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Abstract. Although Deligne’s theorem classifies all symmetric tensor categories (STCs)
with moderate growth over algebraically closed fields of characteristic zero, the classification
does not extend to positive characteristic. At the forefront of the study of STCs is the
search for an analog to Deligne’s theorem in positive characteristic, and it has become
increasingly apparent that the Verlinde categories are to play a significant role. Moreover,
these categories are largely unstudied, but have already shown very interesting phenomena
as both a generalization of and a departure from superalgebra and supergeometry. In this
paper, we study Ver+4 , the simplest non-trivial Verlinde category in characteristic 2. In
particular, we classify all isomorphism classes of non-degenerate symmetric bilinear forms
and study the associated Witt semi-ring that arises from the direct sum and tensor product
operations on bilinear forms.
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1. Introduction

1.1. The broader picture: the quest for Deligne’s theorem in positive character-
istic. While the study of the representation theory of groups initially started by finding and
classifying individual representations, the modern perspective is to consider the category of
all representations in totality. The notion of a symmetric tensor category (always assumed
to be of moderate growth 1 in this paper) arises by axiomatizing the fundamental properties
of representation categories of groups (see [EGNO; EK21] for basic details). A symmet-
ric tensor category (STC) can be thought of as a “home” to do commutative algebra and
algebraic geometry without the language of vectors and vector spaces. One implication is
that given an STC C, we can construct affine group schemes over C, whose representation
categories give us other STCs. These are all said to fiber over C. Because it is shown in

1A symmetric tensor category has moderate growth if the lengths of tensor powers of every object are
bounded by an exponential function. Although we will assume all STCs are of moderate growth, the study
of STCs of non-moderate growth has also attracted attention (see [DM82; Del02; Del07; Eti16; HS22] for
examples of such categories).
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[CEO23] that every STC fibers over a so-called incompressible STC, it remains to classify
the incompressible STCs.

The STCs defined over an algebraically closed field K of characteristic p = 0 are well-
understood thanks to Deligne’s theorem (see [Del02; Del07]). This theorem states that, up
to parity action, all manifestations of such STCs are simply representation categories of
supergroup schemes, i.e. they fiber over sVecK. This means VecK and sVecK are the only
incompressible STCs in characteristic zero, and therefore, characteristic zero affords only
ordinary and super algebra and geometry.

As is par for the course, the story is completely different in positive characteristic. The
most basic counterexample when the characteristic p is larger than 3 is the Verlinde category
Verp, which contains sVecK as a subcategory (see [GM94; GK92; Ost20]). This STC arises
as the semisimplification of the representation category Repαp = RepK[t]/(tp) of the first
Frobenius kernel αp of the additive group scheme Ga (cf. [EO21]). It can be thought of as the
positive-characteristic analog to RepSL2C with some truncation involved when taking tensor
products. For instance, when p = 5, there is an object X ∈ Ver5 (which can be thought of
as the analog of the adjoint representation of SL2C) that satisfies 1 ⊕X = X ⊗X, where
1 is the unit object in the category. If this category were to fiber over supervector spaces,
then X would need to have integral dimension; this is impossible because there is no integral
solution to 1 + dimX = (dimX)2.
With Deligne’s theorem failing in positive characteristic, much work has been done in

recent years to find a suitable analog. The category Verp has served as a reasonable starting
point: first, Ostrik proved in [Ost20] that every semisimple STC fibers over Verp, and this
was later strengthened in [CEO22] to say that an STC fibers over Verp if and only if it is
Frobenius exact. Indeed, the Verlinde category Verp sits in a larger sequence

Verp ⊆ Verp2 ⊆ · · · ⊆ Verp∞

of incompressible STCs called the Verlinde categories. These were first discovered for p = 2
in [BE19] and then generalized for all p > 0 in [BEO23]. Therein, it is conjectured that the
correct replacement for sVecK in Deligne’s theorem is Verp∞ , which is to say that every STC
fibers over Verp∞ .

1.2. Content of this paper. Although they arise out of the search for Deligne’s theorem
in positive characteristic, the Verlinde categories seem to be interesting objects in their own
right as they exhibit new phenomena all the while generalizing the classical theory. For
instance, in [Ven22], the finite-length representations of the group scheme GL(X) for an
object X ∈ Verp are classified. Therein, the corresponding generalization of a torus no
longer has one-dimensional representations, yet its representation theory is still semisimple.

However, for the most part, these Verlinde categories have barely been studied. In this
paper, we consider the simplest example in characteristic 2, which is Ver+4 , a subcategory of
Ver4 = Ver22 that was first shown to not fiber over the category of vector spaces in [Ven15]
(note that Ver2 is just the category of vector spaces). We usually cannot use the language of
vector spaces to describe objects in STCs, but as a tensor category, Ver+4 is just RepK[t]/(t2)
(and is therefore not semisimple). The symmetric structure, however, is different and arises
from equipping the Hopf algebra K[t]/(t2) with a triangular structure (see [EGNO, §8.3])
with R-matrix given by
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R := 1⊗ 1 + t⊗ t.

In this category, we classify all alternating bilinear and all symmetric bilinear forms, up to
isomorphism. We also describe how different isomorphism classes of bilinear forms interact
when we take their direct sum and tensor product.

Here, we say a form B : U⊗U → K on an object U ∈ Ver+4 is alternating (resp. symmetric)
if it vanishes on the kernel (resp. image) of the map 1U⊗U −cU,U , where cU,U : U⊗U → U⊗U
is the braiding in this category given by

cU,U(u⊗ u′) = u′ ⊗ u+ (t.u′)⊗ (t.u)

for u, u′ ∈ U . In semisimple STCs like Verp, the classification reduces to the vector space
setting. In Ver+4 , the presence of the two-dimensional indecomposable representation P of
K[t]/(t2) makes the classification more challenging.

We find that there are ultimately six families of non-degenerate symmetric bilinear forms,
two of which are indexed by a parameter. We also calculate the Witt semi-ring, which is
the semi-ring structure imposed on the set of isomorphism classes where addition is given
by direct sum and multiplication is given by tensor product.

In §2, we define the Verlinde category Ver+4 , state some basic properties of symmetric
bilinear forms, and establish the existence of a semi-ring structure on the isomorphism classes
in our classification. In Section §3, we first classify non-degenerate symmetric bilinear forms
on the object nP , then use this to recover the complete classification for an arbitrary object
in Ver+4 . Finally, we describe the structure of the Witt semi-ring in Section §4.

1.3. Acknowledgements. This paper is the result of MIT PRIMES-USA, a program that
provides high school students an opportunity to engage in research-level mathematics and
in which the second author mentored the first and third authors. The authors would like
to thank the MIT PRIMES-USA program and its coordinators Prof. Pavel Etingof, Dr.
Slava Gerovitch, and Dr. Tanya Khovanova for providing the opportunity for this research
experience. The second author would also like to thank Pavel Etingof for useful discussions
and feedback. This paper is based upon work supported by The National Science Foundation
Graduate Research Fellowship Program under Grant No. 1842490 awarded to the second
author.

2. Basic Properties of the Verlinde Category Ver+4

In this section, we define the Verlinde category Ver+4 and state its basic properties.
Throughout this paper, we define K as an algebraically closed field of characteristic p = 2.
We will also assume a cursory familiarity with the language of Hopf algebras and tensor
categories (cf. [EGNO; EK21]) and suppress associativity morphisms in our notation.

2.1. The Hopf Algebra K[t]/(t2). The unital algebra A := K[t]/(t2) admits the structure
of a Hopf algebra with comultiplication ∆ : A → A ⊗ A, counit ϵ : A → K, and antipode
S : A → A uniquely determined by
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∆(t) = 1⊗ t+ t⊗ 1;

ϵ(t) = 0;

S(t) = t.

By the theory of Jordan canonical forms, A has two indecomposable modules up to isomor-
phism: the trivial representation, denoted 1, which is simple, and a two-dimensional module
P , which is an extension of 1 by itself. The Krull-Schmidt theorem tells us that any module
U over A is (non-uniquely) isomorphic to m1⊕ nP , with m and n invariants of U . We will
often fix such a decomposition and let the sets

(2.1)
{v1, v2, . . . , vm}

{w1, x1, . . . , wn, xn}

denote a basis of m1 and a basis of nP , respectively, where t.vj = 0 for all 1 ≤ j ≤ m and
t.wk = xk for all 1 ≤ k ≤ n. Moreover, we write U = V ⊕W ⊕X, where V is the span of
the vectors {vj}mj=1, W is the span of the vectors {wk}nk=1, and X is the span of the vectors
{xk}nk=1. The vector space of morphisms HomA(M,N) between two representations M,N is
simply the collection of linear maps that respect the t-action, meaning that t.ϕ(µ) = ϕ(t.µ)
for all µ ∈ M and ϕ ∈ HomA(M,N).
Note that the linear map φ ∈ HomVer+4

(U,U) given by φ(u) = t.u is a morphism in the

category Ver+4 because it commutes with the t-action. With respect to the decomposition of
U described above, im(φ) = X and ker(φ) = V ⊕X. Thus, X and V ⊕X are fixed, while
V and W are dependent on a choice of basis because the decomposition of U into m1⊕ nP
is not unique.

Given an A-module U , there is a (left) dual module U∗ with the t-action defined by

(t.f)(u) = f(S(t).u) = f(t.u)

for all f ∈ U∗. With respect to the basis of U given by (2.1), U∗ has a dual basis given by
the union of the following two sets:

(2.2)
{v∗1, v∗2, . . . , v∗m}

{x∗
1, w

∗
1, . . . , x

∗
n, w

∗
n}.

Here, t.v∗j = 0 for all 1 ≤ j ≤ m, and t.x∗
k = w∗

k for all 1 ≤ k ≤ n. Finally, given any two
A-modules M and N , the tensor product M ⊗ N admits the structure of an A-module via
the comultiplication map. It is determined by

t.(µ⊗ ν) = (t.µ)⊗ ν + µ⊗ (t.ν)

for all µ ∈ M and ν ∈ N . Explicitly, if two copies of P have a fixed bases {w, x} and {ω, χ},
respectively, then their tensor product is P ⊗ P = P ⊕ P . A basis for the first summand is
{w ⊗ χ, x⊗ χ}, and a basis for the second summand is {w ⊗ ω, x⊗ ω + w ⊗ χ}.
We can then define the representation category RepA to be the category whose objects are

A-modules and whose morphisms between two A-modules M,N are the maps HomA(M,N).
These structures endow RepA with the structure of a tensor category.
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2.2. Triangular Structure on K[t]/(t2) and the Verlinde Category Ver+4 . The Hopf
algebra A is said to have a triangular structure with R-matrix R if there exists an invertible
element R in the algebra A⊗ A such that the following identities hold:

(∆⊗ 1A)(R) = R13R23;

(1A ⊗∆)(R) = R13R12;

(σA,A ◦∆)(a) = R∆(a)R−1 ∀a ∈ A;

R−1 = R21,

where σX,Y is the permutation of components on X ⊗ Y . The term Ri1,...,ik is given by
permuting R ⊗ 1l−2 so that the component of R along the j-th tensor is now along ij-th
component and where the value of l is determined by the left-hand side. For example, if
R = a ⊗ b + c ⊗ d and l = 3, then R13 = a ⊗ 1 ⊗ b + c ⊗ 1 ⊗ d. Given a triangular
structure on A, we can endow RepA with a symmetric structure to construct the symmetric
tensor category Rep(A,R). We define the braiding c, a natural transformation between the
bifunctors −⊗− : RepA×RepA → RepA and σ , ◦ (−⊗−) : RepA×RepA → RepA, by

cV,W (v ⊗ w) = σV,W (R.(v ⊗ w))

for all V,W ∈ RepA and v ∈ V,w ∈ W . In the case R = 1 ⊗ 1, we recover the usual
symmetric structure on the category RepA.

