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Regular Curves

Definition 1

A regular curve is a differentiable map α : I → R3 where I is an open
interval in R, such that α′(t) ̸= 0 for all t ∈ I.

Arc Length

s(t) =
∫ t

t0
|α′(t)|dt

Curvature
k(s) = |α′′(s)|
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Properties of Plane Curves

The Isoperimetric Inequality

Let C be a simple closed plane curve with length l, and let A be the area
of the region bounded by C. Then l2 ≥ 4πA, and equality holds if and
only if C is a circle.
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Properties of Plane Curves

The Four-Vertex Theorem

A simple closed convex curve has at least four points where k′(t) = 0.

Cauchy Crofton Formula

Let C be a regular plane curve with length l. The measure of the set of
straight lines (counted with multiplicities) which meet C is equal to 2l.
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Regular Surfaces

Parameterization: x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U, where is an
open subset of R2.

x is differentiable and homeomorphic.

Definition 2

A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exists a
neighborhood V ⊂ R3 and a parameterization x : U → V ∩S such that for
each q ∈ U, the differential map dxq : R2 → R3 is one-to-one.

(cos u, sin u, v)
(cos u cos v, sin u cos v, sin v)
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The First Fundamental Form

Tangent plane at p: Vector space dxq(R2) := Tp(S), p = x(q)

E = ⟨xu, xu⟩
F = ⟨xu, xv⟩
G = ⟨xv, xv⟩

Definition 3

Call the following the area of bounded region R ∈ S, where S is a regular
surface: ∫∫

Q
|xu ∧ xv|dudv =

∫∫
Q

√
EG− F2dudv, Q = x−1(R).
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Second Fundamental Form

N(q) =
xu ∧ xv

|xu ∧ xv|

e = ⟨N, xuu⟩
f = ⟨N, xuv⟩
g = ⟨N, xvv⟩
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Principal Curvatures

Definition 5

Call k1 ≥ k2 be the principal curvatures of p ∈ S if −k1,−k2 are the
eigenvalues of dNp.

dNp can be expressed by the first and second fundamental forms.
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Gaussian Curvature & Mean Curvature

Definition 6

Define the Gaussian curvature K and the mean curvature H at q ∈ S as

K = k1k2 =
eg− f 2

EG− F2

H =
k1 + k2

2
=

1
2

eG− 2fF + gE
EG− F2 .

Definition 7

A regular surface is called minimal if H ≡ 0.
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Minimal Surfaces - Catenoid

Matthias Weber
https://minimalsurfaces.blog/author/matthiasweber64/
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Minimal Surfaces - Helicoid

Matthias Weber
https://minimalsurfaces.blog/author/matthiasweber64/

10 /31



Intrinsic Geometry

Definition 8

An isometry is a diffeomorphism ϕ : S→ S such that for all p ∈ S and all
w1,w2 ∈ Tp(S), we have

⟨w1,w2⟩ = ⟨dϕp(w1), dϕ(w2)⟩

The surfaces S and S are said to be isometric.
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Gauss Theorem

Theorema Egregium (Gauss)

The Gaussian curvature K of a surface is invariant by local isometries.

Even though Gaussian curvature was defined in terms of both the 1st and 2nd
fundamental forms, the theorem above tells us that in fact the Gaussian curvature
only depends on the 1st fundamental form!

K =

det

− 1
2 Evv + Fuv − 1

2 Guu
1
2 Eu Fu − 1

2 Ev

Fv − 1
2 Gu E F

1
2 Gv F G

− det
 0 1

2 Ev
1
2 Gu

1
2 Ev E F
1
2 Gu F G


(EG− F2)2
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Covariant Derivative

(Tangent) vector field w in U ⊂ S is a vector field where w(p) ∈ Tp(S) for each
p ∈ U.

Definition 10

Consider curve α such that α(0) = p and α′(0) = y ∈ Tp(S). Let
w(t), t ∈ (−ϵ, ϵ) be the restriction of differentiable vector field w to α.
The normal projection vector of (dw/dt)(0) onto Tp(S) is the covariant
derivative at p of w relative to vector y, denoted by (Dw/dt)(0).
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Parallel Transport

Definition 11

Let α : I → S be a parameterized curve and w0 ∈ Tα(t0)(S), t0 ∈ I. Let w
be the vector field along α, such that w(t0) = w0 and (Dw/dt) ≡ 0. The
vector w(t1), t1 ∈ I, is called the parallel transport of w0 along α at the
point t1.
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Geodesics

Definition 12

A nonconstant curve γ : I → S is a parameterized geodesic if

Dγ′(t)
dt

≡ 0, t ∈ I.

