertial forces can dominate
the other. A number of recent works have investigated steady flows as a result of
micro-oscillation in simple systems at intermediate Reynolds numbers. Here, we ex-
tend previous work and analyze the micro-oscillation behavior of fluid in a 2D circular
domain, forced around two ellipses fixed in position. A perturbation analysis decom-
poses the problem into a series of linear problems, which are solved using the finite
element method in complex numbers. The force and torque on each ellipse is com-
puted with various geometric positions and Reynolds numbers Re. We find that in the
single-ellipse case, the torque is sinusoidal in angular orientation, and also approxi-
mately proportional to Re, so angular orientation aligns perpendicular to the direction
of oscillation. In the double-ellipse case, several local effects in the single-ellipse case
are preserved. Furthermore, the change in the torque of one ellipse is also sinusoidal
in the angular orientation of the other ellipse and proportional to Re, as well as being
independent of the orientation of the one ellipse.

1. Introduction and Motivation

The self-alignment and organization of small objects in fluids is important in many
contexts including biology [17, 9], robotics [4], and medicine [3]. Self-aligning objects
can assemble into regular arrays and structures for the purposes of building construc-
tion, nano-sized medicine delivery, membrane construction, manufacturing, and more
[4, 25]. The small length scales of these objects correspond to small values of the
Reynolds number Re, a dimensionless measure of the relative importance of inertial as
opposed to viscous forces. The Stokes equations resulting from small Reynolds num-
bers describe time-reversible viscous flows, so reciprocal motions yield no time-averaged
motion, the so-called scallop theorem [20]. As a result, low-Re non-reciprocal action,
such as bacteria cilia and spermatozoa tails [23, 19], has been studied in great detail.

On the other hand, at large length scales, corresponding to large Reynolds numbers,
inertial forces dominate. Newton’s third law allows swimmers to propel themselves
forward by pushing fluid backwards. A large swimmer such as a fish can use reciprocal
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motion, e.g. kicking its tail, to propel itself, and swimming has been well studied in
this regime as well [9].

If the Reynolds numbers are intermediate, however, viscous and inertial forces are
comparable, and neither can be neglected. The case of a single sphere in oscillating
fluid has been studied in all three of these cases. In the limit of small and large
Reynolds numbers, expansions can be made in Re or Re−1 that simplify analysis by
replacing a term from the Navier-Stokes equations [21]. For intermediate Re numbers,
however, neither component can be omitted. In general, such a system has been shown
to give rise to a leading-order oscillating flow. After taking a time average, this leading-
order oscillating flow will cancel out, yielding a second-order steady flow [22]. This
phenomenon, steady streaming, is also referred to in the literature as acoustic streaming
or microstreaming.

It has been reported that within a viscous boundary layer, fluid is drawn towards
the poles and subsequently ejected along the equator, whereas outside of this boundary
layer, fluid is transported in the opposite direction through a Reynolds stress [21]. Ad-
ditional experimental [18] and numerical [2] research have verified and further examined
the flows resulting from this setup.

There has been increasing interest in the interaction between a number of small
spheres in oscillating fluid. In 2002, [24] reported small spheres forming regular hexag-
onal lattices in a vertically vibrated 3D glycerol-water cell. In the same year, [26] re-
ported experiments where small spheres undergoing sinusoidal vibrations formed equally
spaced chains in a shallow, 2D water-filled cell. Chain formation of spheres in oscillation
was further studied in [11]. In an effort to understand these many-sphere interactions,
the induced forces on two spheres oscillating at intermediate Reynolds numbers have
been studied experimentally and numerically by [12] and [7].

Previous study has primarily focused on rotationally symmetric spheres; even when
ellipsoids were the focus, such as in [1], the geometric setup was assumed to be ax-
isymmetric. Our goal is to extend the work of [7] and [12] by examining the role of
asymmetry in the alignment of the angular orientations of two near-circles, or ellipses,
in oscillating fluid. The work of [7] conjectures that steady streaming will act to align
such objects perpendicular to the direction of oscillation, and our results are consistent
with this prediction. We compute the induced torques contributed by eccentricity to
determine the stable equilibrium of ellipse orientation in our geometric setup.

In the case of the problem of a collection of spherical beads oscillating in fluid, by
examining the interaction between a pair of spheres, [12] established that the beads
will arrange themselves in a chain perpendicular to the direction of oscillation. We
aim to understand the direction of orientation of the beads in this chain if they were
asymmetric, i.e. they were near-spheres instead of perfect spheres. Furthermore, we
address the possibility of holding a single bead in a fixed orientation and thereby influ-
encing the alignment of other beads in the chain. Applications for this include better
understanding of the self-assembly of asymmetric, oblong, or even rod-like beads in
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oscillating fluid, as well as the potential for the orientation of one such object to control
the orientation of an array of other objects.

We would typically use freely moving circles and constrain their motion using the
induced force from the surrounding fluid via Newton’s third law. Rather than solving
for freely moving objects, we fix the ellipses and calculate induced forces and torques
in order to find the equilibrium configuration where these vanish.

As a notational note, we use bolded symbols for vector and tensor functions and
values, and unbolded symbols for scalar functions and values. We also use ℜ to denote
real parts of complex values.