Lemma 2.1. There is a triangular structure on A with R-matrix given by R = 1⊗ 1+ t⊗ t.

Proof. This is a straightforward verification of the axioms. For instance, to see that R is
invertible, we notice that

R2 = (1⊗ 1 + t⊗ t)(1⊗ 1 + t⊗ t)

= 1⊗ 1 + 2(t⊗ t) + t2 ⊗ t2 = 1⊗ 1,

so R is its own inverse. We can also check that

(∆⊗ 1A)(R) = (∆⊗ 1A)(1⊗ 1 + t⊗ t)

= ∆(1)⊗ 1 + ∆(t)⊗ t

= 1⊗ 1⊗ 1 + 1⊗ t⊗ t+ t⊗ 1⊗ t

= 1⊗ 1⊗ 1 + 1⊗ t⊗ t+ t⊗ 1⊗ t+ t⊗ t⊗ t2

= (1⊗ 1⊗ 1 + t⊗ 1⊗ t)(1⊗ 1⊗ 1 + 1⊗ t⊗ t)

= R13R23.

□

Therefore, we have the following definition:

Definition 2.2. The Verlinde category Ver+4 is the representation category Rep(A,R), where
A = K[t]/(t2) and R = 1⊗ 1+ t⊗ t is the R-matrix imposing the triangular structure on A.

The braiding c is explicitly given by

cV,W (v ⊗ w) = w ⊗ v + (t.w)⊗ (t.v)
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for all V,W ∈ RepA and v ∈ V,w ∈ W . It is shown in [Ven15] that Ver+4 does not fiber
over the category of vector spaces 2. For more information on triangular Hopf algebras, see
[EGNO, §8.3].

2.3. Bilinear Forms in Ver+4 . A bilinear form on an object U ∈ Ver+4 is any element of
HomVer+4

(U ⊗ U,1). A bilinear form β : U ⊗ U → 1 must satisfy, for all u, u′ ∈ U ,

0 = t.(β(u⊗ u′)) = β(t.(u⊗ u′))

= β((t.u)⊗ u′ + u⊗ (t.u′))

=⇒ β(t.u, u′) = β(u, t.u′)

because β is also an A-module homomorphism. We will freely identify β with the cor-
responding bilinear map U × U → 1, so we sometimes write β(u, u′) instead of writing
β(u ⊗ u′). By tensor-hom adjunction, there is an isomorphism between HomVer+4

(U ⊗ U,1)

and HomVer+4
(U,U∗). We say a bilinear form β : U ⊗ U → 1 is non-degenerate if the image

of β under this isomorphism is an invertible map in HomVer+4
(U,U∗). We will often denote

this image by β′.
This paper primarily focuses on non-degenerate bilinear forms that are symmetric. A

bilinear form β : U ⊗ U → 1 is said to be symmetric if it vanishes on the image of the
map 1U⊗U − cU,U (or equivalently, if β = β ◦ cU,U). Special cases of symmetric bilinear forms
are alternating and super-alternating bilinear forms: β is alternating if it also vanishes on
the kernel of the map 1U⊗U − cU,U , and it is super-alternating if for all u ∈ U , we have
β(u⊗ u) = 0. All alternating bilinear forms are symmetric because (1U⊗U − cU,U)

2 = 0 and
therefore ker(1U⊗U − cU,U) ⊇ im(1U⊗U − cU,U). It turns out that symmetric bilinear forms in
Ver+4 reduce to symmetric bilinear forms in the underlying category RepA:

Lemma 2.3. Let β : U ⊗ U → 1 be a bilinear form in Ver+4 . Then, β is symmetric if and
only if β(u ⊗ u′) = β(u′ ⊗ u) for all u, u′ ∈ U . This also means that all super-alternating
bilinear forms are symmetric.

Proof. Suppose β is symmetric. Then,

β(u⊗ u′) = β(u′ ⊗ u) + β((t.u′)⊗ (t.u))

= β(u′ ⊗ u) + β(u′ ⊗ (t2.u))

= β(u′ ⊗ u).

The reverse direction follows by running these steps backwards. Finally, if β is super-
alternating, then

0 = β((u+ u′)⊗ (u+ u′))

= β(u⊗ u) + β(u⊗ u′) + β(u′ ⊗ u) + β(u′ ⊗ u′)

=⇒ β(u⊗ u′) = β(u′ ⊗ u),

so β is symmetric. □

2There is no category of supervector spaces in characteristic 2, but in loc. cit., it is argued that Ver+4
could be viewed as the analog in characteristic 2.



CLASSIFICATION OF NON-DEGENERATE SYMMETRIC BILINEAR FORMS IN Ver+4 7

We can also identify the additional criteria that symmetric bilinear forms must satisfy to
be alternating.

Proposition 2.4. Let β : U ⊗U → 1 be a symmetric bilinear form in Ver+4 . Fix a decompo-
sition of U by U = m1⊕nP = V ⊕W ⊕X with respect to the basis given by (2.1). Then, β
is alternating if and only if β(vj ⊗ vj) = 0 for all 1 ≤ j ≤ m. Equivalently, β is alternating
if and only if β(u⊗ u) = 0 for all u ∈ V ⊕X.

Proof. With respect to the basis given by (2.1), a basis for U ⊗ U is given by

(2.3)

vj ⊗ vj′ , vj ⊗ wk, vj ⊗ xk,

wk ⊗ vj, wk ⊗ wk′ , wk ⊗ xk′ ,

xk ⊗ vj, xk ⊗ wk′ , xk ⊗ xk′ ,

where 1 ≤ j, j′ ≤ m, 1 ≤ k, k′ ≤ n. Using this basis, we can construct another basis of
U ⊗ U , given by the vectors below.

(2.4)

vj ⊗ vj ∗
vj ⊗ vj′ (j < j′)

vj ⊗ vj′ + vj′ ⊗ vj (j ̸= j′) ∗
vj ⊗ xk + xk ⊗ vj ∗
vj ⊗ xk

vj ⊗ wk

vj ⊗ wk + wk ⊗ vj ∗
xk ⊗ xk ∗
wk ⊗ xk′ + xk′ ⊗ wk ∗
wk ⊗ wk′ + wk′ ⊗ wk + xk′ ⊗ xk (k ̸= k′) ∗
xk ⊗ wk′

wk ⊗ wk′ (k ̸= k′)

wk ⊗ wk

To see that these vectors form a basis of U⊗U , observe that we can recover all vectors in the
basis described by (2.3) and that the number of vectors in (2.4) ism2+4mn+4n2 = (m+2n)2,
which is the dimension of U ⊗ U .

The starred vectors in (2.4) vanish under 1U⊗U − cU,U . The unstarred vectors are sent as
follows:

(2.5)

vj ⊗ vj′ → vj ⊗ vj′ + vj′ ⊗ vj,

vj ⊗ xk → vj ⊗ xk + xk ⊗ vj,

vj ⊗ wk → vj ⊗ wk + wk ⊗ vj,

xk ⊗ wk′ → xk ⊗ wk′ + wk′ ⊗ xj,

wk ⊗ wk′ → wk ⊗ wk′ + wk′ ⊗ wk + xk′ ⊗ xk,

wk ⊗ wk → xk ⊗ xk.

We can show that no linear combination of these unstarred vectors is in the kernel of the
map 1U⊗U − cU,U . For each unstarred vector u, there exists a vector bu in the basis given
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by (2.3) such that the coefficient of bu is nonzero in 1U⊗U − cU,U(u) and zero in the image of
all other unstarred vectors in (2.3):

u bu
vj ⊗ vj′ (j < j′) vj ⊗ vj′

vj ⊗ xk vj ⊗ xk

vj ⊗ wk vj ⊗ wk

xk ⊗ wk′ xk ⊗ wk′

wk ⊗ wk′ (k ̸= k′) xk′ ⊗ xk

wk ⊗ wk xk ⊗ xk

Thus, the starred vectors form a basis of ker(1U⊗U − cU,U). By definition, β must vanish
on the image of 1U⊗U − cU,U . As shown in (2.5), im(1U⊗U − cU,U) includes all starred vectors
in (2.4) except for those of the form vj ⊗ vj. Therefore, we obtain alternating bilinear forms
from symmetric bilinear forms by imposing the additional condition that β(vj ⊗ vj) = 0 for
all 1 ≤ j ≤ m.

Now, we prove that this requirement is equivalent to β vanishing on u⊗ u for all vectors
u ∈ V ⊕ X. Notice that β(xk ⊗ xk) = β(t.wk, t.wk) = β(wk, t

2.wk) = 0 for all 1 ≤ k ≤ n.
Thus, β is alternating if β(µ⊗µ) = 0 for all vectors µ in the basis {v1, v2, . . . vm, x1, x2, . . . xn}
of V ⊕X. Given vectors u1, u2 ∈ U such that β(u1 ⊗ u1) = 0 and β(u2 ⊗ u2) = 0, we have

β((u1 + u2)⊗ (u1 + u2)) = β(u1 ⊗ u1) + β(u2 ⊗ u2) = 0,

and for any scalar k ∈ K,

β(ku1 ⊗ ku1) = k2β(u1, u1) = 0.

Therefore, if β(µ⊗ µ) = 0 for all vectors µ in a basis of V ⊕X, then that β(u⊗ u) = 0 for
all u ∈ V ⊕X. □

Note that U = nP when dim(V ) = 0, so the proposition above proves that a non-
degenerate symmetric bilinear form β on the direct sum of P objects is necessarily alternat-
ing.

We can now provide a basis-invariant description of alternating bilinear forms.

Proposition 2.5. Let β : U ⊗ U → 1 be a symmetric bilinear form in Ver+4 . Then, β is
alternating if and only if β(u ⊗ u) = 0 for all u ∈ U such that t.u = 0. In particular, all
super-alternating bilinear forms are alternating.