For any parameterized curve α′(s) in a neighborhood of p, the geodesic
curvature is kg(s) := |Dα′(s)/ds|.
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Gauss-Bonnet Theorem

Global Gauss-Bonnet Theorem

Let R ⊂ S be a regular region and let C1, . . . ,Cn be the closed, simple,
piecewise regular curves which form the boundary of R. Let θ1, . . . , θp be
the set of all external angles of boundary. Then,

n∑
i=1

∫
Ci

kg(s)ds+
∫∫

R
Kdσ +

p∑
l=1

θl = 2πχ(R),

where s is the arc length of Ci and integration over Ci takes the sum of
integrals over each regular arc of Ci.
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The Euler-Poincaré Characteristic

https://www.researchgate.net/figure/Triangulation-
of-a-surface_fig4_337304188

χ = F − E + V

18 /31



The Euler-Poincaré Characteristic

https://www.researchgate.net/figure/Triangulation-
of-a-surface_fig4_337304188

χ = F − E + V

18 /31



The Euler-Poincaré Characteristic

https://www.researchgate.net/figure/Triangulation-
of-a-surface_fig4_337304188

χ = F − E + V

18 /31



Applications of the Gauss-Bonnet Theorem

A compact surface of positive curvature is homeomorphic to a sphere.

The sum of the interior angles of a geodesic triangle is
1. Equal to π if K = 0.
2. Greater than π if K > 0.
3. Smaller than π if K < 0.

19 /31
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Applications of the Gauss-Bonnet Theorem

A singular point of a differentiable vector field v on S: v(p) = 0. Let φ be the
angle formed by xu and v along a closed curve with p as the only singular point.

Let the index I of v at p be the integer such that

2πI = φ(l)− φ(0) =
∫ l

0

dϕ
dt

dt

Poincaré Theorem

The sum of the indices of a differentiable vector field v with isolated
singular points on a compact surface S is equal to the Euler-Poincaré
characteristic of S.
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Rigidity of a Sphere

Theorem (Liebmann(1899), later Hilbert & Chern)

Let S be a compact, connected, regular surface with constant Gaussian
curvature K. Then S is a sphere.

Theorem (Hilbert & Chern)

Let S be a regular, compact, and connected surface with Gaussian curva-
ture K > 0 and constant mean curvature H. Then S is a sphere.
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Rigidity of a Sphere

Theorem (Hilbert & Chern)

Let S be a regular, compact, and connected surface of positive Gaussian
curvature. If there exists a relation k2 = f (k1) in S, where f is a decreasing
function of k1, k1 ≥ k2, then S is a sphere.
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Rigidity of a Sphere

Theorem (Hopf)

A regular surface of constant mean curvature that is homeomorphic to a
sphere is a sphere.

Theorem (Alexandrov)

A regular, compact, and connected surface of constant mean curvature
is a sphere.
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Variation of Curves

Definition 13

Let α(s) : [0, l] → S be a regular parametrized curve. A variation of α is
a differentiable map h : [0, l]× (ϵ, ϵ) ⊂ R2 → S such that

h(s, 0) = α(s), s ∈ (0, l].

A variation h is said to be proper if

h(0, t) = α(0), h(l, t) = α(l), t ∈ (ϵ, ϵ).

V(s) = (∂h/∂t)(s, 0), s ∈ (0, l] is called the variational vector field of h.
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1st Variation of Arc Length

Definition 14

Let h : [0, l]× (−ϵ, ϵ) be a proper variation of the curve α : [0, l]→ S and
let V(s) be the variational vector field of h. Then

L′(0) =
∫ l

0
⟨A(s),V(s)⟩ds,

where A(s) = (D/∂s)(∂h/∂s)(s, 0).
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2nd Variation of Arc Length

Proposition 2

Let h : [0, l]× (ϵ, ϵ)→ S be a proper variation of a geodesic γ : [0, l]→ S
such that ⟨V(s), γ′(s)⟩ = 0, s ∈ [0, l]. Let V(s) be the variational vector
field of h. Then

L′′(0) =
∫ l

0

(∣∣∣∣ D
∂s

V(s)
∣∣∣∣2 − K(s)|V(s)|2

)
ds,

where K(s) = K(s, 0) is the Gaussian curvature of S at γ(s) = h(s, 0).
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Bonnet’s Theorem

Theorem (Bonnet)

Let the Gaussian curvature K of a complete surface S satisfy the condition

K ≥ δ > 0.

Then S is compact and the diameter ρ of S satisfies the inequality

ρ ≤
π√
δ
.
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Fary-Milnor Theorem

Definition 15

The total curvature of a parametrized regular curve α with arc length l
and parametrized with respect to arc length is defined as∫ l

0

∣∣k(s)∣∣ds.

Fary-Milnor Theorem

The total curvature of a knotted simple closed curve is greater than 4π.
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Thank you for listening!