In Section 2 we introduce the model system, variables, parameters, and equations.
We treat the problem analytically, decomposing it into a series of linear problems using
a series expansion whose derivation is detailed in Appendix A. We also introduce the
expressions used to compute torque and force, derived in Appendix B. In Section 3 we
introduce the finite element method used to solve each linear problem, and our solution
procedure. In Section 4, we solve the single-ellipse case numerically. We find that in
the case of a single sphere, the ellipse will always align perpendicular to the direction of
oscillation, as predicted by [7]. Specifically, the torque is sinusoidal as a function of the
angular orientation, and is also approximately proportional to Re. Furthermore, as Re
increases the boundary layer thins. Finally, in Section 5, we present numerical results for
the double-ellipse problem. We qualitatively compare our model to the plotted survey
of velocity field flows and forces in [7] and [21], and demonstrate several instances
of corroborating symmetry. We then survey the leading-order torques contributed by
eccentricity at the locations of force equilibrium. Our double-ellipse numerical findings
indicate that at intermediate Reynolds numbers, the angular displacement of one ellipse
does not have a significant impact on the torque experienced by the other ellipse, so
holding a single ellipse in a fixed angular position will not have a significant controlling
effect on the other ellipse. This change in the torque of one ellipse is also found to
be sinusoidal in the angular orientation of the other ellipse. Finally, just as in the
single-ellipse case, the stable orientation is π

2
, as [7] predicted.

2. Model System

In this section we set up the preliminary analysis for our physical model. We first
introduce a model of our system in Subsection 2.1. In Subsection 2.2 we simplify this
model via non-dimensionalization. In Subsection 2.3 we expand our solution in two
small parameters corresponding to eccentricity and oscillation magnitude, and obtain a
series of four coupled linear problems. Finally, in Subsection 2.4 we derive expressions
for the forces and torques on the ellipses.

2.1. System parameters. Our model system consists of two congruent ellipses fixed
in place in a rigid two-dimensional circular domain of incompressible fluid. The fluid
has density ρ and viscosity µ. We denote the fluid domain by Ω and the domain of
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ellipse k by Ωk for k = 1, 2. We denote the boundaries of these domains by ∂Ω and
∂Ωk, respectively. The fluid velocity is oscillating in the x-direction at the boundary of
the domain. We wish to compute the fluid velocity u(x, t) and fluid pressure p(x, t) in
terms of the two-dimensional position vector x and the time scalar t.

Our geometric setup is depicted in Figure 1. The circular domain has diameter S,
and the oscillation has magnitude U and frequency ω. The center of each of the ellipses
is distance D from the center of the domain. Following [21], we assume R ≫ U/ω so
that the distance travelled by the oscillation in one cycle is much smaller than the size
of the ellipse. We introduce ellipses with semimajor axis R + R∆ and semiminor axis
R − R∆, where R ≫ R∆. Because the two ellipses are fixed in place, their density is
not relevant to our analysis.

φ

V = U sin(ωt)

Φ1

Φ2

R
+
R

∆R
−R∆

D viscosity µ

density ρ

O1

O2

O

Figure 1. Schematic of geometric setup. Two near ellipses with semi-
major and semiminor axes length R+R∆ and R−R∆, respectively, with
centers a distance D from the system’s center of mass. The circles with
radius R these ellipses are perturbed from are shown in dashed lines. The
angle φ is the angular position of the two ellipses relative to the oscil-
lation direction, while the angles Φ1,Φ2 are the angular positions of the
major axes of Ω1,Ω2, respectively, relative to the oscillation direction.

The centers of the ellipse domains Ωk we denote with Ok. We fix the center of the
domain O at the center of mass of the two ellipses, the midpoint of O1 and O2. The
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angle between the line O1O2 and the horizontal we denote by φ. The angle between
the major axis of Ωk and the horizontal we denote by Φk.

2.2. Nondimensionalized system. We introduce characteristic length, frequency,
and density scales R, ω, and ρ. Now, the fluid system is reduced to two parameters.
Firstly, we have the Reynolds number

Re =
ρR2ω

µ
.(2.1)

Secondly, we have the magnitude of oscillation relative to the length scale, ε1 = U
Rω

,
which we assume to be small following [8] and consequently [5]. The frequency of the
oscillation is now 1.

The physical geometry of the system is reduced to six parameters. We have L =
S
R
, the non-dimensionalized diameter of the domain, ε2 = R∆

R
, the small parameter

describing the ellipses’ perturbation from a perfect circle, and K = D
R
, the distance

from Ok to O. The semimajor and semiminor axes of the ellipses now have lengths
1+ ε2 and 1− ε2, respectively. The angular parameters φ,Φ1,Φ2 were dimensionless to
begin with, so they remain the same.

On the boundary of the domain the fluid must satisfy

u(x, t) = ε1 sin(t)x⃗(2.2)

for x ∈ ∂Ω. Because the ellipses are fixed in place, the fluid must be stationary on the
boundary of the sphere, i.e. u(x, t) = 0 for x ∈ ∂Ωk.

We assume the fluid is Newtonian and incompressible, so the fluid satisfies the Navier-
Stokes equations

Re

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇2u, ∇ · u = 0.(2.3)

2.3. Series expansion. The fluid velocities scale with the oscillation magnitude ε1 ≪
1, suggesting a series expansion in ε1 as made in [5]. Here we are interested in the effect
of the eccentricity on the fluid flow, so we simultaneously expand in ε2.

We ignore all terms with no effect on the O(ε21ε2) steady flow resulting from eccen-
tricity. Motivated by the expansions used in [8] and subsequently [5], we adopt the
ansatz

u(x, t) = ε1e
it(û0 + ε2û1) + ε21(ū0 + ε2ū1).(2.4)

A detailed derivation can be seen in Appendix A.

Here, we take the real parts of any complex exponentials. The magnitude and argu-
ment of the complex vector field û correspond to the leading-order oscillating flow mag-
nitude and phase shift, respectively. If û = reiθ, taking the real part of eitû = eit(reiθ)
yields r cos(t+ θ), where r is the magnitude and θ is the phase shift.
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We obtain a similar ansatz for the pressure scalar field

p(x, t) = ε1e
it(p̂0 + ε2p̂1) + ε21(p̄0 + ε2p̄1).(2.5)

Substituting the ansatz into the Navier-Stokes Equation (2.3) and matching coef-
ficients yields a series of linear differential equations, the derivation for which is in
Appendix A. The equations describing the leading-order terms û0 and ū0 are

(
∇2 − iRe

)
û0 = ∇p̂0, ∇ · û0 = 0(2.6)

∇2ū0 = ∇p̄0 −∇ ·R0, ∇ · ū0 = 0(2.7)

whereR0 = −1
2
Re û0⊗û∗

0, and ⊗ denotes the vector outer product. The tensor fieldR0

can be interpreted as the Reynolds stress driving the steady flow without eccentricity
ū0. This Reynolds stress arises from the convective term u ·∇u in the Navier-Stokes
Equation (2.3) [5, 7]. These equations match Equations 2.13-14 in [5] as expected,
because û0 and ū0 are the flows resulting from no eccentricity.