Proof. With respect to the decomposition U = m1⊕ nP = V ⊕W ⊕X, we have t.u = 0 if
and only if u ∈ V ⊕X. The claim follows from Proposition 2.4. □

As in the ordinary vector space setting, decomposing a bilinear form into the sum of
smaller forms by way of orthogonal complements will be a key idea. If β is a bilinear form
on U and S is a subobject of U , we define the orthogonal complement S⊥ of S (in U and
with respect to β) to be

S⊥ := ker(U
β′
−→ U∗ π−→ S∗),

where the map π is the usual projection map.
Here are some well known-properties about bilinear forms that extend to our setting:
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Proposition 2.6. Let β be a non-degenerate symmetric bilinear form on U ∈ Ver+4 , and let
S be a subobject of U . If the restriction of β to S is non-degenerate, then U = S ⊕ S⊥, and
moreover, the restriction of U to S⊥ is also non-degenerate.

Proof. The proofs in the classical setting extend to our setting ([Con08, Theorem 3.12]). □

We can also define how to take direct sums and tensor products of bilinear forms to produce
new bilinear forms. Given two non-degenerate symmetric bilinear forms β : U ⊗U → 1 and
η : R ⊗ R → 1 in Ver+4 , we can define their direct sum β ⊕ η : (U ⊕ R)⊗2 → 1 in the usual
way, given by

(β ⊕ η)(u1 ⊕ r1, u2 ⊕ r2) = β(u1, u2) + η(r1, r2)

for all u ∈ U and r ∈ R. The tensor product β⊗̂η : (U ⊗ R)⊗2 → 1 of two forms is slightly
different because it involves the braiding. For all u1, u2 ∈ U and r1, r2 ∈ R, we have

(β⊗̂η)(u1 ⊗ r1, u2 ⊗ r2) = β(u1, u2)η(r1, r2) + β(u1, t.u2)η(t.r1, r2).

More generally, these definitions arise from the following composition of maps:

(U ⊗R)⊗2 1U⊗cU,R⊗1R−−−−−−−→ (U ⊗ U)⊗ (R⊗R)
β⊗η−−→ 1⊗ 1 ∼= 1.

Given two bilinear forms β, η on the same object U ∈ Ver+4 , we say that β and η are in the
same isomorphism class of bilinear forms if there exists an invertible map ϕ ∈ HomVer+4

(U,U)

such that β = η ◦ (ϕ⊗ ϕ). This is an equivalence relation on the set of all (non-degenerate
symmetric) bilinear forms.

We are ultimately only interested in isomorphism classes of bilinear forms, so for conve-
nience, we will often write that two forms are equal to each other if they lie in the same
isomorphism class. We will also freely identify a representative of an isomorphism class
with the class itself. As the next subsection demonstrates, we can establish a semi-ring
structure by taking the direct sum and tensor product on the set of isomorphism classes of
non-degenerate symmetric bilinear forms.

2.4. Witt Semi-Ring. Let W denote the set of isomorphism classes of non-degenerate
symmetric bilinear forms in Ver+4 . The operations (⊕,⊗) endow W with the structure of a
semi-ring (where ⊕ defines addition and ⊗ defines multiplication), which we call the Witt
semi-ring. Below, we prove some basic properties about this semi-ring, including the fact
that it is commutative. We will fully describe it in §4. Proving that the Witt semi-ring is
a commutative monoid under addition and satisfies distributivity is fully classical, so we do
not present proofs of these properties. We will prove the rest of the axioms, starting with
closure under multiplication:

Lemma 2.7. Let β and η be symmetric bilinear forms on objects U and R in Ver+4 , re-
spectively. Then, the tensor product β⊗̂η is a symmetric bilinear form 3. Moreover, the
equivalence class of β⊗̂η does not depend on the choice of representative from the equiva-
lence class of β or η.

3This statement is true in any STC and can be proven using the coherence diagrams for braidings that
arise from the symmetric structure.
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Proof. Since β⊗̂η is a morphism in Ver+4 , proving the first part of the claim reduces to
establishing symmetry. The set of vectors u ⊗ r where u ∈ U, r ∈ R contains a basis of
U⊗R, so it suffices to prove that β⊗̂η(u1⊗r1, u2⊗r2) = β⊗̂η(u2⊗r2, u1⊗r1) for all vectors
u1, u2 ∈ U and r1, r2 ∈ R. This follows directly from properties of β and η:

β⊗̂η(u1 ⊗ r1, u2 ⊗ r2) = β(u1, u2)η(r1, r2) + β(u1, t.u2)β(t.r1, r2)

= β(u2, u1)η(r2, r1) + β(u2, t.u1)η(t.r2, r1)

= β⊗̂η(u2 ⊗ r2, u1 ⊗ r1).

Finally, suppose that the the non-degenerate symmetric bilinear form β1 is in the same
isomorphism class as β via the morphism ϕ : U → U . Then, β⊗̂η and β1⊗̂η are in the same
isomorphism class via the morphism ϕ⊗ 1R. □

Proposition 2.8. Let β and η be non-degenerate symmetric bilinear forms on objects U and
R in Ver+4 , respectively. The tensor product β⊗̂η is also non-degenerate.

Proof. Suppose for the sake of contradiction that β⊗̂η is degenerate. Then, there exists a
nonzero vector µ⊗ ρ ∈ U ⊗R such that β⊗̂η(µ⊗ ρ, u⊗ r) = 0 for all u ∈ U, r ∈ R. Let BU

and BR denote bases for U and R, respectively. We can express µ⊗ ρ as
∑
i,j

ki,j ·ui⊗ rj, with

ki,j ∈ K, ui ∈ Bu, rj ∈ BR for all i, j. Since β⊗̂η is bilinear, β⊗̂η(µ⊗ ρ, u⊗ r) is equivalent
to

(2.6)
∑
i,j

β⊗̂η(ki,j · ui ⊗ rj, u⊗ r) =
∑
i,j

ki,j · β(ui, u)η(rj, r) + β(ui, t.u)η(rj, t.r) = 0

for all vectors u ∈ U, r ∈ R. We can also write β⊗̂η(µ⊗ ρ, t.u⊗ t.r) as∑
i,j

ki,j · β(ui, t.u)η(rj, t.r) + ki,j · β(ui, t.(t.u))η(rj, t.(t.r)) =
∑
i,j

ki,j · β(ui, t.u)η(rj, t.r) = 0.

(2.6) now simplifies to
∑

i,j ki,j · β(ui, u)η(rj, r) = 0, which is purely classical. We can finish
this proof using ideas from the ordinary setting. Since µ⊗ρ is nonzero, ki,j must be nonzero
for some i, j. Without loss of generality, we can assume k1,1 ̸= 0.

Now, let SU be the span of BU − {u1}. Because dim(SU) < dim(U), there must exist a
vector u′ ∈ U such that u′ ⊥ SU . Similarly, we can define SR as the span of BR − {r1} and
let r′ be a vector in R such that r′ ⊥ SR. By the non-degeneracy of β and η, the quantities
β(u′, u1) and η(r′, u1) must be nonzero. Then,∑

i,j

ki,j · β(ui, u
′)η(rj, r

′) = k1,1β(u1, u
′)β(r1, r

′) ̸= 0,

which is a contradiction. □

Now, we verify the remaining axioms, including commutativity of multiplication.

(1) Associativity of multiplication. Let β, η, and ζ be non-degenerate symmetric
bilinear forms on the objects U,R,Z in Ver+4 , respectively. The set of vectors of the
form u ⊗ r ⊗ z where u ∈ U, r ∈ R, z ∈ Z contains a basis for U ⊗ R ⊗ Z. It is
sufficient to prove that

(β⊗̂η)⊗̂ζ((u1 ⊗ r1)⊗ z1, (u2 ⊗ r2)⊗ z2 = (β⊗̂(η⊗̂ζ))(u1 ⊗ (r1 ⊗ z1), u2 ⊗ (r2 ⊗ z2))
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for all vectors u1 ⊗ r1 ⊗ z1, u2 ⊗ r2 ⊗ z2 in this basis:

((β⊗̂η)⊗̂ζ)((u1 ⊗ r1)⊗ z1, (u2 ⊗ r2)⊗ z2)

= (β⊗̂η)(u1 ⊗ r1, u2 ⊗ r2)ζ(z1, z2) + (β⊗̂η)(u1 ⊗ r1, t.(u2 ⊗ r2))ζ(t.z1, z2)

= (β⊗̂η)(u1 ⊗ r1, u2 ⊗ r2)ζ(z1, z2)

+ (β⊗̂η)(u1 ⊗ r1, t.u2 ⊗ r2 + u2 ⊗ t.r2)ζ(t.z1, z2)

= (β(u1, u2)η(r1, r2) + β(u1, t.u2)η(t.r1, r2))ζ(z1, z2)

+ (β(u1, t.u2)η(r1, r2) + β(u1, u2)η(r1, t.r2))ζ(t.z1, z2)

= β(u1, u2)η(r1, r2)ζ(z1, z2) + β(u1, t.u2)η(t.r1, r2)ζ(z1, z2)

+ β(u1, t.u2)η(r1, r2)ζ(t.z1, z2) + β(u1, u2)η(r1, t.r2)ζ(t.z1, z2)

= β(u1, u2)(η(r1, r2)ζ(z1, z2) + η(r1, t.r2)ζ(t.z1, z2))

+ β(u1, t.u2)(η(t.r1, r2)ζ(z1, z2) + η(r1, r2)ζ(t.z1, z2))

= β(u1, u2)(η(r1, r2)ζ(z1, z2) + η(r1, t.r2)ζ(t.z1, z2))

+ β(u1, t.u2)(η⊗̂ζ)(t.r1 ⊗ z1 + r1 ⊗ t.z1, r2 ⊗ z2))

= β(u1, u2)(η⊗̂ζ)(r1 ⊗ z1, r2 ⊗ z2) + β(u1, t.u2)(η⊗̂ζ)(t.(r1 ⊗ z1), r2 ⊗ z2)

= (β⊗̂(η⊗̂ζ))(u1 ⊗ (r1 ⊗ z1), u2 ⊗ (r2 ⊗ z2)).

(2) Commutativity of multiplication. The set of vectors expressible as u ⊗ r for
some u ∈ U, r ∈ R includes a basis of U ⊗ R. Therefore, we only need to show
commutativity holds for all vectors u1⊗ r1, u2⊗ r2 ∈ U ⊗R. We claim that β⊗̂η and
η⊗̂β are isomorphic via the braiding, meaning

β⊗̂η(u1 ⊗ r1, u2 ⊗ r2) = η⊗̂β(cU,R(u1 ⊗ r1), cU,R(u2 ⊗ r2)).

First, we can show that

β⊗̂η(u1 ⊗ r1, u2 ⊗ r2) = β(u1, u2)η(r1, r2) + β(u1, t.u2)η(t.r1, r2)

= η(r1, r2)β(u1, u2) + η(r1, t.r2)β(t.u1, u2)

= η⊗̂β(r1 ⊗ u1, r2 ⊗ u2).

