

Differential Geometry of Curves and Surfaces

Eric Wang, Davido Zhang

12/05/2023

Regular Curves

Definition 1

A regular curve is a differentiable map $\alpha: I \rightarrow \mathbb{R}^{3}$ where I is an open interval in \mathbb{R}, such that $\alpha^{\prime}(t) \neq 0$ for all $t \in I$.

Regular Curves

Definition 1

A regular curve is a differentiable map $\alpha: I \rightarrow \mathbb{R}^{3}$ where I is an open interval in \mathbb{R}, such that $\alpha^{\prime}(t) \neq 0$ for all $t \in I$.

- Arc Length

$$
s(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Regular Curves

Definition 1

A regular curve is a differentiable map $\alpha: I \rightarrow \mathbb{R}^{3}$ where I is an open interval in \mathbb{R}, such that $\alpha^{\prime}(t) \neq 0$ for all $t \in I$.

- Arc Length

$$
s(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

- Curvature

$$
k(s)=\left|\alpha^{\prime \prime}(s)\right|
$$

Properties of Plane Curves

The Isoperimetric Inequality

Let C be a simple closed plane curve with length l, and let A be the area of the region bounded by C. Then $l^{2} \geq 4 \pi A$, and equality holds if and only if C is a circle.

Properties of Plane Curves

The Four-Vertex Theorem
A simple closed convex curve has at least four points where $k^{\prime}(t)=0$.

Properties of Plane Curves

The Four-Vertex Theorem

A simple closed convex curve has at least four points where $k^{\prime}(t)=0$.

Cauchy Crofton Formula

Let C be a regular plane curve with length l. The measure of the set of straight lines (counted with multiplicities) which meet C is equal to $2 l$.

Regular Surfaces

Parameterization: $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in U$, where is an open subset of \mathbb{R}^{2}.

Regular Surfaces

Parameterization: $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in U$, where is an open subset of \mathbb{R}^{2}.
\mathbf{x} is differentiable and homeomorphic.

Regular Surfaces

Parameterization: $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in U$, where is an open subset of \mathbb{R}^{2}.
\mathbf{x} is differentiable and homeomorphic.

Definition 2

A subset $S \subset \mathbb{R}^{3}$ is a regular surface if, for each $p \in S$, there exists a neighborhood $V \subset \mathbb{R}^{3}$ and a parameterization $\mathbf{x}: U \rightarrow V \cap S$ such that for each $q \in U$, the differential map $d \mathbf{x}_{q}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is one-to-one.

Regular Surfaces

Parameterization: $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in U$, where is an open subset of \mathbb{R}^{2}.
\mathbf{x} is differentiable and homeomorphic.

Definition 2

A subset $S \subset \mathbb{R}^{3}$ is a regular surface if, for each $p \in S$, there exists a neighborhood $V \subset \mathbb{R}^{3}$ and a parameterization $\mathbf{x}: U \rightarrow V \cap S$ such that for each $q \in U$, the differential map $d \mathbf{x}_{q}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is one-to-one.
$(\cos u, \sin u, v)$

Regular Surfaces

Parameterization: $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in U$, where is an open subset of \mathbb{R}^{2}.
\mathbf{x} is differentiable and homeomorphic.

Definition 2

A subset $S \subset \mathbb{R}^{3}$ is a regular surface if, for each $p \in S$, there exists a neighborhood $V \subset \mathbb{R}^{3}$ and a parameterization $\mathbf{x}: U \rightarrow V \cap S$ such that for each $q \in U$, the differential map $d \mathbf{x}_{q}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is one-to-one.
$(\cos u, \sin u, v)$
$(\cos u \cos v, \sin u \cos v, \sin v)$

The First Fundamental Form

Tangent plane at p : Vector space $d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right):=T_{p}(S), p=\mathbf{x}(q)$

The First Fundamental Form

Tangent plane at p : Vector space $d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right):=T_{p}(S), p=\mathbf{x}(q)$

$$
\begin{aligned}
E & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle \\
F & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle \\
G & =\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle
\end{aligned}
$$

The First Fundamental Form

Tangent plane at p : Vector space $d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right):=T_{p}(S), p=\mathbf{x}(q)$

$$
\begin{aligned}
E & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle \\
F & =\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle \\
G & =\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle
\end{aligned}
$$