The equations describing the flows û1 and ū1 resulting from eccentricity are(
∇2 − iRe

)
û1 = ∇p̂1, ∇ · û1 = 0(2.8)

∇2ū1 = ∇p̄1 −∇ ·R1, ∇ · ū1 = 0(2.9)

where R1 = −1
2
Re û0 ⊗ û∗

1. Once again, R1 can be interpreted as the Reynolds stress
driving ū1 arising from the convective term u ·∇u and the two terms ε1û0, ε1ε2û1.

2.4. Force and torque. After determining the vector velocity field u and the scalar
pressure field p, we can compute the time-averaged torque and force exerted on the
ellipses. The leading-order terms û0 and û1 are oscillatory and will vanish over a time-
average. Furthermore, when the ellipses are in equilibrium position, by [7] they will
be in either axial position (parallel to the direciton of oscillation) or lateral position
(perpendicular to the direction of oscillation), so by symmetry the terms û0 and ū0 will
contribute no torque. Thus we consider only the torques and forces contributed by the
flow ū1 and corresponding pressure p̄1.

On the boundary of the ellipse domain Ωk, the force exerted on Ωk at that point is
determined by T · n, where T is the Cauchy stress tensor

T = pI +
1

2

(
∇u+ (∇u)T

)
.(2.10)

This follows the same approach used by [12] and [5], except that there is no perturbation
caused by a moving boundary.

Accordingly, the vector-valued total force exerted on Ωk is

Fk =

∫
∂Ωk

T · n dS,(2.11)
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and the torque is

Tk = z ·
∫
∂Ωk

n× (T · n) dS.(2.12)

Here we use the scalar value for torque, arrived at by taking the dot product of the cross
product with z, the out-of-plane normal unit vector. Naturally, the cross product’s only
nonzero component is the z-component.

We can decompose Fk and Tk using the same series expansion, yielding F̂k,0, F̄k,0,

F̂k,1 and F̄k,1, and their corresponding torques. These forces and torques result from
the flows (û0, p̂0), (ū0, p̄0), (û1, p̂1) and (ū1, p̄1) respectively.

The values F̂k,0, T̂k,0 are the leading-order oscillating force and torque without ec-

centricity. Similarly, F̂k,1 and T̂k,1 are the leading-order oscillating force and torque
resulting from the presence of eccentricity. Because these are oscillating, they will van-
ish after taking a time-average. For this reason, following [7], we disregard these values
in force and torque computations.

The values F̄k,0, T̄k,0 are the leading-order steady force and torque without eccen-
tricity, and F̄k,1, T̄k,1 are the steady force and torque resulting from eccentricity. Thus
the time-averaged force will be F̄k,0. If F̄k,0 = 0, T̄k,0 = 0 then the ellipses will remain
in place, even if they were allowed to move freely. Thus at leading order, the stable
equilibrium position of the ellipses is determined by a stable solution to F̄k,0 = 0.

From [7] we know that this force equilibrium position is a transverse configuration, so
by symmetry T̄k,0 = 0. Thus the ellipses will rotate with the second-order torque T̄k,1.
Therefore, the ellipses will align with the angular orientation corresponding to a stable
equilibrium T̄k,1 = 0. The full expressions for Fk,i and Tk,i can be found in Appendix B.

3. Numerical Procedure

In this section we describe the finite element analysis used to solve our linear prob-
lems. By combining consecutive solves, we can solve our series of coupled linear prob-
lems.

In Subsection 3.1 we introduce the weak form of the Brinkman equation and describe
the library used to solve this weak form. Then in Subsection 3.2 we describe how the
linear problems are solved in order, and the physical meaning of each of these solves.

3.1. Finite element method. The dimensionless Brinkman equation can be expressed
as (

∇2 − α2
)
u = ∇p− f .(3.1)

Conventionally, this equation describes flow subject to a body force f in a porous region
with drag coefficient −α2 [6]. If α = 0 we obtain the classical Stokes equation. Using
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test functions v and q corresponding to u and p, the weak form of Equation (3.1) is∫
Ω

(
⟨∇u,∇v⟩+ α2(u · v)− (∇ · v)p

)
dS =

∫
Ω

v · f dS,

∫
Ω

q(∇ · u) dV = 0.(3.2)

Here ⟨·, ·⟩ denotes the tensor inner product.
We now discretize our domain into triangular elements using the Frontal-Delauney

meshing algorithm from the gmsh library [10]. Two sample meshes used to solve the
1-ellipse and the 2-ellipse cases are displayed in Figure 2. These are the meshes used
to generate the flow field visualizations in Subsection 4.1 and Subsection 5.1.

(a) (b)

Figure 2. Two of the meshes used in our torque and force computations.
We vary the distance of the circles from the center to generate different
meshes for force computations.

On each element, for both u and p we use Lagrange polynomial functions. The vector
field u is represented by degree 2 vector-valued Lagrange functions, and the scalar field
p is represented by degree 1 scalar-valued Lagrange functions. Our solution space will
be piecewise combinations of these. We are solving for the discretized approximation
uh and ph on their respective meshes.

