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number involutions of Sn 
⇔ 

std tableaux with n elements



Definitions

A collection of the permutations of {1,..., n} that acts as a group with 
composition of permutations being the group operation
There are n! elements

Ex. 
We write elements as two rows → 1 2 3

   1 3 2
132 is an element of S

3
 where

1 → 1
2 → 3
3 → 2

Symmetric Group

←omit the first row for simplicity



Definitions

For S
n
 , an element is an involution if applying the 

permutation twice maps every element to itself

Ex. 
52431 in S

5

Involution

5
2
4
3
1

1
2
3
4
5

1
2
3
4
5



Tableau

5 3 1

2 4 6

7

Ferrers 
Diagram

shape λ = (3,3,1)

Unordered decomposition 
of a positive integer into 
positive integer parts

eg. 7 = 3 + 3 + 1

Partition 



Standard Tableau

1 2 3

4 5 6

7

1 3 5

2 4 6

7

1 3 4

5 2 7

6

Increasing →

Increasing →



Standard Tableau

1 2 3

4 5 6

7

1 3 5

2 4 6

7

1 3 4

5 2 7

6

Increasing →

Increasing →

standard standard not standard



number involutions of Sn 
⇔ 

std tableaux with n elements



R-S 
Algorithm



π ⟺(P, Q)
permutations in Sn pairs of std tableaux



Forward Correspondence

given π = x
1
x

2
 …x

n
for i in 1,..., n {

R = 1
x = x

i
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

P “insertion tableau”
given π = x

1
x

2
…x

n
for i in 1,..., n {

set the cell in which insertion terminates to n
}

Q “recording tableau”



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

1
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 4
DISPLACED: n/a

4

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

1
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to 1
}

π = 41325

inserted: 4
DISPLACED: n/a

4

P

Q
1



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

2
while x < some element in row 1 {

y = min element of row 1 st y > x = 4
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 1
DISPLACED: 4

1

1

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

2
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x = 4 to the end of row 2

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 4
DISPLACED: n/a

1

4

1

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

2
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to 2
}

π = 41325

inserted: 1
DISPLACED: 4

1

4

1

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

3
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append 3 to the end of row 1

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 3
DISPLACED: n/a

1 3

4

1

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

3
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

inserted: 3
DISPLACED: n/a

1 3

4

1 3

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

4
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 2
DISPLACED: 3

1 2

4

1 3

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

4
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 3
DISPLACED: 4

1 2

3

1 3

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

4
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 4
DISPLACED: n/a

1 2

3

4

1 3

2

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

4
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

inserted: 2
DISPLACED: 3, 4

1 2

3

4

1 3

2

4

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

5
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}

Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

INSERTING: 5
DISPLACED: n/a

1 2 5

3

4

1 3

2

4

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

5
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}
Done!
Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}

π = 41325

inserted: 5
DISPLACED: n/a

1 2 5

3

4

1 3 5

2

4

P

Q



P TABLEAU
for i in 1,..., 5 {

R = 1
x = x

i
while x < some element in row R {

y = min element of row R st y > x
replace y by x
set x:= y
R++

}
append x to the end of row R

}
Done!
Q TABLEAU
for i in 1,..., 5 {

set the cell in which insertion terminates to n
}
Done!

π = 41325

INSERTING: //
DISPLACED: //

1 2 5

3

4

1 3 5

2

4

P

Q



(41325) → (     ,     )1 2 5

3

4

1 3 5

2

4

π → (P, Q)



(41325) ⟵(     ,      )1 2 5

3

4

1 3 5

2

4

π ⟵ (P, Q)
?

?