Furthermore, we can determine that

η⊗̂β(t.r1 ⊗ t.u1, r2 ⊗ u2) = η(t.r1, r2)β(t.u1, u2) + η(t.r1, t.r2)β(t
2.u1, u2)

= η(t.r1, r2)β(t.u1, u2) = η(r1, t.r2)β(u1, t.u2) = η⊗̂β(r1 ⊗ u1, t.r2 ⊗ t.u2)

and

η⊗̂β(t.r1 ⊗ t.u1, t.r2 ⊗ t.u2) = η(t.r1, t.r2)β(t.u1, t.u2) + η(t2.r1, t.r2)β(t
2.u1, t.u2) = 0.

Together, these equations prove our claim because we can now write

η⊗̂β(cU,R(u1 ⊗ r1), cU,R(u2 ⊗ r2)) = η⊗̂β(r1 ⊗ u1 + t.r1 ⊗ t.u1, r2 ⊗ u2 + t.r2 ⊗ t.u2)

= η⊗̂β(r1 ⊗ u1, r2 ⊗ u2)

= β⊗̂η(u1 ⊗ r1, u2 ⊗ r2).
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(3) Multiplicative identity. Consider an object R ∼= 1 ∈ Ver+4 . We can take a nonzero
vector r1 ∈ 1, which must satisfy t.r1 = 0, and fix a basis of 1 by {r1}. We claim
that the multiplicative identity is the isomorphism class that has a representative
η : 1 ⊗ 1 → 1 given by η(r1, r1) = 1. Given a vector u1 ∈ U and scalars k1, k2 ∈ K,
we can write k1u1 ⊗ k2r1 as k1k2u1 ⊗ r1. We can thus express any vector in U ⊗ 1 as
u⊗ r1 for some u ∈ U . For all u1, u2 ∈ U ,

β⊗̂η(u1 ⊗ r1, u2 ⊗ r1) = β(u1, u1)η(r1, r1) + β(u1, t.u1)β(t.r1, r1) = β(u1, u1).

Therefore, β⊗̂η and β belong to the same isomorphism class, which shows by com-
mutativity that β⊗̂η = β = η⊗̂β.

3. Classification of Non-Degenerate Symmetric Bilinear Forms in Ver+4

We have now set the stage to classify the non-degenerate symmetric bilinear forms in Ver+4 .

3.1. Classifying forms on objects of the form m1 and of the form nP . Before we
can approach the general case, it is easier to classify forms on objects of the form m1 and
on objects of the form nP . The former is the well-known classification of symmetric bilinear
forms in the ordinary vector space setting:

Theorem 3.1 ([Gla05]). Let β be a non-degenerate symmetric bilinear form on a vector
space Z. Then, there exists a basis for Z in which the associated matrix of β is either the
identity matrix or direct sums of the 2× 2 matrix given by[

0 1
1 0

]
.

For each dimension, these two classes of forms are non-isomorphic. If dimZ = m, let us de-
note some representative of the first isomorphism class as αm

1 and denote some representative
of the second isomorphism class as αm

2 (which exists only for even m).

Changing basis amounts to conjugation by an invertible map in Hom(Z,Z). However, the
endomorphism spaces in Ver+4 are considerably more restrictive, and therefore, we find more
isomorphism classes of non-degenerate symmetric bilinear forms. We start our classification
with the following straightforward lemma:

Lemma 3.2. Let β a symmetric bilinear form on an object U ∈ Ver+4 with the decomposition
U = m1⊕nP = V ⊕W ⊕X arising from the basis described by (2.1). Then, β must satisfy
the following for all 1 ≤ i ≤ m and 1 ≤ j, k ≤ n:

(1) β(vi, xj) = 0, meaning β|V⊗X = 0 and β|X⊗V = 0;
(2) β(wj, xk) = β(xj, wk);
(3) β(xj, xk) = 0, meaning β|X⊗X = 0.

Proof. This is a direct consequence of the fact that β(t.u, u′) = β(u, t.u′) for all u, u′ ∈ U . □

The following motivates why we first consider the classification of m1 and nP separately.

Proposition 3.3. Let β a non-degenerate symmetric bilinear form on an object U ∈ Ver+4
with the decomposition U = m1 ⊕ nP = V ⊕ W ⊕ X arising from the basis described by
(2.1). Then, the restriction of β to V is also non-degenerate.
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Proof. Suppose for the sake of contradiction that β is degenerate on V . Then, there exists
a nonzero vector v ∈ V such that β|Kv⊗V = 0. By Lemma 3.2, we know that β|Kv⊗X = 0
and β|X⊗(V⊕X) = 0. Therefore, β|(Kv⊕X)⊗(V⊕X) = 0, and the adjunct map β′ : U → U∗ must
map any u ∈ Kv⊕X to a vector in W ∗, where we decompose U∗ = V ∗⊕W ∗⊕X∗. However,
dim(Kv ⊕X) = n+ 1 and dim(W ∗) = n, so there exists a nonzero vector u in Kv ⊕X such
that β′(u) = 0, contradicting the non-degeneracy of β on U . □

An object U ∈ Ver+4 can be decomposed into V ∼= m1 and V ⊥ ∼= nP . If β is a non-
degenerate symmetric bilinear form on U , then by Propositions 3.3 and 2.6, we can choose
V such that both β|V and β|V ⊥ are non-degenerate symmetric bilinear forms. Because V
is an ordinary vector space, we already know that β|V belongs to one of the two classes in
Theorem 3.1. In the remainder of this section, we will classify isomorphism classes of forms
on V ⊥ ∼= nP .

We will first show that on the object P , there exist infinitely many isomorphism classes
of bilinear forms, each indexed by an element of K. We will denote suitable representatives
for these isomorphism classes as βP (y) : P ⊗ P → 1, where y ∈ K. Similarly, on the object
2P , there exist two isomorphism classes not arising from βP (y) ⊕ βP (z), which we will call
β2P (i) : 2P ⊗ 2P → 1 for i = 0, 1.

Lemma 3.4. Let η be a non-degenerate symmetric bilinear form on the object P . There
exists a basis of P such that the associated matrix of η is given by

(3.1)

[
y 1
1 0

]
for suitable y ∈ K. These forms are pairwise non-isomorphic.

Proof. Let p, q be basis vectors of P such that t.p = q. The quantity η(p, q) is nonzero as
otherwise, q would be in the kernel of η, and the form would be degenerate. Moreover,
η(q, q) = η(t.p, t.p) = η(p, t2.p) = 0. Therefore, we can scale the basis vectors by 1/

√
η(p, q)

(which is a valid base change), and the associated matrix of η with respect to this new basis
is given by [η(p,p)

η(p,q)
1

1 0

]
.

Now, any map P → P is determined by where it sends p, so it follows immediately that
these forms are pairwise non-isomorphic. □

The isomorphism class arising from the form in Lemma 3.4 will be represented by βP (y)
for y ∈ K. We can also classify some forms on the object 2P .

Definition 3.5. We say a bilinear form β on an object U ∈ Ver+4 is oscillating if for all
u ∈ U , we have β(u, t.u) = 0.

With this definition, we have the following lemma:

Lemma 3.6. Let η be a non-degenerate symmetric oscillating bilinear form on the object
nP (with n > 1). Then, there is a subobject S ∼= 2P of nP such that the restriction of η to
S is non-degenerate, and moreover, there exists a basis of S for which the associated matrix
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of η|S is given by one of the following two matrices:

(3.2)


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

(3.3)


1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

The first form will be denoted as β2P (0), and the second will be denoted as β2P (1). These
forms are not isomorphic (and are also not isomorphic to βP (y)⊕ βP (z) for any y, z ∈ K).

Proof. Let p be a vector in nP such that t.p ̸= 0 (such a vector necessarily exists). The
non-degeneracy of η means there must exist a vector q ∈ nP such that η(t.p, q) ̸= 0. By
the assumption that η is oscillating, η(u, t.u) = 0 for all u ∈ nP . Therefore, q ̸= p. Since
0 ̸= η(t.p, q) = η(p, t.q), we have t.q ̸= 0. Let S be the subobject of nP spanned by the basis
vectors {p, t.p, q, t.q}. The matrix associated to η|S on this basis is of the form

∗ 0 ∗ λ
0 0 λ 0
∗ λ ∗ 0
λ 0 0 0


for some nonzero λ ∈ K and with ∗ denoting suitable entries such that the matrix is sym-
metric. Once we rescale each basis vector by 1√

λ
, the matrix with respect to this basis

becomes 
b 0 c 1
0 0 1 0
c 1 a 0
1 0 0 0

 ,

where a, b, c ∈ K. Then, we replace q by q′ = q + c(t.q), which is a valid change of basis
because t.(q + c(t.q)) = t.q. The associated matrix of η is now given by

b 0 0 1
0 0 1 0
0 1 a 0
1 0 0 0

 .

The matrix above has determinant 1, so this basis change preserves non-degeneracy.
If a = b = 0, we get the isomorphism class β2P (0), as claimed. Now, suppose b ̸= 0

but a = 0. We can define p′ = 1√
b
p and q′′ =

√
bq′. Then, with respect to the basis

{p′, t.p′, q′′, t.q′′}, the associated matrix of η is given by
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
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which is the associated matrix of the form β2P (1) representing our second isomorphism class.
Similarly, if a = 0 and b ̸= 0, we can interchange the order of p, t.p with q′, t.q′ in our basis
and then apply the same process, which will give us the same matrix. Therefore, suppose
that both a and b are nonzero. We can find d ∈ K such that k :=

√
b + d

√
a ̸= 0. We

define a new basis {p′, t.p′, q′′, t.q′′} of 2P given by p′ = 1
k
(p + dq′ + da(t.p) + b(t.q′)) and

q′′ =
√
ap+

√
bq′. We have:

• η(p′, p′) = 1
k2
(b+ d2a) = 1

k2
(k2) = 1,

• η(p′, t.p′) = 1
k2
(2d) = 0,

• η(p′, q′′) = 1
k
(
√
wy + b

√
yw +

√
ab+ d

√
ba) = 0,

• η(t.p′, q′′) = 1
k
(
√
b+ d

√
a) = 1

k
(k) = 1, and

• η(q′′, q′′) = (
√
a)2b+ (

√
b)2a = 0.

Therefore, with respect to this new basis, the associated matrix of the form is
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

which we have already seen. Thus, we obtain the form β2P (0) when y = w = 0 and β2P (1)
otherwise.

To see that β2P (0) and β2P (1) give rise to distinct isomorphism classes, notice that the
first form is super-alternating and the second form is not. Moreover, these two forms are
oscillating, so they are non-isomorphic to the forms βP (k)⊕ βP (l) where k, l ∈ K, which are
not oscillating. □

The forms arising in Lemma 3.4 and Lemma 3.6 serve as the building blocks for all forms
on nP , as the next lemma demonstrates.

Lemma 3.7. Any non-degenerate symmetric bilinear form β on the object nP admits one
of the following two direct sum decompositions:

β =
n⊕

i=1

βP (yi)

β =

n/2⊕
j=1

β2P (aj)

for suitable yi ∈ K and aj ∈ {0, 1}.

Proof. Suppose that we can find a vector u ∈ nP such that β(u, t.u) ̸= 0. Then, β restricted
to the subobject Z of nP spanned by {u, t.u} is non-degenerate, and therefore, by Lemma 3.4,
β|Z is in the isomorphism class as βP (y) for some y ∈ K.