We use the distributed-memory version of the SuperLU library and PETSc library
for scientific computation to directly solve the resulting matrix-vector problem [16, 15].
Intermediate terms are computed and interpolated using the UFL form language via
DolfinX [13, 14]. In the solving process, we introduced terms ε ≈ 10−12 on the right-
hand side of Equation (3.2) for regularization purposes.

3.2. Solution procedures. We wish to solve the system of equations eqs. (A.34)
to (A.41).
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The first problem Equation (2.6) describes the leading-order oscillatory flow disre-
garding eccentricity. The second problem Equation (2.7) describes the leading-order
steady time-averaged flow disregarding eccentricity. The third problem Equation (2.8)
describes the leading-order oscillatory flow contributed by eccentricity. The last prob-
lem Equation (2.9) describes the time-averaged steady flow contributed by eccentricity.

We solve these four problems in order, and arrive at four time-independent flows:
(û0, p̂0), (ū0, p̄0), (û1, p̂1), (ū1, p̄1). Once previous flows are computed, we substitute
them into subsequent problems. Each problem will be of the form Equation (3.1),
so we use the finite element procedure described in Subsection 3.1.

Finally, we integrate our discretized solutions on the mesh to compute the forces and
torques for each flow on the two circles, according to the expressions in Subsection 2.4.

4. Single-ellipse Numerical Results

Applying the methods described in Section 3, we solve for û0, ū0, û1, ū1 in that order
for the single-ellipse problem.

4.1. Single-ellipse flow fields. Firstly, we present flow field plots, with velocity stream-
lines and a vorticity colormap.

All the flows depicted in Figure 3 are independent of the eccentricity of the near
spheres, and so the orientation of the major axis is not shown. The flows were solved
in a circular domain of diameter 30, then cropped to a 16× 16 box and plotted.

The plots for Φ = π
2
are excluded here, because adding π

2
to Φ is equivalent to sign

flipping ε2, so û1 and ū1 simply sign flip. This can be confirmed with the Φ = π
2
plot

shown in our supplement.

We first analyze the flows û0 and ū0 without eccentricity. As seen in Figure 3, the
sign of the vorticity around the circle boundary, as well as the qualitative arrangement
of the double boundary layer, is invariant of Re. However, as Re increases, boundary
layers thin and become more concentrated. As Re gets sufficiently large, i.e. at Re = 10
for û0 and at Re = 100 for ū0, a second vortex appears. Notice that in the top-right
corner, in Figures 3c and 3e the flow is clockwise, but in Figure 3f the flow is clockwise.

As Re increases, boundary behavior becomes stronger, flow in the bulk becomes
weaker, and the secondary vortex comes closer to the origin, as predicted by [21]. Now
we can introduce eccentricity into our analysis, by examing the flows û1 and ū1.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Array of plots of vorticity and velocity streamlines for
single-ellipse flows without eccentricity. Three columns correspond to

Re = 1, 10, 100 respectively. Two rows correspond to û0 and ū0

respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4. Array of plots at Re = 10 of vorticity and velocity
streamlines of the oscillating flow resulting from eccentricity û1. From
Figures 4a to 4f Φ is incremented π

12
radians at a time, from Φ = 0 to

Φ = 5π
12
.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Array of plots at Re = 10 of vorticity and velocity
streamlines of the steady flow resulting from eccentricity ū1. From

Figures 5a to 5f Φ is incremented π
12

radians at a time, from Φ = 0 to

Φ = 5π
12
.

As seen in Figures 4 and 5 respectively, the vorticity in the neighborhood of the ellipse
has a characteristic 3-periodicity in û1 and 4-periodicity in ū1. The 3- and 4-periodicity
for û0 and ū0, respectively, is created by the sign changes in the cos(2θ − 2Φ) term
in the boundary condition. Notice that sign flips in the periodicity are near locations
satisfying cos(2θ−2Φ) = 0. At these locations on the the boundary we necessarily have
û1 = ū1 = 0.

4.2. Single-ellipse torques. Finally, we move on to examining torques on the ellipse
for various values of Φ and Re.

Examining Equation (A.36), we see that ū0 is driven by the Reynolds stress 1
2
Re(û0 ·

∇û∗
0), so we expect ū0 to be approximately proportional to Re. Then from Equa-

tions (A.40) and (A.41) we see that ū1 is driven by a Reynolds stress and boundary
condition proportional to Re, so we expect the torque to be proportional to Re as well.
Thus, we scaled the coloring in this plot by log Re, and scaled the torques by Re.

As seen in Figure 6, the torque resulting from ū1 is sinusoidal in Φ. The close
coincidence of the scaled plots demonstrates that the torques scale with Re.

The torque ū1 equals 0 at two points, Φ = 0 and Φ = π
2
. As conjectured in the

conclusion of [7], the torque is increasing at Φ = 0 and decreasing at Φ = π
2
, i.e. the

only stable equilibrium for angular orientation is at Φ = π
2
.

We will continue to study torques in the double-ellipse case in Subsection 5.3.
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Figure 6. Plot of eccentricity-induced steady torques as a function of
Φ, for various Re values. These plots have been scaled by Re.

5. Double-ellipse Numerical Results

Now that we have completed a numerical analysis of the single-ellipse case in Sec-
tion 4, we move on to numerical results for the double-ellipse case.

Our results include flow field visualization in Subsection 5.1, force and equilibrium
analysis in Subsection 5.2, and finally the torque and orientation analysis in Subsec-
tion 5.3.

We find that most of the effects localized to the ellipse that were explored in Section 4
still hold in the double-ellipse case. We qualitatively corroborate our force computations
with [7]. Finally, we explore the torques in the double-ellipse case. We find that
the torque of one ellipse is sinusoidal in the angular orientation of that ellipse, while
the perturbation from the orientation of the other ellipse is also sinusoidal in that
ellipse’s angular orientation, albeit approximately one order of magnitude smaller. In
addition, the equilibrium position from the single-ellipse case holds here, with both
ellipses orienting perpendicular to the direction of oscillation, parallel to the direction
of alignment.
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5.1. Double-ellipse flow fields. Before examining the force and torque induced on
these ellipses, we wish to understand the qualitative nature of the flows varied across
the parameter space.