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ _

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content index

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index index element of 
the permutation



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ _

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(1, 3) 



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ _

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(1, 3) 



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(1, 3) 



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



1 2 5

3

4

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



1 2 5

4

displaced: 3

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



1 3 5

4

displaced: 2

1 3 5

2

4

π = _ _ _ _ 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



1 3 5

4

displaced: 2

1 3 5

2

4

π = _ _ _ 2 5

P

Q

From Q:
take largest cell and find its coordinates (i, j) and 
content idx

In P:
take element in (i, j) and call it x
let row be row R
while row R isn’t first row:

find the largest element y of row R-1 less than x
replace y by x
set x := y
R--

when row one reached, x is the index idx element of 
the permutation

(3, 1)



(41325) ⟵(     ,      )1 2 5

3

4

1 3 5

2

4

π ⟵ (P, Q)⟶
⟶



Viennot’s 
Construction

Correspondence to a Shadow Line Diagram



π ⟺ 



Making a shadow diagram (for π = 41325):



Making a shadow diagram (for π = 41325): 

1) given                                     ,     represent       by a box with coordinates 



Making a shadow diagram (for π = 41325): 

2) put a light at the origin 



Making a shadow diagram (for π = 41325): 

3) draw the shadow lines! 



Making a shadow diagram (for π = 41325): 

3) draw the shadow lines! 



Making a shadow diagram (for π = 41325): 

3) draw the shadow lines! 



Making a shadow diagram (for π = 41325): 

3) draw the shadow lines! 



Making a shadow diagram (for π = 41325): 

4) label shadow line coordinates –         and 



Making a shadow diagram (for π = 41325): 

4) label shadow line coordinates –         and 



Making a shadow diagram (for π = 41325): 

4) mark shadow line labels –         and 



Mathematics is the art of giving 
the same name to different things.



Viennot’s construction:

The secret correspondence ✨  

R-S algorithm:

1 2 5

3

4
P=

1 3 5

2

4
Q=

(for π = 41325)



Definition (i-th skeleton of π):



Definition (i-th skeleton of π):



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



Definition (i-th skeleton of π):

EXAMPLE

π = 41325



skeleton shadow diagram: tableaux:

P=

Q=



skeleton shadow diagram: tableaux:

P=

Q=



skeleton shadow diagram: tableaux:

P=
1 3 5

Q=



skeleton shadow diagram: tableaux:

P=

Q=
1 3 5



skeleton shadow diagram: tableaux:

1 2 5

P=
1 3 5

Q=



skeleton shadow diagram: tableaux:

1 2 5

P=
1 3 5

Q=



skeleton shadow diagram: tableaux:

1 2 5

P=
1 3 5

2Q=



skeleton shadow diagram: tableaux:

1 2 5

P=
1 3 5

Q=
1 3 5

2



skeleton shadow diagram: tableaux:

1 2 5

3P=
1 3 5

2Q=



skeleton shadow diagram: tableaux:

1 2 5

3P=
1 3 5

2Q=



skeleton shadow diagram: tableaux:

1 2 5

3

4
P=

1 3 5

2

4
Q=



π                        →                     π-1

(index, xindex)             →             (xindex,index)   



π                        →                     π-1

(index, xindex)             →             (xindex,index)   

→  



π                        →                     π-1

(index, xindex)             →             (xindex,index)   

→  



π                        →                     π-1

(index, xindex)             →             (xindex,index)   

→  

P(π)                     →                  Q(π-1)  



for involution, π = π-1

P(π) = Q(π-1) ⇒ P(π) = Q(π) for π involution

then, there is a bijection from involutions to 
pairs of identical standard tableaux (P(π), 
P(π))

Note: involutions correspond to shadow 
diagrams that are symmetric about y=x



pairs of identical 
standard 

tableaux P, Q

shadow 
diagrams 
symmetric 
about y=x

πinvolutions in 
symmetric 

group

(P, Q)



# involutions 
equals 

# std tableau

∴



Example with S4
Standard Tableaux with 4 elements: 10

1 2

3

4

1 2 3 4 1 3

2

4

1 3 4

2

1 2 4

3

1 2 3

4

1 2

3 4

1 3

2 4

1 4

2

31

2

3

4



Example with S4
Involutions in S

4
: 10

1234 1243 1432 1324 2134 3214 4231

2143 3412 4321
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