Otherwise, we have β(u, t.u) = 0 for all u ∈ nP (i.e. the form is oscillating). In this case,
Lemma 3.6 applies, and we can find a subobject Y of nP for which the restriction of β gives
the form β2P (aj).
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In either case, once we find such a subobject Z or Y , we can take its orthogonal complement
and proceed inductively by way of Proposition 2.6. This proves that β is of the form

β =
⊕
i

βP (yi)⊕
⊕
j

β2P (aj)

for suitable yi ∈ K and aj ∈ {0, 1}. Now, given this decomposition, suppose that both
isomorphism classes are present. Then, there is a basis {p, t.p, q, t.q, r, t.r} of a subobject
S ∼= 3P of nP such that the associated matrix of β|S relative to this basis is given by

y 1
1 0

a 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

with y ∈ K and a ∈ {0, 1}. Let p′ = p+q+r+(y+a)(t.p) and q′ = p+q. Then, let S̃ denote
the subobject of S spanned by {p′, t.p′, q′, t.q′}. With respect to this basis, the associated
matrix of β|S̃ is given by 

∗ 1 0 0
1 0 0 0
0 0 ∗ 1
0 0 1 0

 ,

where ∗ are suitable entries. Hence, the restriction of β to S̃ is the direct sum βP (ỹ)⊕βP (z̃)
for suitable ỹ, z̃ ∈ K. Moreover, we can write S = S̃ ⊕ S̃⊥. By Lemma 3.4, the restriction
of β to S̃⊥ will be of the form βP (ã) for suitable ã ∈ K. Thus, the direct sum of βP (y) with
β2P (a) can be rewritten as the direct sum βP (ỹ)⊕ βP (z̃)⊕ βP (ã). From here, the statement
of the lemma follows.

□

Lemma 3.7 shows that any non-degenerate symmetric bilinear form on nP is either the
sum of n/2-copies of irreducible forms on 2P or the sum of n-copies of irreducible forms on
P . We will show that in the former case, there are two distinct isomorphism classes that
arise, whereas in the latter, there are infinitely many. We begin with the first case, which is
easier to prove:

Lemma 3.8. Suppose β is a non-degenerate symmetric bilinear form on nP such that

β =

n/2⊕
j=1

β2P (aj)

for aj ∈ {0, 1}. Then, β is in the same isomorphism class as one of the following two forms:

βn
2P ;0 := β2P (0)

⊕n
2

βn
2P ;1 := β2P (1)⊕ β2P (0)

⊕n−2
2 .

The two forms are not isomorphic.
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Proof. We are done if for at most one value of j, we have aj = 1. So let us suppose there are
least two such values of j. Without loss of generality, we can assume they are they are the first
two indices, i.e. a1 = a2 = 1. Now, we will consider the direct summand β2P (a1)⊕β2P (a2) of
β, with basis {u1, t.u1, u2, t.u2} for the first copy of 2P and {u3, t.u3, u4, t.u4} a basis for the
second copy of 2P . We claim that this form can be written as β2P (0) ⊕ β2P (1) by suitably
changing basis.

Let u5 = u1+u3, and let u6 = u2. The associated matrix of β restricted to the subobject S1

spanned by {u5, t.u5, u6, t.u6} (with respect to this basis) is given by (3.2). Similarly, define
u7 = u3 + t.u2 and u8 = u2 + u4. The associated matrix of β restricted to the subobject
S2 spanned by {u7, t.u7, u8, t.u8} (with respect to this basis) is given by (3.3). Moreover,
we can see that S1 and S2 are orthogonal complements. This shows that β2P (1)⊕ β2P (1) =
β2P (0)⊕ β2P (1); the claim follows by induction. The two forms are not isomorphic because
the the form βn

2P ;0 is super-alternating, whereas the form βn
2P ;1 is not. □

We now consider the second case, where the non-degenerate symmetric bilinear form is
the sum of forms on the object P . The procedure for doing so is more complicated than that
of the first case. To start, we have the following lemma.

Lemma 3.9. For any y ̸= z ∈ K, the form β = βP (y)⊕ βP (z) is in the same isomorphism
class as βP (a)⊕ βP (y + z + a) for all a ∈ K.

Proof. Let {u1, t.u1} be a basis of the first P object such that the associated matrix of βP (y)
is given by (3.2), and let {u2, t.u2} be a basis of the second P object such that the associated

matrix of βP (z) is given by (3.3). For some arbitrary a ∈ K, let k =
√

z+a
z+y

, which is well-

defined because y ̸= z. Define c = ky and d = (1+ k)x. Then, k(1+ k)y+ (1+ k)kz+ c(1+
k)+dk = k((1+k)y+d)+ (1+a)(az+ c) = 0. Now, let u3 = ku1+(1+k)u2+ ct.u1+dt.u2,
and let u4 = (1 + k)u1 + ku2. We have

• β(u3, u3) = k2y + (1 + k)2z = k2(y + z) + z = a,
• β(u3, t.u3) = k2 + (1 + k)2 = 1,
• β(u3, u4) = k(1 + k)y + (1 + k)kz + c(1 + k) + dk = 0,
• β(u3, t.u4) = k(1 + k) + (1 + k)k = 0,
• β(u4, u4) = (1 + k)2y + k2z = k2(y + z) + y = y + z + a, and
• β(u4, t.u4) = (1 + k)2 + k2 = 1.

Therefore, with respect to the basis {u3, t.u3, u4, t.u4}, the associated matrix of β is


u3 t.u3 u4 t.u4

a 1
1 0

y + z + a 1
1 0

.
This proves the claim. □

Now, our strategy will be to repeatedly use Lemma 3.9 to convert a form that is the direct
sum of forms described in Lemma 3.4 into a canonical form. For simplicity, we will refer to
the process of identifying βP (y) ⊕ βP (z) with βP (a) ⊕ βP (y + z + a) as “replacing y, z by
a, y + z + a”. Given a form βP (y), we will refer to y as the assigned scalar of βP (y).
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Lemma 3.10. Let β be a non-degenerate symmetric bilinear form on the object nP with
n > 1 such that

β =
n⊕

i=1

βP (yi)

for suitable yi ∈ K. If not all values of yi are the same, then we can write

β = βP (k)⊕ βP (1)⊕ βP (0)
⊕(n−2)

for some suitable k ∈ K. If n = 2, then k ̸= 1.

Proof. First of all, let us suppose that n = 2. Then, we have β = βP (y1)⊕ βP (y2). We can
replace y1, y2 with 1, y1 + y2 + 1 and let k = y1 + y2 + 1 ̸= 1.
Now, suppose that n ≥ 3. If n − 1 of the assigned scalars are zero and the remaining

scalar is 1, then we are done. If instead the remaining scalar is some λ ̸= 0 ∈ K, then we
can do the replacement λ, 0 7→ 1, λ + 1, and we are done again. If n − 2 of the assigned
scalars are zero and the remaining two are λ, µ ∈ K− {0}, then we can do the substitution
λ, µ 7→ 1, λ+ µ+ 1 if λ ̸= µ. If λ = µ, we can first do the substitution 0, λ 7→ 1, λ+ 1, then
do the substitution λ+ 1, µ 7→ 1, 0 (converting the three assigned scalars λ, µ, 0 into 1, 1, 0).
This covers the case where n− 2 assigned scalars are zero.

Therefore, let us assume that at most n−3 of the assigned scalars are zero. If no assigned
scalars are zero, we can find ya and yb with ya ̸= yb and do the replacement ya, yb 7→ 0, ya+yb.
Hence, we can ensure that least one of the assigned scalars is zero. If n = 3, this returns us
to the case where n− 2 assigned scalars are zero. When n > 3, we can find three additional
assigned scalars ya, yb, and yc with ya ̸= 0. We can then perform the following iterative
procedure until we arrive at a form that has n − 2 zeroes as assigned scalars. Let d be a
nonzero scalar satisfying d ̸= yb and d ̸= ya + yc. We can do the replacements

0, ya, yb, yc 7→ d, ya + d, yb, yc 7→ 0, ya + d, yb + d, yc 7→ 0, 0, yb + d, yc + ya + d,

where the notation is extended with two assigned scalars replaced in each step. These
replacements give us an additional zero as an assigned scalar. The above process can be
repeated until we have n − 2 zeroes as assigned scalars, which is a case we have already
considered. This proves the lemma. □

We combine our previous work to get the following theorem.

Theorem 3.11. Any non-degenerate symmetric bilinear form β on nP lies in the isomor-
phism class of one of the following types of forms:

βn
2P ;0 = β2P (0)

⊕n
2 (2 | n)

βn
2P ;1 = β2P (1)⊕ β2P (0)

⊕n−2
2 (2 | n;n > 0)

βy,1;0 := βP (y)⊕ βP (1) (y ̸= 1 ∈ K;n = 2)

βy,1;n−2 := βP (y)⊕ βP (1)⊕ βP (0)
⊕(n−2) (y ∈ K;n ≥ 3)

βn
y := βP (y)

⊕n (y ∈ K;n > 0).

These forms are pairwise non-isomorphic, except some of the βy,1;n−2 may represent the same
isomorphism class for different y (which we will see is not the case in Lemma 3.25).
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Proof. This follows from Lemma 3.7, Lemma 3.8, and Lemma 3.10. To that see we have
distinct isomorphism classes, we will observe some properties about the forms. The first
form is oscillating and super-alternating. The second form is not super-alternating but is
oscillating. The remaining forms are not oscillating. Notice that yβn

y (u, t.u) = βn
y (u, u)

for all u ∈ nP , whereas for no y ∈ K does there exist z ∈ K such that zβy,1;n−2(u, u) =
βy,1;n−2(u, t.u) for all u ∈ nP . Therefore, we deduce that the βn

y are pairwise non-isomorphic
and not isomorphic to anything else on the list. This proves the claim. □

3.2. Classifying non-degenerate bilinear forms in the general case. We now have
classifications for the non-degenerate symmetric bilinear forms on objects of the form m1

(Theorem 3.1) and for those on objects of the form nP (Theorem 3.11). In this section, we
will use these results to provide the classification for any object U ∈ Ver+4 with decomposition
U = m1⊕ nP = V ⊕W ⊕X arising from the basis given by (2.1).

Lemma 3.12. Let β be a non-degenerate symmetric bilinear form on U ∈ Ver+4 , and suppose
that U = V ⊕ V ⊥, where V ∼= m1, V ⊥ ∼= nP , and β|V = αm

1 . Then, either β = αm
1 ⊕ βn

2P,0

or β = αm
1 ⊕ βn

0 .

Proof. By Lemma 3.7, we know that β is either in the same isomorphism class as

αm
1 ⊕

n⊕
i=1

βP (yi)

or

αm
1 ⊕

n/2⊕
j=1

β2P (aj).