(a) (b) (c)

(d) (e) (f)

Figure 7. Array of plots of vorticity and velocity streamlines at
Re = 1. Three columns correspond to φ = 0, π

4
, π
2
respectively. Two

rows correspond to û0 and ū0 respectively.

Figure 7 is an array of plots with velocity flow streamlines and log-scaled vorticity
colormaps for various φ values at K = 2 and Re = 1. All the flows depicted in Figure 7
are independent of the eccentricity of the near spheres, and so the orientation of the
major axis is not shown. As in Subsection 4.1, these flows were cropped to a 16×16 box
before being plotted. We used Re = 1, with a separation distance of 2, corresponding
to K = 2.

Here, columns are associated with the angular position φ. The first row is the leading-
order oscillatory flow û0, and the second row is the leading-order steady flow ū0.

Just as in Subsection 4.1, the streamline plots of Figures 7a to 7c show fluid flow in
the direction of oscillation uniformly throughout the domain, regardless of φ.

We can qualitatively corroborate these plots with existing results about 2D and 3D
steady streaming. The steady flow moves fluid from the poles (the left and right ends of
the circles) to the equator (the top and bottom ends of the circles), as predicted by [21].
The vortex rings in the steady flow also match those predicted by [21]. Furthermore,
the streamline plots of Figures 7d to 7f qualitatively match those found in [7]; note that
the colormaps in [7] refer to the pressure field, unlike our plots.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Three columns correspond to φ = 0, π
4
, π
2
respectively at

Re = 1. Two rows correspond to û1 and ū1 respectively, with
Φ1 = Φ2 = 0, as indicated by the black bar.

Having reviewed the nature of flows around symmetric objects, we turn to those
around asymmetric objects. The plots in Figure 8 show the flows contributed by ec-
centricity. The orientation of the major axis is indicated by the black bar across the
ellipses. These plots exhibit symmetry across the center of mass, as well as left-right
and top-down symmetry in the cases of φ = 0 and φ = π, as expected.

Just as in the single-ellipse case as studied in Subsection 4.1, these flows exhibit a
characteristic local 3-periodicity and 4-periodicity. This correspondence of local char-
acteristics is expected, because as the position gets closer to one ellipse, the relative
impact of the other ellipse rapidly diminishes.

Furthermore, the arrangement of the signs of vorticity near the circle boundary are
consistent across different φ values, with positive vorticity described approximately by
the region θ ∈ (0, π

4
) ∪ (3π

4
, π) ∪ (5π

4
, 7π

4
). This consistency is expected, because at

increasingly small distances to one ellipse, the effect of the relative position of the other
circle should rapidly diminish.

As further confirmation, we can examine the case φ = π in the same geometric
positions. Similarly to our discussion in Subsection 4.1, adding π

2
to Φi is equivalent to

flipping the sign of ε2, keeping the same geometric setup otherwise. Then it is apparent
that û0 and ū0 will sign-flip. This flow survey is included in our supplement.

Finally, Figure 9 depicts a survey of flows with Φ1 = 0 and Φ2 =
π
2
. Notice the new

sign-flip behavior here; compared to the Φ1 = Φ2 ∈ {0, π
2
}, the vorticity is now an even
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(a) (b) (c)

(d) (e) (f)

Figure 9. Three columns correspond to φ = 0, π
4
, π
2
respectively at

Re = 1. Two rows correspond to û1 and ū1 respectively, with
Φ1 = 0,Φ2 =

π
2
, as indicated by the black bar.

function of position where it was an odd function before, and vice versa. This is because
the geometric setup now has reflective symmetry instead of rotational symmetry.

We further study the effect of Φ1 and Φ2 on the fluid flow in Subsection 5.3.

5.2. Double-ellipse force analysis. After analyzing these flows qualitatively, we now
analyze the resulting forces and torques on the ellipses numerically, and once again
corroborate our model with existing results. We begin with the force.

The leading-order force on the ellipses is from ū0. Only when F̄0 = 0 has the sphere
reached equilibrium.

As stated in [7], at equilibrium, the circles are either in horizontal (axial) configu-
ration, or vertical (lateral/transverse) configuration. In the case of unbounded fluid,
the only stable equilibria are in the transverse configuration. More specifically, there is
exactly one stable equilibrium in the transverse configuration, and there is at most one
equilibrium in the axial configuration which is always unstable.

Figure 10 displays a force survey in the transverse configuration, and a plot of the
equilibrium K value for various Reynolds numbers. We consider only the transverse
configuration to restrict our analysis to stable equilibria.
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(a) (b)

Figure 10. The left-hand plot is a survey of the force applied on each
of the circles in the transverse direction varying with respect to K, for
various values of Re. These have been scaled with Re. The right-hand
plot is a graph of the K-value of the transverse configuration near

equilibria with respect to Re.

As discussed in Subsection 4.2, we expect ū0 to scale approximately with Re, and
consequently the force should also scale with Re. Indeed, these forces are of similar
magnitude after scaling by Re, as seen at the left endpoints in Figure 10a.

These surveys qualitatively match results from [7]. Because this is Re-scaled, it is
clear that larger Reynolds numbers exhibit larger forces than smaller Reynolds numbers,
as originally found in [7].

Now we examine the force equilibrium position as a function of Re. We determined
the equilibria positions in Figure 10b using a bisection search. The determined equi-
librium positions correspond to x-intercepts in the force survey with a negative first
derivative, signifying a stable equilibrium. These x-intercepts are marked on the x-axis
in Figure 10a.