Definition 3

Call the following the area of bounded region $R \in S$, where S is a regular surface:

$$
\iint_{Q}\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right| d u d v=\iint_{Q} \sqrt{E G-F^{2}} d u d v, \quad Q=\mathbf{x}^{-1}(R)
$$

Second Fundamental Form

$$
N(q)=\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|}
$$

Second Fundamental Form

$$
\begin{aligned}
N(q) & =\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|} \\
e & =\left\langle N, \mathbf{x}_{u u}\right\rangle \\
f & =\left\langle N, \mathbf{x}_{u v}\right\rangle \\
g & =\left\langle N, \mathbf{x}_{v v}\right\rangle
\end{aligned}
$$

Second Fundamental Form

$$
\begin{aligned}
N(q) & =\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|} \\
e & =\left\langle N, \mathbf{x}_{u u}\right\rangle \\
f & =\left\langle N, \mathbf{x}_{u v}\right\rangle \\
g & =\left\langle N, \mathbf{x}_{v v}\right\rangle
\end{aligned}
$$

Principal Curvatures

Definition 5

Call $k_{1} \geq k_{2}$ be the principal curvatures of $p \in S$ if $-k_{1},-k_{2}$ are the eigenvalues of $d N_{p}$.

Principal Curvatures

Definition 5

Call $k_{1} \geq k_{2}$ be the principal curvatures of $p \in S$ if $-k_{1},-k_{2}$ are the eigenvalues of $d N_{p}$.
$d N_{p}$ can be expressed by the first and second fundamental forms.

Gaussian Curvature \& Mean Curvature

Definition 6

Define the Gaussian curvature K and the mean curvature H at $q \in S$ as

$$
\begin{gathered}
K=k_{1} k_{2}=\frac{e g-f^{2}}{E G-F^{2}} \\
H=\frac{k_{1}+k_{2}}{2}=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} .
\end{gathered}
$$

Gaussian Curvature \& Mean Curvature

Definition 6

Define the Gaussian curvature K and the mean curvature H at $q \in S$ as

$$
\begin{gathered}
K=k_{1} k_{2}=\frac{e g-f^{2}}{E G-F^{2}} \\
H=\frac{k_{1}+k_{2}}{2}=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} .
\end{gathered}
$$

Definition 7

A regular surface is called minimal if $H \equiv 0$.

Minimal Surfaces - Catenoid

Matthias Weber
https://minimalsurfaces.blog/author/matthiasweber64/

Minimal Surfaces - Helicoid

Matthias Weber
https://minimalsurfaces.blog/author/matthiasweber64/

Intrinsic Geometry

Definition 8

An isometry is a diffeomorphism $\varphi: S \rightarrow \bar{S}$ such that for all $p \in S$ and all $w_{1}, w_{2} \in T_{p}(S)$, we have

$$
\left\langle w_{1}, w_{2}\right\rangle=\left\langle d \varphi_{p}\left(w_{1}\right), d \varphi\left(w_{2}\right)\right\rangle
$$

The surfaces S and \bar{S} are said to be isometric.

Gauss Theorem

Theorema Egregium (Gauss)

The Gaussian curvature K of a surface is invariant by local isometries.

Gauss Theorem

Theorema Egregium (Gauss)

The Gaussian curvature K of a surface is invariant by local isometries.

Even though Gaussian curvature was defined in terms of both the 1st and 2nd fundamental forms, the theorem above tells us that in fact the Gaussian curvature only depends on the 1st fundamental form!

Gauss Theorem

Theorema Egregium (Gauss)

The Gaussian curvature K of a surface is invariant by local isometries.

Even though Gaussian curvature was defined in terms of both the 1st and 2nd fundamental forms, the theorem above tells us that in fact the Gaussian curvature only depends on the 1st fundamental form!

Covariant Derivative

(Tangent) vector field w in $U \subset S$ is a vector field where $w(p) \in T_{p}(S)$ for each $p \in U$.

Covariant Derivative

(Tangent) vector field w in $U \subset S$ is a vector field where $w(p) \in T_{p}(S)$ for each $p \in U$.

Definition 10

Consider curve α such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=y \in T_{p}(S)$. Let $w(t), t \in(-\epsilon, \epsilon)$ be the restriction of differentiable vector field w to α. The normal projection vector of $(d w / d t)(0)$ onto $T_{p}(S)$ is the covariant derivative at p of w relative to vector y, denoted by $(D w / d t)(0)$.