Let us deal with the former case first. We claim that

α1
1 ⊕ βP (yi) = α1

1 ⊕ βP (0)

for all values of yi. The associated matrix of the left-hand side is given by


u1 u2 t.u2

1
yi 1
1 0


in some suitable basis {u1, u2, t.u2}. Let u3 = u1 +

√
yit.u2 and u4 =

√
yiu1 + u2. Then, we

can see that

• β(u3, u3) = 1,
• β(u3, u4) =

√
yi +

√
yi = 0,

• β(u3, t.u4) = 0,
• β(u4, u4) = yi + yi = 0,
• β(u4, t.u4) = 1, and
• the space spanned by u3 is perpendicular to the space spanned by {u4, t.u4}.
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In the basis {u3, u4, t.u4}, the associated matrix is given by


u3 u4 t.u4

1
0 1
1 0

,
which shows the claim. Since m > 0, after iterating this procedure for each i, we see that

β = αm
1 ⊕

n⊕
i=1

βP (yi) = αm
1 ⊕ βn

0 .

Now, let us move to the second case, where

β = αm
1 ⊕

n/2⊕
j=1

β2P (aj).

We want to show that β = αm
1 ⊕ βn

2P,0; this will follow if we can show that

α1
1 ⊕ β2P (1) = α1

1 ⊕ β2P (0).

In other words, we need to find a change of basis so that we can go from the first matrix
below to the second matrix below:



u1 u2 t.u2 u3 t.u3

1
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

→



u4 u5 t.u5 u6 t.u6

1
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.
Such a basis change is given by letting u4 = u1 + t.u3, u5 = u1 + u2, and u6 = u3. Iterating
this for each value of j such that aj = 1 proves the second case. □

Using the previous lemma and our classifications on V ∼= m1 and V ⊥ ∼= nP , we obtain a
classification of the non-degenerate symmetric bilinear forms on an object U ∼= m1⊕nP . In
the following theorem, we represent our forms using their corresponding associated matrices,

writing Im =

1 . . .
m

1

 and Az(y) =

y 1

. . .z
1

.
Theorem 3.13. Let U ∼= m1 ⊕ nP . For any non-degenerate symmetric bilinear form β,
there exists a basis of U such that the associated matrix of β is one of the 6 forms below. We
present the matrices block-diagonally, with the first block representing β|V and the second
block representing β|V ⊥, where V ∼= m1 and V ⊥ ∼= nP is some suitable subobject of U .

(A)


Im

A4(0)

. . .
n
2

A4(0)

 (m > 0; 2 | n)
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(B)


Im

A2(0)
. . .

n

A2(0)

 (m > 0;n > 0)

(C)



A2(0)

. . .
m
2

A2(0)
A4(0)

. . .
n
2

A4(0)


(2 | m; 2 | n)

(D)



A2(0)

. . .
m
2

A2(0)
A4(0)

. . .
n
2
−1

A4(0)
A4(1)


(2 | m; 2 | n;n ≥ 2)

(E(y))



A2(0)

. . .
m
2

A2(0)
A2(y)

. . .
n

A2(y)


(y ∈ K; 2 | m;n > 0)

(F(1 + y))



A2(0)

. . .
m
2

A2(0)
A2(0)

. . .
n−2

A2(1)
A2(y)



y ∈ K;

2 | m;n ≥ 2;

(1 + y, n) ̸= (0, 2)



Proof. Write U = V ⊕ V ⊥ for some V ∼= m1. If the restriction of β to V decomposes as
αm
1 , then Lemma 3.12 shows that β is either in the isomorphism class A or the isomorphism

class B. Otherwise, Theorem 3.11 gives a form belonging to one of the isomorphism classes C
through F. Since all alternating bilinear forms are symmetric, we have also classified all non-
degenerate alternating bilinear forms on objects in Ver+4 (we will specify which forms are
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alternating in Theorem 3.26). In the next subsection, we will prove that forms in these
isomorphism classes are pairwise non-isomorphic. □

3.3. Proving Non-Isomorphism. We start by describing basis-invariant properties of non-
degenerate symmetric bilinear forms on objects U ∈ Ver+4 . Without loss of generality, assume
that the basis on which β is represented in Theorem 3.13 is the basis given by (2.1). Recall
that this gives rise to the decomposition U = m1⊕ nP = V ⊕W ⊕X.

Definition 3.14. Given a symmetric bilinear form β on U , we define a good pair as an
ordered pair of scalars (k, l) ∈ K2 satisfying kβ(u, t.u) = lβ(u, u) for all u ∈ U .

Proposition 3.15. Let β be a symmetric bilinear form on U , and let k, ℓ be scalars in K.
If kβ(u1, t.u1) = ℓβ(u1, u1) for all vectors u1 in a basis of U , then kβ(u, t.u) = ℓβ(u, u) for
all u ∈ U .

Proof. If u1, u2 ∈ U satisfy kβ(u1, t.u1) = ℓβ(u1, u1) and kβ(u2, t.u2) = ℓβ(u2, u2), then

kβ(u1 + u2, t.(u1 + u2)) = kβ(u1 + u2, t.u1 + t.u2)

= kβ(u1, t.u1) + kβ(u2, t.u2) + kβ(u1, t.u2) + kβ(u2, t.u1)

= ℓβ(u1, u1) + ℓβ(u2, u2) + 2kβ(u1, t.u2)

= ℓβ(u1, u1) + ℓβ(u2, u2) + 0

= ℓβ(u1, u1) + ℓβ(u2, u2) + 2ℓβ(u1, u2)

= ℓβ(u1 + u2, u1 + u2),

and for any scalar j,

kβ(ju1, t.(ju1)) = kβ(ju1, jt.u1) = kj2β(u1, t.u1) = ℓj2β(u1, u1) = ℓβ(ju1, ju1).

□

In the case that a symmetric bilinear form has the good pair (1, 0), we recover the definition
of an oscillating bilinear form. In the case that a symmetric bilinear form has the good pair
(0, 1), we recover the definition of a super-alternating bilinear form. Alternating forms in
our classification have additional invariant properties:

Proposition 3.16. Let β be a non-degenerate alternating bilinear form on U , and suppose
x is a vector in X. For all u ∈ U such that t.u = x, the quantity β(u, u) is fixed.

Proof. Suppose u1 and u2 are vectors in U such that t.u1 = t.u2 = x. Then, t.(u1 + u2) = 0,
which implies β(u1 + u2, u1 + u2) = 0 by Proposition 2.5. We have

β(u1, u1) = β(u1, u1) + β(u1, u2) + β(u2, u1)

= β(u1, u1 + u2) + β(u2, u1 + u2) + β(u2, u2)

= β(u1 + u2, u1 + u2) + β(u2, u2)

= β(u2, u2).

□

Proposition 3.17. Let β be a non-degenerate alternating form on U , and suppose x1, x2

are vectors in X. For all u2 ∈ U such that t.u2 = x2, the quantity β(x1, u2) is fixed.



CLASSIFICATION OF NON-DEGENERATE SYMMETRIC BILINEAR FORMS IN Ver+4 23

Proof. Let u1 ∈ U be a vector such that t.u1 = x1, and suppose u3, u4 are vectors in U such
that t.u3 = x2 and t.u4 = x2. There must exist some vector u5 ∈ U satisfying t.u5 = 0 such
that u3 = u4 + u5. Then, β(x1, u3) = β(x1, u4 + u5) = β(x1, u4) + β(x1, u5) = β(x1, u4) +
β(t.u1, u5) = β(u1, u4) + β(u1, t.u5) = β(x1, u4) + β(u1, 0) = β(x1, u4), as desired. □

Given x ∈ X, u1 ∈ U , and u ∈ U such that t.u = x, the propositions above prove that
β(u, u) and β(u1, u) do not depend on the choice of representative from the preimage of x
under the map of the t-action. This motivates the following definitions:

Definition 3.18. Let β be a non-degenerate alternating bilinear form on U . The X-function
f : X → K of β is defined by fβ(x) = β(u, u), where x ∈ X and u ∈ U is in the preimage of
x under the map of the t-action.

Definition 3.19. Let β be a non-degenerate alternating bilinear form on U . The X-form
g : X ⊗X → K of β is defined by g(x1, x2) = β(x1, u2), where x1, x2 ∈ X, and u2 ∈ U is in
the pre-image of x2 under the map of the t-action.

Proposition 3.20. Let β be a non-degenerate alternating bilinear form on U . The X-form
of β is non-degenerate, symmetric, and bilinear.

Proof. Denote the X-form of β by g. First, suppose for the sake of contradiction that g is
degenerate. Then, there exists a vector x ∈ X such that g(x, x′) = 0 for all x′ ∈ X. Thus,
for any vector u′ such that t.u′ ∈ X, β(x, u′) = 0. However, X is the image of U under the
t-action, so β(x, u′) = 0 for all u′ ∈ U , which is impossible because β is non-degenerate.
Now, we prove that g is symmetric and bilinear. Let x1, x2, x3 be arbitrary vectors in X.

There exist vectors u1, u2, u3 ∈ U such that t.u1 = x1, t.u2 = x2, and t.u3 = u3. Symmetry
holds because g(x1, x2) = β(t.u1, u2) = β(u1, t.u2) = β(t.u2, u1) = β(x2, u1) = g(x2, x1). To
verify bilinearity, we can check that g(x1, x2) + g(x1, x3) = β(u1, x2) + β(u1, x3)
= β(u1, x2 + x3) = g(x1, x2 + x3), and g(x1, kx2) = β(u1, kx2) = kβ(u1, x2) = kg(x1, x2) for
any scalar k. By symmetry, these relations also hold on the left side of g. □

Definition 3.21. Let β be a non-degenerate alternating bilinear form on U . Given a basis
of X, the X-matrix of β is the associated matrix of the X-form of β.

Because the X-form is non-degenerate for any non-degenerate alternating bilinear form,
we know that the X-matrix is always invertible. Next, we introduce the basis-invariant
notion of the form invariant to distinguish between isomorphism classes of forms.

Definition 3.22. Suppose that β is a non-degenerate alternating bilinear form on U . Let
{χ1, . . . , χn} be a basis of X, and denote the X-matrix of β with respect to this basis by M .
The form invariant of Iβ of β is the sum

∑n
i=1 fβ(χi)(M

−1)ii.

Remark 3.23. Let η be a non-degenerate alternating bilinear form on an object R with
decomposition R = p1⊕ qP . The formula for Iη is only dependent on the restriction of η to
qP , so Iη = Iη|qP .

Theorem 3.24. Let β be a non-degenerate alternating bilinear form on U . The form in-
variant of β is basis-invariant.

Proof. Denote the X-function and X-form of β by f and g, respectively, and with respect
to the basis {x1, x2, . . . , xm} of X, define M to be the X-matrix of β. Given an invert-
ible linear transformation A : X → X, we want to show that when evaluated on the basis
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{Ax1, Ax2, . . . , Axn}, the form invariant remains unchanged. First, we show that the associ-
ated matrix of g with respect to this basis is A⊤MA. Using the property that g is bilinear,
we can rewrite each entry of this associated matrix as follows:

g(Axi, Axj) =
∑

1≤k,ℓ≤n

AkiAℓjg(xk, xℓ) =
∑

1≤k,ℓ≤n

AkiAℓjMkℓ =
∑

1≤k,ℓ≤n

A⊤
ikMkℓAℓj = (A⊤MA)ij.