The left endpoint is Re = 0.01. The plot suggests that as Re → 0 the equilibrium
position converges. This can also be seen from several force functions having roots in
the same vicinity in Figure 10a. As noted in [7] the equilibrium position should limit
to ∞ as Re → 0, but because of boundary effects the equilibrium K value stalls at
approximately one third of the domain radius. Thus, this convergence should not be
expected in the case of unbounded fluid.

The sharp drop in the equilibrium position in Figure 10b near Re = 3.5 is attributed
to the flatness of the force as a function of K as seen in Figure 10a. The rapid change in
equilibrium distance at approximately Re = 5 can be attributed to the stiff behavior of
the force F = F (K), as the function’s derivative approaches zero as shown in Figure 10a.
Specifically, the flat part of the function as a force of K yields a critical Re value where
the equilibrium distance rapidly decreases.
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Finally, as Re → ∞ we see the equilibrium K tending towards 1, corresponding to a
separation distance of 0.

5.3. Double-ellipse torques. For the values of K,φ,Re such that the ellipses expe-
rience no force, we can examine their torques. We use the equilibrium positions of F̄k,0

as shown in Figure 10b.
As discussed in Subsection 2.4, the rotation and alignment of the ellipses in these

configurations is driven solely by T̄k,1. From henceforth, we abbreviate T̄k,1 by simply
Tk.

(a) (b)

(c) (d)

Figure 11. In all four plots, the x-axis is a survey over 60 values of
Φ2. Figure 11a is a survey of torques on Ω1 and Ω2 for various values of

Φ1. Figure 11b is a survey of the means-adjusted torques on Ω1 for
various values of Φ1 and Re, with color and marker indicating the

combination. Figure 11c plots the torques on Ω2, i.e. a survey of the
torque of one ellipse as a function of the orientation of that ellipse. On
the other hand Figure 11d plots the torques on Ω1, i.e. a survey of the
torque of one ellipse as a function of the orientation of the other ellipse.

For Re = 1, 3, 10, 30, and 100, we surveyed Tk for Φ1 = nπ
12

for integer 0 ≤ n ≤ 6
and a dense collection of Φ2 ∈ [0, π). The plot for Re = 10 is shown in Figure 11a; the
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remainder are similar. Similarly to Figure 6 and Figure 10a, we scaled all torques by
the Reynolds number, because ū1 scales approximately with Re.

We can make several corroborating symmetry observations. In Figure 11a, at Φ1 =
Φ2, we obtain T1 = T2, as expected from symmetry across the center of the domain.
Furthermore, T1 = T2 = 0 at Φ1,Φ2 ∈ {0, π

2
, π}, as expected from left-right symmetry.

Furthermore, the stable equilibrium is demonstrated to always be at Φi =
π
2
. As can

be seen from the T1 plots, if one of the circles is held at a non-equilibrium angle, the
equilibrium position of the other circle will be only slightly perturbed.

For all four Reynolds numbers, we see that as Φ2 varies, the value of T2 varies much
more than the value of T1. Comparing amplitudes between Figure 11c and Figure 11d,
the amplitude of the variation of T1 is 0.02-0.05 times that of T2, i.e. T1 does not change
much in response to change in Φ2. Similarly, the value of T2 barely changes as Φ1 varies.

Thus, for Re ∈ [1, 100], we conclude that the torques of the two circles are mostly
independent of the others’ position.

As seen from Figure 11b, the change in T1 as a function of Φ2 is sinusoidal. The mark-
ers for the same Re value all coincide, demonstrating that this change is independent
of the current value of Φ1. Thus, at leading order, the steady torque from eccentricity
T1 is a sum of two univariate sinusoidal functions, one with larger amplitude in Φ1 and
the other with smaller amplitude in Φ2.

In conclusion, the orientation of a ellipse does not have a controlling effect on the
torque induced on the other ellipse. After the two ellipse reach a point where the forces
are 0, they will find a stable equilibrum when align themselves with their major axes
perpendicular to the direction of oscillation. If one of their axes is aligned parallel to
the direction of oscillation, that ellipse is in an unstable equilibrium.

6. Conclusion

In this work, the flow around two near-circles, or ellipses, in a circular domain sub-
jected to a uniformly oscillating flow was analyzed using a series expansion. We ex-
panded in two small parameters, the oscillation magnitude and the relative perturbation
of the near-circles from perfect circles. Our series expansion yielded four pairs of veloc-
ity vector fields and pressure scalar fields, corresponding to the leading order oscillatory
and steady flow without eccentricity, and the leading order oscillatory and steady flow
induced by eccentricity.

We first analyzed the numerical solution to single-ellipse case, concluding that the
stable orientation of a single ellipse is in the direction perpendicular to oscillation, as
predicted by [7]. Furthermore, the torque is sinusoidal in the angular orientation Φ,
and approximately proportional to Re.

Next, we analyzed the double-ellipse case with our solver. We first plotted the vor-
ticity and streamlines of our flows, which qualitatively match similar results obtained
by [7, 21].
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We then surveyed the leading order force and equilibrium points without eccentricity
by Reynolds number. The force scales with Re, and the equilibrium value for the
distance of the center of the circle to the center of the domain K converges as Re → 0.
However, As Re → ∞, this same equilibrium value for K limits to 1, corresponding to
a separation distance of 0.

Finally, we surveyed the leading order torque contributed by eccentricity. Because the
force equilibrium points are left-right symmetric, they have zero torque in the leading-
order flows without eccentricity. Thus, we can analyze the torque in the steady flows
contributed from eccentricity to determine the stable equilibrium of angular alignment.

Our numerical analysis determined that for various intermediate Reynolds numbers,
the circles orient with both of their major axes pointing perpendicular to the direction of
oscillation as predicted by [7], with an unstable equilibrium at the parallel orientation.
Furthermore, the angular position of one circle did not have a significant effect on the
torque experienced by the other circle. Specifically, at leading order, the torque on one
circle is the sum of two univariate functions that are sinusoidal in each of the angular
orientations. Extrapolating to a larger collection of ellipses or near spherical beads,
after alignment into a chain perpendicular to the direction of oscillation as indicated
by [11], the ellipses will orient with their major axis pointing in the same direction as
the chain, perpendicular to the direction of oscillation, just as predicted by [7].

