Homology and Brouwer's fixed point theorem

Evin Liang, Corey Zhao, Derek Zhao
MIT PRIMES

December 5, 2023

Simplices

Definition

$$
\Delta^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i} x_{i}=1, x_{i} \geq 0\right\}
$$

Example

$$
n=0
$$

$$
n=1
$$

$$
n=2
$$

Simplicial complexes

Definition

A face of Δ^{n} is a subset $\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \Delta^{n} \mid x_{i_{1}}, \ldots, x_{i_{j}}=0\right\}$.

Example

Triangle faces

$$
(t, 0,1-t)|t \in I \overbrace{(0,1,0,0)}^{(0,0,1)}(0, t, 1-t)| t \in I
$$

Simplicial complexes

Definition

A simplicial complex X is obtained by gluing together simplices along same dimensional faces such that every simplex in X is uniquely determined by its vertices.

Example

Simplicial complexes

Example
 $S^{1}=\partial \Delta^{2}$

$S^{2}=\partial \Delta^{3}$

$S^{n}=\partial \Delta^{n+1}$

Simplicial complexes

Simplicial complex of a torus T^{2} :

Motivation

Question

Can a simplicial complex of the torus be continuously and invertibly deformed to give a simplicial complex of the sphere?

Answer

No!

Idea

Associate algebraic objects to simplicial complexes to distinguish them.

Chain complexes

Denote the simplex in X with vertices v_{0}, \ldots, v_{n} by $\left[v_{0}, \ldots, v_{n}\right]$.

Definition

The pth chain group of a simplicial complex X is

$$
C_{p}(X)=\left\{\sum_{i} a_{i} \cdot\left[v_{i_{0}}, \ldots, v_{i_{p}}\right] \mid a_{i} \in \mathbb{Q},\left[v_{i_{0}}, \ldots, v_{i_{p}}\right] \text { is a simplex of } X\right\}
$$

Definition

The boundary operator $\partial_{p}: C_{p}(X) \rightarrow C_{p-1}(X)$ is

$$
\partial_{p}\left(\left[v_{0}, \ldots, v_{p}\right]\right)=\sum_{i=0}^{p}(-1)^{i} \cdot\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right] .
$$

Homology

Proposition

$$
\partial_{p-1} \circ \partial_{p}=0
$$

Proof.

$$
\begin{aligned}
\partial\left(\partial\left(\left[v_{0}, v_{1}, v_{2}\right]\right)\right) & =\partial\left(\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right) \\
& =v_{2}-v_{1}-v_{2}+v_{0}+v_{1}-v_{0} \\
& =0
\end{aligned}
$$

Definition

The ith homology group $H_{i}(K)$ is defined as

$$
H_{i}(K)=\operatorname{ker} \partial_{i} / \operatorname{Im} \partial_{i+1}
$$

Remark

(1) Quotient vector space:

- $V=$ vector space, $W \subset V$ a subspace.
- $v, v^{\prime} \in V$ are equivalent iff $v-v^{\prime} \in W$.
- V / W is the set of equivalence classes.
(2) Since $\partial \circ \partial=0, \operatorname{Im} \partial_{i+1} \subset \operatorname{ker} \partial_{i}$.

Homology of a circle

- $\operatorname{ker} \partial_{1}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$ and $\operatorname{Im} \partial_{2}=0$.
- $H_{i}\left(S^{1}\right)= \begin{cases}\mathbb{Q}, & i=0,1 \\ 0, & \text { else }\end{cases}$

Homology of a sphere

- $\operatorname{ker} \partial_{1}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$ and $\operatorname{Im} \partial_{2}=0$.
- $H_{i}\left(S^{n}\right)= \begin{cases}\mathbb{Q}, & i=0, n \\ 0, & \text { else }\end{cases}$

Homology of a disc

- $\operatorname{ker} \partial_{1}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$ and $\operatorname{Im} \partial_{2}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$.
- $H_{i}\left(\Delta^{2}\right)= \begin{cases}\mathbb{Q}, & i=0 \\ 0, & \text { else }\end{cases}$

Homology of a disc

- $\operatorname{ker} \partial_{1}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$ and $\operatorname{Im} \partial_{2}=\left\langle\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right\rangle$.
- $H_{i}\left(\Delta^{n}\right)= \begin{cases}\mathbb{Q}, & i=0 \\ 0, & \text { else }\end{cases}$

Homology of a Torus

$$
H_{i}\left(T^{2}\right)= \begin{cases}\mathbb{Q} & i=0 \\ \mathbb{Q}^{2} & i=1 \\ \mathbb{Q} & i=2\end{cases}
$$

Properties

Theorem

If X is a space, then $H_{\bullet}(X)$ does not depend on the simplicial complex.

Theorem

$f: X \rightarrow Y$ a continuous map of simplicial complexes.
(1) We can produce a matrix $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$.
(2) Given $g: Y \rightarrow Z, g_{*} \circ f_{*}=(g \circ f)_{*}$.

Application of Homology

Definition

Two spaces X and Y are homeomorphic if there exist continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g=\mathrm{id}_{Y}$ and $g \circ f=\mathrm{id}_{X}$.

Application of Homology

Theorem

The sphere is not homeomorphic to the torus.

Proof.

- Suppose $S^{2} \cong T^{2}$.
- There are continuous maps $f: S^{2} \rightarrow T^{2}$ and $g: T^{2} \rightarrow S^{2}$.
- These induce maps $f_{*}: H_{1}\left(S^{2}\right) \rightarrow H_{1}\left(T^{2}\right)$ and $g_{*}: H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(S^{2}\right)$.
- $g_{*} \circ f_{*}=\mathrm{id}_{S^{2}}$ and $f_{*} \circ g_{*}=\mathrm{id}_{T^{2}}$, so f_{*} and g_{*} are invertible.
- Contradiction!

Brouwer

Theorem

Let $f: \Delta^{n} \rightarrow \Delta^{n}$ be a continuous mapping. Then there exists a point $x \in \Delta^{n}$ such that $f(x)=x$.

Notation

$Y \subset X$ a subspace, let $i: Y \rightarrow X$ denote the continuous inclusion.

$$
\begin{aligned}
& \text { Example } \\
& S^{n-1}=\partial \Delta^{n} \subset \Delta^{n} \text {. We get an inclusion } i: S^{n-1} \rightarrow \Delta^{n} \text {. }
\end{aligned}
$$

Proof.

- Suppose that f has no fixed points.
- We get a map $r: \Delta^{n} \rightarrow \partial \Delta^{n}=S^{n-1}$:

- $r \circ i=\mathrm{id}_{S^{n-1}}$.

Brouwer

Proof.

Contradiction!

Questions?

Questions?

Acknowledgements

We thank our mentor Alex Pieloch for his guidance and assistance on this project.

We thank Slava Gerovitch, Pavel Etingof, and Tanya Khovanova as well as the entire PRIMES staff for organizing the PRIMES program.