Additionally, we have

f(Axi) = β

(
n∑

j=1

Ajiwj,

n∑
k=1

Akiwk

)
=

n∑
j=1

n∑
k=1

AjiAkiβ(wj, wk).

For each pair (a, b) where 1 ≤ a, b ≤ n, we have AaiAbiβ(wa, wb) = AbiAaiβ(wb, wa), which
implies AaiAbiβ(wa, wb)+AbiAaiβ(wb, wa) = 0 in characteristic 2. Therefore, we can simplify
f(Axi) to

n∑
j=1

A2
jiβ(wj, wj) =

n∑
j=1

A2
jif(xj).

We want to prove
n∑

i=1

f(xi)(M
−1)ii =

n∑
i=1

n∑
j=1

A2
jif(xj)(A

⊤MA)−1
ii ,

and it suffices to show that

(M−1)ii =
n∑

k=1

A2
ik(A

⊤MA)−1
kk .

The matrix M−1 can be written as A(A⊤MA)−1A⊤. Thus,

M−1
ii =

∑
1≤j,k≤n

Aij(A
⊤MA)−1

jk A
⊤
ki =

∑
1≤j,k≤n

AijAik(A
⊤MA)−1

jk .

Since A⊤MA is symmetric, (A⊤MA)−1 must also be symmetric.
For each pair (a, b) where 1 ≤ a, b ≤ n, we have AiaAib(A

⊤MA)−1
ab = AibAia(A

⊤MA)−1
ba ,

which means that AiaAib(A
⊤MA)−1

ab + AibAia(A
⊤MA)−1

ba = 0. Then,∑
1≤j,k≤n

AijAik(A
⊤MA)−1

jk =
∑

1≤k≤n

AikAik(A
⊤MA)−1

kk =
n∑

k=1

A2
ik(A

⊤MA)−1
kk ,

as desired. □

We are now ready to prove non-isomorphism.

Lemma 3.25. For all a, b ∈ K, forms in the class F(1 + a) and forms in the isomorphism
class F(1 + b) are isomorphic only if a = b.

Let β be a form in F(1+a). We will use the basis given by (2.1) to represent the associated
matrix of β in Theorem 3.13. With respect to the basis {x1, x2, . . . , xn}, the X-matrix M
of β is the identity matrix In. Then,

∑n
i=1 f(xi)(M

−1)ii =
∑n

i=1 f(xi), which is the sum of
the diagonal entries of M . The form invariant of β thus evaluates to Iβ = 1 + a. Since
1 + a = 1 + b only if a = b, this proves the lemma.
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Theorem 3.26. The forms described in Theorem 3.13 are pairwise non-isomorphic.

Proof. By Proposition 2.4, the alternating bilinear forms in our classification are those that
vanish on vj ⊗ vj for 1 ≤ j ≤ m. We deduce that forms in the isomorphism classes A and B
are not alternating, while forms of the remaining four classes are. Thus, forms in A and B
are not isomorphic to forms in the other classes.

By Proposition 3.15, we can determine the good pairs of forms in our classification by
examining the properties of vectors in a basis of U . Forms belonging to B and F have
a single good pair (0, 0), whereas the good pairs of forms in A and D are (k, 0) for all
scalars k, Forms in E(a) where a ∈ K have the good pairs (ka, k) for all scalars k. For all
k, l ∈ K, u ∈ U , β(u, t.u) = β(u, u) = 0 for all forms β in C. Therefore, forms in C have the
good pair (k, l) for all scalars k, l.

We can use the criterion of distinct good pairs to conclude that forms in A and B are not
isomorphic and forms belonging to the classes C, D, E, and F are pairwise non-isomorphic.
Finally, we proved in Lemma 3.25 that the forms in F (1 + a) and forms in F (1 + b) with
a ̸= b ∈ K are distinct. □

We finish this section with calculating the form invariants of the forms described by C, D,
and E. This information becomes useful in the next section, where we determine the direct
sum and tensor product on bilinear forms described by our isomorphism classes.

Proposition 3.27. The form invariants of forms in C and D are zero, and for a ∈ K, the
form invariant of forms in E(a) is na.

Suppose β is a non-degenerate symmetric bilinear form in E(a). Again, we use the basis
given by (2.1) to represent the associated matrix of β in Theorem 3.13. The X-matrix of β
with respect to this basis is the identity matrix In, and for 1 ≤ i ≤ n, fβ(xi) = a. The form
invariant of β evaluates to Iβ = na.

Now, suppose β is a form in C or D. With respect to the same basis, the X-matrix of β,
which we will once again denote M , is direct sums of the 2× 2 matrix given by[

0 1
1 0

]
.

Since M is its own inverse, M−1
ii = 0 for 1 ≤ i ≤ n. Thus, Iβ = 0.

4. Witt Semi-Ring Structure

In this section, we describe the structure of the Witt semi-ring of isomorphism classes
of non-degenerate symmetric bilinear forms in Ver+4 (see §2.4). Our results are provided
in the table at the end of each subsection. As a set, the elements of the Witt semi-ring
are the isomorphism classes of the non-degenerate symmetric bilinear forms described in
Theorem 3.13. Recall that addition is given by direct sum and multiplication is given by
tensor product.

Throughout this section, we let β and η denote non-degenerate symmetric bilinear forms
on objects U,R ∈ Ver+4 , respectively. We fix a basis of U = m1⊕ nP as given by (2.1), and
we fix a basis of R = p1⊕ qP by

{ν1, ν2, . . . , νp, ω1, χ1, . . . , ωq, χq},
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where t.vj = 0 for all 1 ≤ j ≤ p and t.wk = xk for all 1 ≤ k ≤ q. The direct sum β ⊕ η acts
on the object U ⊕ R = (m + p)1 ⊕ (n + q)P . The tensor product β⊗̂η acts on the object
U ⊗R = mp1⊕mqP ⊕ npP ⊕ nq(P ⊗ P ), which is equivalent to mp1⊕ (mq + np+ 2nq)P
because P ⊗ P = P ⊕ P . Given β and η, we determine which isomorphism classes their
direct sum and tensor product belong to (denoted A through F, as labeled in Theorem 3.13).

4.1. Direct Sum. In this section, we describe the invariant properties of β ⊕ η, which will
enable us to classify the form up to isomorphism.

Lemma 4.1. The good pairs of β⊕η are the intersection of the good pairs of β and the good
pairs of η.

Proof. Let k, ℓ be scalars in K. If kβ(u, t.u) = ℓβ(u, u) for all u ∈ U and kη(r, t.r) = ℓη(r, r)
for all r ∈ R, we have

kβ(u, t.u) + kη(r, t.r) = ℓβ(u, u) + ℓη(r, r)

=⇒ kβ ⊕ η(u⊕ r, t.(u⊕ r)) = ℓβ ⊕ η(u⊕ r, u⊕ r).

For the converse, we suppose (k, ℓ) is a good pair of β ⊕ η, meaning

(4.1) kβ ⊕ η(u⊕ r, t.(u⊕ r)) = ℓβ ⊕ η(u⊕ r, u⊕ r)

for all u⊕ r ∈ U ⊕ R. We have ℓβ ⊕ η(u⊕ r, u⊕ r) = ℓβ(u, u) + ℓη(r, r), and the left-hand
side of (4.1) evaluates to

kβ ⊕ η(u⊕ r, t.(u⊕ r)) = kβ ⊕ η(u⊕ r, t.u⊕ t.r) = kβ(u, t.u) + kη(r, t.r).

Thus, we can rewrite (4.1) as

kβ(u, t.u) + kη(r, t.r) = ℓβ(u, u)⊕ ℓη(r, r).

Setting r = 0 in the equation above yields kβ(u, t.u) = ℓβ(u, u), and setting u = 0 yields
kη(r, t.r) = ℓη(r, r). □

Lemma 4.2. The direct sum β⊕η is alternating if and only if both β and η are alternating.

Proof. Decompose U = VU ⊕WU ⊕XU and R = VR ⊕WR ⊕XR. If β and η are alternating,
then by Proposition 2.4, β(a, a) = 0 for all a ∈ VU ⊕XU , and η(b, b) = 0 for all b ∈ VR⊕XR.
Then, β ⊕ η(a ⊕ b, a ⊕ b) = β(a, a) + η(b, b) = 0 for all a ∈ VU ⊕ XU , b ∈ VR ⊕ XR, which
proves by Proposition 2.4 that β ⊕ η is alternating.

To prove the converse, we will show that β ⊕ η is not alternating when at least one of β
and η is not alternating. If β is not alternating, then Proposition 2.4 implies the existence of
a vector v1 ∈ VU such that β(v1, v1) ̸= 0. For any vector χ in XR, t.(v1+χ) = t.v1+ t.χ = 0,
and η(χ, χ) = 0. Consequently, β⊕ η(v1+χ, v1+χ) = β(v1, v1)+ η(χ, χ) ̸= 0, and it follows
from Proposition 2.5 that β ⊕ η is not alternating. □

Lemma 4.3. If both β and η are alternating, then Iβ⊕η = Iβ + Iη.

Proof. First, let us establish our notation for this proof. The bases of XU and XR are given
by {x1, x2, . . . , xn} and {χ1, χ2, . . . , χq}, respectively. We denote the X-function of β by fβ,
the X-function of η by fη, and the X-function of β ⊕ η by fβ⊕η. Additionally, X-matrices
of β, η, and β ⊕ η are denoted by Mβ, Mη, and M , respectively.

Define a basis of β⊕η by {b1, . . . , bn+q} where the vectors b1, . . . , bn are given by x1, . . . , xn

and the vectors bn+1, . . . , bn+q are given by χ1, . . . , χq. For any 1 ≤ i ≤ n, fβ⊕η(xi + 0) =
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β(xi, xi) = fβ(xi). We also have fβ⊕η(0 + χi) = fη(χi) for all 1 ≤ i ≤ q. There is a

similar relationship between the X-matrices of our forms: M = Mβ ⊕Mη =

[
Mβ 0
0 Mη

]
, so

M−1 =

[
M−1

β 0
0 M−1

η

]
. Thus,

Iβ⊕η =

n+q∑
i=1

fβ⊕η(bi)(M
−1)ii

=
n∑

i=1

fβ⊕η(xi + 0)(M−1)ii +

n+q∑
i=n+1

fβ⊕η(0 + χi−n)(M
−1)ii

=
n∑

i=1

fβ(xi)(M
−1
β )ii +

q∑
i=1

fη(χi)(M
−1
η )ii.

□

We can now apply our work from the previous section on good pairs and alternating forms
(Theorem 3.26) and form invariants (Lemma 3.25, Proposition 3.27) to determine the direct
sum of isomorphism classes in our Witt semi-ring.