Extrapolating to the case of a chain of near spheres, we surmise that after alignment
[7], the major axes of the ellipses will orient themselves perpendicular to the direction
of oscillation, parallel to the chain. However, a single near sphere held in position does
not have a controlling effect on the orientations of other near spheres.
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Appendix A. Ansatz Derivation and Series Expansion

We use the expansions

u = ε1e
it(û0 + ε2û1 + O(ε22)) + ε21(ū0 + ε2ū1 + O(ε22)) + O(ε31)(A.1)

= ε1

(
eitû0 + e−itû∗

0

2
+ ε2

eitû1 + e−itû∗
1

2

)
+ ε21(ū0 + ε2ū1) + O(ε22) + O(ε31),(A.2)

p = ε1e
it(p̂0 + ε2p̂1) + ε21(p̄0 + ε2p̄1) + O(ε31).(A.3)

Both û = û0 + ε2û1 and ū = ū0 + ε2ū1 are time-independent. For û this is justified
because the first-order flow results entirely from the oscillation, and so we expect the
first-order flow to be oscillatory as well. We wish to compute the time-averaged flow at
ε21ε2 order and lower, and so ū can also be assumed to be time-independent.

Note that we can keep the abbreviated real part notation for linear operators.
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These must satisfy

Re

(
∂u

∂t
+ (u ·∇)u

)
−∇2u = −∇p,(A.4)

∇ · u = 0,(A.5)

u(∞) = ε1e
itx,(A.6)

u|r=1 = −1 · ε2 cos(2θ − 2Φ1)(r ·∇)u |r=1 .(A.7)

We obtain Equation (A.7) from Taylor expanding the near-circle from the original
perfect circle. Geometrically, the radial distance from the perfect circle to the near-
circle is ε2 cos(2θ − 2Φ1). Thus, to a first approximation in ε2, for x on the near-circle,
0 = u(x) = u|r=1 + ε2 cos(2θ − 2Φi)(r ·∇)u|r=1.

The first term Re
(
∂u
∂t

)
in Equation (A.4) becomes

Re

(
ε1
ieitû0 − ie−itû∗

0

2
+ ε1ε2

ieitû1 − ie−itû∗
1

2

)
+ O(ε22) + O(ε31).(A.8)

The expression using the real part notation is

Re
(
ε1ie

itû0 + ε1ε2ie
itû1

)
+ O(ε22) + O(ε31).(A.9)

The second term Re (u ·∇u) (to within a factor of O(ε31)+O(ε22)) of Equation (A.4)
becomes

Re

(
ε21

(
eitû0 + e−itû∗

0

2
+ ε2

eitû1 + e−itû∗
1

2

)
·∇

(
eitû0 + e−itû∗

0

2
+ ε2

eitû1 + e−itû∗
1

2

))
.

(A.10)

Grouping Equation (A.10) by Fourier modes yields

1

4
Re

(
ε21

(
eit(û0 + ε2û1) + e−it(û∗

0 + ε2û
∗
1)
)
·∇

(
eit(û0 + ε2û1) + e−it(û∗

0 + ε2û
∗
1)
))

.

(A.11)

Notice that any e±2it terms will be cancelled by coefficients of the ε21e
±2it term, but

since we only wish to regard the time-averaged flow at ε21ε2, we can discard these terms.
Then Equation (A.11) yields

1

4
Re

(
ε21 (û0 + ε2û1) ·∇ (û∗

0 + ε2û
∗
1) + ε21 (û

∗
0 + ε2û

∗
1) ·∇ (û0 + ε2û1)

)
.(A.12)

Dropping ε22 terms and collapsing conjugate sums to real expressions yields

1

2
Re

(
ε21ℜ(û0 ·∇û0) + ε21ε2ℜ(û0 ·∇û∗

1 + û∗
1 ·∇û0)

)
+ O(ε31) + O(ε22).(A.13)

Finally we can drop the ℜ symbol and get

Re

(
1

2
ε21(û0 ·∇û∗

0) +
1

2
ε21ε2(û0 ·∇û∗

1 + û∗
1 ·∇û0)

)
+ O(ε31) + O(ε22).(A.14)
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The next term in Equation (A.4) is

−∇2u = −ε1e
it∇2û0 − ε1ε2e

it∇2û1 − ε21∇2ū0 − ε21ε2∇2ū1 + O(ε31) + O(ε22).(A.15)

Finally, using Equation (A.3) the right side of Equation (A.4) is

−∇p = −ε1e
it(∇p̂0 + ε2∇p̂1)− ε21(∇p̄0 + ε2∇p̄1) + O(ε31) + O(ε22).(A.16)

Putting all the parts of Equation (A.4) together, the three expressions from Equa-
tion (A.9), Equation (A.14), Equation (A.15)

Re
(
ε1ie

itû0 + ε1ε2ie
itû1

)
+ O(ε31) + O(ε22),(A.17)

Re

(
ε21
1

2
(û0 ·∇û0) + ε21ε2

1

2
(û0 ·∇û∗

1 + û∗
1 ·∇û0)

)
+ O(ε31) + O(ε22),(A.18)

−ε1e
it∇2û0 − ε1ε2e

it∇2û1 − ε21∇2ū0 − ε21ε2∇2ū1 + O(ε31) + O(ε22),(A.19)

sum to equal the expression from Equation (A.16)

−ε1e
it(∇p̂0 + ε2∇p̂1)− ε21(∇p̄0 + ε2∇p̄1) + O(ε31) + O(ε22).(A.20)

We are now justified in dropping the O(ε31) + O(ε22) terms.
Matching the coefficients of ε1, ε