Covariant Derivative

Definition 10

Consider curve α such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=y \in T_{p}(S)$. Let $w(t), t \in(-\epsilon, \epsilon)$ be the restriction of differentiable vector field w to α. The normal projection vector of $(d w / d t)(0)$ onto $T_{p}(S)$ is the covariant derivative at p of w relative to vector y, denoted by $(D w / d t)(0)$.

Parallel Transport

Definition 11

Let $\alpha: I \rightarrow S$ be a parameterized curve and $w_{0} \in T_{\alpha\left(t_{0}\right)}(S), t_{0} \in I$. Let w be the vector field along α, such that $w\left(t_{0}\right)=w_{0}$ and $(D w / d t) \equiv 0$. The vector $w\left(t_{1}\right), t_{1} \in I$, is called the parallel transport of w_{0} along α at the point t_{1}.

Geodesics

Definition 12

A nonconstant curve $\gamma: I \rightarrow S$ is a parameterized geodesic if

$$
\frac{D \gamma^{\prime}(t)}{d t} \equiv 0, t \in I .
$$

For any parameterized curve $\alpha^{\prime}(s)$ in a neighborhood of p, the geodesic curvature is $k_{g}(s):=\left|D \alpha^{\prime}(s) / d s\right|$.

Gauss-Bonnet Theorem

Global Gauss-Bonnet Theorem

Let $R \subset S$ be a regular region and let C_{1}, \ldots, C_{n} be the closed, simple, piecewise regular curves which form the boundary of R. Let $\theta_{1}, \ldots, \theta_{p}$ be the set of all external angles of boundary. Then,

$$
\sum_{i=1}^{n} \int_{C_{i}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{l=1}^{p} \theta_{l}=2 \pi \chi(R)
$$

where s is the arc length of C_{i} and integration over C_{i} takes the sum of integrals over each regular arc of C_{i}.

The Euler-Poincaré Characteristic

https://www.researchgate.net/figure/Triangulation-of-a-surface_fig4_337304188

The Euler-Poincaré Characteristic

$$
\chi=F-E+V
$$

https://www.researchgate.net/figure/Triangulation-of-a-surface_fig4_337304188

The Euler-Poincaré Characteristic

https://www.researchgate.net/figure/T of-a-surface_fig4_337304188

$$
\chi=F-E+V
$$

Sphere $\chi=2$

Applications of the Gauss-Bonnet Theorem

- A compact surface of positive curvature is homeomorphic to a sphere.

Applications of the Gauss-Bonnet Theorem

- A compact surface of positive curvature is homeomorphic to a sphere.
- The sum of the interior angles of a geodesic triangle is

1. Equal to π if $K=0$.
2. Greater than π if $K>0$.
3. Smaller than π if $K<0$.

Applications of the Gauss-Bonnet Theorem

A singular point of a differentiable vector field v on $S: v(p)=0$. Let ϕ be the angle formed by \mathbf{x}_{u} and v along a closed curve with p as the only singular point.

Applications of the Gauss-Bonnet Theorem

A singular point of a differentiable vector field v on S : $v(p)=0$. Let ϕ be the angle formed by \mathbf{x}_{u} and v along a closed curve with p as the only singular point. Let the index I of v at p be the integer such that

$$
2 \pi I=\phi(l)-\phi(0)=\int_{0}^{l} \frac{d \varphi}{d t} d t
$$

Applications of the Gauss-Bonnet Theorem

A singular point of a differentiable vector field v on S : $v(p)=0$. Let ϕ be the angle formed by \mathbf{x}_{u} and v along a closed curve with p as the only singular point. Let the index I of v at p be the integer such that

$$
2 \pi I=\phi(l)-\phi(0)=\int_{0}^{l} \frac{d \varphi}{d t} d t
$$

Poincaré Theorem

The sum of the indices of a differentiable vector field v with isolated singular points on a compact surface S is equal to the Euler-Poincaré characteristic of S.

Rigidity of a Sphere

Theorem (Liebmann(1899), later Hilbert \& Chern)

Let S be a compact, connected, regular surface with constant Gaussian curvature K. Then S is a sphere.

Rigidity of a Sphere

Theorem (Liebmann(1899), later Hilbert \& Chern)

Let S be a compact, connected, regular surface with constant Gaussian curvature K. Then S is a sphere.

Theorem (Hilbert \& Chern)

Let S be a regular, compact, and connected surface with Gaussian curvature $K>0$ and constant mean curvature H. Then S is a sphere.

Rigidity of a Sphere

Theorem (Hilbert \& Chern)

Let S be a regular, compact, and connected surface of positive Gaussian curvature. If there exists a relation $k_{2}=f\left(k_{1}\right)$ in S, where f is a decreasing function of $k_{1}, k_{1} \geq k_{2}$, then S is a sphere.

Rigidity of a Sphere

Theorem (Hopf)

A regular surface of constant mean curvature that is homeomorphic to a sphere is a sphere.

Rigidity of a Sphere

Theorem (Hopf)

A regular surface of constant mean curvature that is homeomorphic to a sphere is a sphere.

Theorem (Alexandrov)
A regular, compact, and connected surface of constant mean curvature is a sphere.

Variation of Curves

Definition 13

Let $\alpha(s):[0, l] \rightarrow S$ be a regular parametrized curve. A variation of α is a differentiable map $h:[0, l] \times(\epsilon, \epsilon) \subset \mathbb{R}^{2} \rightarrow S$ such that

$$
h(s, 0)=\alpha(s), s \in(0, l] .
$$

Variation of Curves

Definition 13

Let $\alpha(s):[0, l] \rightarrow S$ be a regular parametrized curve. A variation of α is a differentiable map $h:[0, l] \times(\epsilon, \epsilon) \subset \mathbb{R}^{2} \rightarrow S$ such that

$$
h(s, 0)=\alpha(s), s \in(0, l] .
$$

A variation h is said to be proper if

$$
h(0, t)=\alpha(0), h(l, t)=\alpha(l), t \in(\epsilon, \epsilon) .
$$

Variation of Curves

Definition 13

Let $\alpha(s):[0, l] \rightarrow S$ be a regular parametrized curve. A variation of α is a differentiable map $h:[0, l] \times(\epsilon, \epsilon) \subset \mathbb{R}^{2} \rightarrow S$ such that

$$
h(s, 0)=\alpha(s), s \in(0, l] .
$$

A variation h is said to be proper if

$$
h(0, t)=\alpha(0), h(l, t)=\alpha(l), t \in(\epsilon, \epsilon) .
$$

$V(s)=(\partial h / \partial t)(s, 0), s \in(0, l]$ is called the variational vector field of h.

1st Variation of Arc Length

Definition 14

Let $h:[0, l] \times(-\epsilon, \epsilon)$ be a proper variation of the curve $\alpha:[0, l] \rightarrow S$ and let $V(s)$ be the variational vector field of h. Then

$$
L^{\prime}(0)=\int_{0}^{l}\langle A(s), V(s)\rangle \mathrm{d} s,
$$

where $A(s)=(D / \partial s)(\partial h / \partial s)(s, 0)$.

2nd Variation of Arc Length

Proposition 2

Let $h:[0, l] \times(\epsilon, \epsilon) \rightarrow S$ be a proper variation of a geodesic $\gamma:[0, l] \rightarrow S$ such that $\left\langle V(s), \gamma^{\prime}(s)\right\rangle=0, s \in[0, l]$. Let $V(s)$ be the variational vector field of h. Then

$$
L^{\prime \prime}(0)=\int_{0}^{l}\left(\left|\frac{D}{\partial s} V(s)\right|^{2}-K(s)|V(s)|^{2}\right) \mathrm{d} s
$$

where $K(s)=K(s, 0)$ is the Gaussian curvature of S at $\gamma(s)=h(s, 0)$.

Bonnet's Theorem

Theorem (Bonnet)

Let the Gaussian curvature K of a complete surface S satisfy the condition

$$
K \geq \delta>0
$$

Then S is compact and the diameter ρ of S satisfies the inequality

$$
\rho \leq \frac{\pi}{\sqrt{\delta}} .
$$

Fary-Milnor Theorem

Definition 15

The total curvature of a parametrized regular curve α with arc length l and parametrized with respect to arc length is defined as

$$
\int_{0}^{l}|k(s)| \mathrm{d} s
$$

Fary-Milnor Theorem
The total curvature of a knotted simple closed curve is greater than 4π.

Bibliography

Differential Geometry of Curves and Surfaces: Revised \& Updated Second Edition by Manfredo P. Do Carmo

Acknowledgements

We would like to thank the PRIMES program, Dr. Gerovitch, Dr. Etingof, and Dr. Khovanova for this amazing presentation opportunity, and the past year of reading. We would also like to thank our mentor Jingze for his guidance through the abstract concepts in Differential Geometry!

Thank you for listening!