2
1, ε1ε2, ε

2
1ε2 in these four expressions, yields

Re
(
ieitû0

)
− eit∇2û0 = −eit∇p̂0,(A.21)

1

2
Re(û0 ·∇û0)−∇2ū0 = −∇p̄0,(A.22)

Re(ieitû1)− eit∇2û1 = −eit∇p̂1,(A.23)

1

2
Re(û0 ·∇û∗

1 + û∗
1 ·∇û0)−∇2ū1 = −∇p̄1.(A.24)

Finally, removing eit we obtain

(∇2 − iRe)û0 = ∇p̂0,(A.25)

∇2ū0 = ∇p̄0 +
1

2
Re(û0 ·∇û0),(A.26)

(∇2 − iRe)û1 = ∇p̂1,(A.27)

∇2ū1 = ∇p̄1 +
1

2
Re(û0 ·∇û∗

1 + û∗
1 ·∇û0).(A.28)

The other Equation (A.5) becomes

∇ · û0 = ∇ · ū0 = ∇ · û1 = ∇ · ū1 = 0.(A.29)
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The first boundary condition Equation (A.6) becomes

û0(∞) = x, ū0(∞) = û1(∞) = ū1(∞) = 0.(A.30)

The second boundary condition Equation (A.7) becomes

ε1e
it(û0 + ε2û1) + ε21(ū0 + ε2ū1) = −ε2 cos(2θ − 2Φi)(r ·∇)(ε1e

it(û0 + ε2û1) + ε21(ū0 + ε2ū1)).

(A.31)

In Equation (A.30) and Equation (A.31), the only terms that match are ε1ε2 and
ε21ε2, which yield

eitû1 = − cos(2θ − 2Φi)(r ·∇)eitû0,(A.32)

eitū1 = − cos(2θ − 2Φi)(r ·∇)eitū0.(A.33)

For the lower-order ε1, ε
2
1 we obtain û0 = û1 = 0.

Reordering yields

(
∇2 − iRe

)
û0 = ∇p̂0, ∇ · û0 = 0,(A.34)

û0(S) = 0, û0(∞) = x.(A.35)

∇2ū0 = ∇p̄0 +
1

2
Re (û0 ·∇û∗

0) , ∇ · ū0 = 0,(A.36)

ū0(S) = 0, ū0(∞) = 0.(A.37)

(
∇2 − iRe

)
û1 = ∇p̂1, ∇ · û1 = 0,(A.38)

û1(S) = − cos(2θ − 2Φi)(r ·∇)û0, û1(∞) = 0.(A.39)

∇2ū1 = ∇p̄1 +
1

2
Re (û0 ·∇û∗

1 + û∗
1 ·∇û0) , ∇ · ū1 = 0,(A.40)

ū1(S) = − cos(2θ − 2Φi)(r ·∇)ū0, ū1(∞) = 0.(A.41)

Finally, we can rewrite Equations (A.36) and (A.40) using the Reynolds stresses
R0, R1 in the form ∇2u = ∇p −∇ ·R, where R is a tensor field. Specifically, using
R0 = −1

2
Re û0 ⊗ û∗

0 and R1 = −1
2
Re û0 ⊗ û∗

1 yields Equations (2.7) and (2.9).
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Appendix B. Torque and Force Expression Derivation

For ease of notation, we adopt a coordinate system centered at O1, the center of the
first circle. Then n = x. The force vector F1 can be expressed as

F1 =

∫
∂Ω1

(pI +
1

2

(
∇u+ (∇u)T

)
) · x dS(B.1)

=

∫
∂Ω1

px+
1

2
(∇u) · x+

1

2
(∇u)T · x dS.(B.2)

(B.3)

For the torque T1, instead of using the cross product, we use a dot product with a
modified = ⟨−y, x⟩ where x, y are the scalar components of x. Then

T1 =

∫
∂Ω1

m · ((pI +
1

2

(
∇u+ (∇u)T

)
) · x) dS(B.4)

=

∫
∂Ω1

pm · x+
1

2
m ·∇u · x+

1

2
m · (∇u)T · x dS.(B.5)

(B.6)

These expressions were computed by explicitly integrating across the discretized bound-
ary ∂Ω1. Computations for F2 and T2 are analogous.

Appendix C. Convergence

C.1. Single-ellipse convergence. Using Re = 10, convergence tests for element width
and domain size were conducted on all four flows û0, ū0, û1, ū1.

A reference solution u, along with its corresponding four vector fields for velocity and
four scalar fields for pressure, was defined using the numerical fields generated by a grid
with 61,660 nodes and 2 DOFs each, with a minimum element size of 0.03. For various
coarser meshes with proportional element sizes to this reference solution, the L2 error of
all eight velocity fields and pressure fields of the corresponding solutions are computed
relative to the reference solution, and plotted in Figure 12a as a function of the minimum
element size. The L2 error w.r.t. element width exhibits a rate of convergence faster
than the quadratic lines shown in the log-log plot, as desired. Furthermore, the L2 error
near the circles w.r.t. domain size converges faster than exponentially, as seen by the
concave log-scaled plot in Figure 12b.

C.2. Double-ellipse convergence. Using Re = 10, φ = π
2
and K = 1, we conducted

similar convergence tests for all four flows. The results are seen in Figure 13, with
similar discussion and results.
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(a) (b)

Figure 12. The left-hand plot is a log-log plot of L2 error between a
reference solution on the finest single-ellipse mesh and various solutions

on meshes with proportional element sizes, plotted relative to the
largest element size on the solution mesh. The errors are plotted for all
eight velocity and pressure fields. Dashed lines denote quadratic rates of
convergence. The right-hand plot is a log-scaled plot of L2 error between
a reference solution on the largest mesh and various solutions on smaller

meshes, restricted to the domain with diameter 16 centered at O.
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