⊕ A B C D E(a) F(a)
A A B A A B B
B B B B B B
C C D E(a) F(a)
D D F(na) F(a)
E(b) a = b → E(a);

a ̸= b → F(na+ qb)
F(a+ qb)

F(b) F(a+ b)

In the table above, a and b represent arbitrary scalars. We list the isomorphism classes of β
and η in the top row and the leftmost column, respectively (the blank entries are given by
commutativity).

4.2. Tensor Product. To determine the tensor product on bilinear forms in our setting,
we will employ a similar strategy as the one we used to find the direct sum. Recall that we
fixed a basis of U = m1⊕ nP by

{v1, v2, . . . , vm, w1, x1, . . . , wn, xn}
and a basis of R = p1⊕ qP by

{ν1, ν2, . . . , νq, ω1, χ1, . . . , ωq, χq}.

Remark 4.4. Some statements in this section assume properties for at least one of β and
η or assume different properties for β and η. By commutativity, these claims are also true
when we interchange the assumptions for β and the assumptions for η.

First, we will determine the good pairs of β⊗̂η. By Proposition 3.15, it suffices to consider
the pairs (k, ℓ) ∈ K2 that satisfy the property

kβ⊗̂η(b1 ⊗ b2, t.(b1 ⊗ b2)) = ℓβ⊗̂η(b1 ⊗ b2, b1 ⊗ b2)
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for all vectors b1 ⊗ b2 in a basis of U ⊗ R. It is easier for us to instead consider the pairs
(k, ℓ) ∈ K that satisfy this property for vectors of the form u⊗ r ∈ U ⊗R. This will give us
all of the good pairs of β⊗̂η because set of all vectors in U ⊗R expressible as u⊗ r contains
a basis for U ⊗R. For vectors of this form, we have

(4.2)

β⊗̂η(u⊗ r, u⊗ r) = β(u, u)η(r, r) + β(u, t.u)η(r, t.r),

β⊗̂η(u⊗ r, t.(u⊗ r)) = β⊗̂η(u⊗ r, t.u⊗ r + u⊗ t.r)

= β⊗̂η(u⊗ r, t.u⊗ r) + β⊗̂η(u⊗ r, u⊗ t.r),

= β(u, t.u)η(r, r) + β(u, u)η(r, t.r).

We begin with the cases where at least one of β and η lies in the isomorphism classes C
or E(1).

Proposition 4.5. If β lies in C, then β⊗̂η must also belong to C.

Proof. Since β is in C, β(u, t.u) = 0 and β(u, u) = 0 for all u ∈ U . For all r ∈ R, we thus
have β⊗̂η(u ⊗ r, u ⊗ r) = 0 and β⊗̂η(u ⊗ r, t.(u ⊗ r)) = 0 by the equations in (4.2). These
properties are only exhibited by forms in C. □

Proposition 4.6. Suppose that η lies in E(1) and β does not belong to the isomorphism
classes C or E(1). Then, β⊗̂η is in E(1).

Proof. The equation β⊗̂η(u ⊗ r, t.(u ⊗ r)) = β⊗̂η(u ⊗ r, u ⊗ r) holds for all vectors of the
form u ⊗ r in U ⊗ R. We can see that (1, 1) is a good pair of β⊗̂η, which is only true for
forms belonging to the classes C and E(1). Since β is not in C or E(1), there exists a vector
u1 ∈ U such that β(u1, u1) ̸= β(u1, t.u1). Furthermore, since η is in E(1), there exists a
vector r1 ∈ η such that η(r1, r1) = η(r1, t.r1) ̸= 0. Then, β⊗̂η(u1 ⊗ r1, u1 ⊗ r1) must be
nonzero, which cannot be true for forms in C. □

Proposition 4.7. If β and η are both in E(1), then β⊗̂η belongs to C.

Proof. If β and η are both in E(1), then they must each have the good pair (1, 1). In other
words, β(u, t.u) = β(u, u) for all u ∈ U , and η(r, t.r) = η(r, r) for all r ∈ R. For all values of
u⊗ r ∈ U ⊗R, we thus have

β⊗̂η(u⊗ r, u⊗ r) = β(u, u)η(r, r) + β(u, t.u)η(r, t.r) = 2 · β(u, u)η(r, r) = 0,

β⊗̂η(u⊗ r, t.(u⊗ r)) = β(u, t.u)η(r, r) + β(u, u)η(r, t.r) = 2 · β(u, u)η(r, r) = 0.

These equations only hold for forms in C. □

The remaining cases occur when neither β nor η belongs to C or E(1). To address these
cases, we start with the following proposition.

Proposition 4.8. Suppose β has a single good pair (0, 0). For any scalars k, ℓ, there exists
a solution to the system of equations

β(u, u) = k,

β(u, t.u) = ℓ.

Proof. Since (0, 0) is the only good pair of β, there exists a vector µ1 ∈ U such that at least
one of β(µ1, µ1) and β(µ1, t.µ1) is nonzero. Let k1, ℓ1 be the scalars given by k1 := β(µ1, µ1)
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and ℓ1 := β(µ1, t.µ1). Then, (k1, ℓ1) ̸= (0, 0). If β(µ1, µ1)β(µ, t.µ) = β(µ1, t.µ1)β(µ, µ) for all
µ ∈ U , then (k1, ℓ1) would be a good pair of β. Therefore, since (0, 0) is the only good pair
of β, there must exist some vector µ2 ∈ U such that

k1β(µ2, t.µ2) ̸= ℓ1β(µ2, µ2).

Defining k2 := β(µ2, µ2) and ℓ2 := β(µ2, t.µ2), we have k1ℓ2 ̸= k2ℓ1. The pairs (k1, ℓ1), (k2, ℓ2)
are linearly independent vectors over K2, so (k1, ℓ1), (k2, ℓ2) spanK2. Thus, there exist scalars
c, d such that c(k1, ℓ1) + d(k2, ℓ2) = (k, ℓ).

Let u =
√
cµ1 +

√
dµ2. We have

β(u, u) = β(
√
cµ1 +

√
dµ2,

√
cµ1 +

√
dµ2)

= cβ(µ1, µ1) + dβ(µ2, µ2) + 2 ·
√
cdβ(µ1, µ2))

= cβ(µ1, µ1) + dβ(µ2, µ2) = k

and

β(u, t.u) = β(
√
cµ1 +

√
dµ2, t.(

√
cµ1 +

√
dµ2))

= β(
√
cµ1 +

√
dµ2,

√
ct.µ1 +

√
dt.µ2)

= cβ(µ1, t.µ1) + dβ(µ2, t.µ2) +
√
cd(β(µ1, t.µ2) + β(t.µ1, µ2))

= cβ(µ1, t.µ1) + dβ(µ2, t.µ2) +
√
cd(β(µ1, t.µ2) + β(µ1, t.µ2))

= cβ(µ1, t.µ1) + dβ(µ2, t.µ2) + 2 ·
√
cdβ(µ1, t.µ2)

= cβ(µ1, t.µ1) + dβ(µ2, t.µ2) = ℓ,

which shows that u is a solution to the system. □

Lemma 4.9. Suppose that the only good pair of β is (0, 0) and that η does not belong to the
classes C or E(1). Then, the only good pair of β⊗̂η is (0, 0).

Proof. Since η is not in C or E(1), there must exist a vector r ∈ R such that η(r, r) ̸= η(r, t.r).
Then, for any scalars a, b ∈ K, the system of equations

a = cη(r, r) + dη(r, t.r),

b = cη(r, t.r) + dη(r, r)

has a solution in some scalars c and d. By Proposition 4.8, there exists a vector u ∈ U such
that β(u, u) = c, β(u, t.u) = d. We obtain

β⊗̂η(u⊗ r, u⊗ r) = β(u, u)η(r, r) + β(u, t.u)η(r, t.r) = cη(r, r) + dη(r, t.r) = a,

β⊗̂η(u⊗ r, t.(u⊗ r)) = β(u, t.u)η(r, r) + β(u, u)η(r, t.r) = dη(r, r) + cη(r, t.r) = b.

For (k, l) ∈ K2 to be a good pair of β⊗̂η, the equation kb = la must hold for all values of
a, b. This is only true when (k, l) = (0, 0). □

Lemma 4.10. Let k1, k2, ℓ1, and ℓ2 be elements of K. Suppose that the good pairs of β
are the multiples of (k1, ℓ1) and the good pairs of η are the multiples of (k2, ℓ2). Suppose
further that β and η are not in C or E(1). Then, the good pairs of β⊗̂η are the multiples of
(k1k2 + ℓ1ℓ2, k1ℓ2 + ℓ1k2).
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Proof. First, we observe that for all u ∈ U, r ∈ R,

(k1k2 + ℓ1ℓ2)β⊗̂η(u⊗ r, t.(u⊗ r))

= (k1k2 + ℓ1ℓ2)(β(u, u)η(r, t.r) + β(u, t.u)η(r, r))

= k1k2β(u, t.u)η(r, r) + k1k2β(u, u)η(r, t.r) + ℓ1ℓ2β(u, t.u)η(r, r) + ℓ1ℓ2β(u, u)η(r, t.r)

= k2ℓ1β(u, u)η(r, r) + k1ℓ2β(u, u)η(r, r) + k2ℓ1β(u, t.u)η(r, t.r) + k1ℓ2β(u, t.u)η(r, t.r)

= (k1ℓ2 + ℓ1k2)(β(u, u)η(r, r) + β(u, t.u)η(r, t.r))

= (k1ℓ2 + ℓ1k2)β⊗̂η(u⊗ r, u⊗ r),

which shows that the multiples of (k1k2+ ℓ1ℓ2, k1ℓ2+ ℓ1k2) are good pairs of β⊗̂η. It remains
to prove that they are the only good pairs of β⊗̂η.

If k1ℓ2 = ℓ1k2, then the multiples of (1, 0) are good pairs of β⊗̂η. If k1ℓ2 ̸= ℓ1k2, then
the multiples of (k1k2+ℓ1ℓ2

k1ℓ2+ℓ1k2
, 1) are good pairs of β⊗̂η. In either case, β⊗̂η will not have other

good pairs unless it belongs to C. We will prove that this cannot occur.
Because β does not belong to C or E(1), there exists a vector u′ ∈ U such that at least one

of β(u′, u′), β(u′, t.u′) is nonzero. Similarly, because η does not belong to C or E(1), there
exists a vector r′ ∈ R such that at least one of η(r′, r′), η(r′, t.r′) is nonzero. The quantities
β(u′, u′) + β(u′, t.u′) and η(r′, r′) + η(r′, t.r′) are therefore both nonzero, and their product

(β(u′, u′) + β(u′, t.u′))(β(r′, r′) + β(r′, t.r′))

= (β(u′, u′)β(r′r′) + β(u′, t.u′)η(r′, t.r′)) + (β(u′, t.u′)η(r′, r′) + β(u′, u′)η(r′, t.r′))

= β⊗̂η(u′ ⊗ r′, u′ ⊗ r′) + β⊗̂η(u′ ⊗ r′, t.(u′ ⊗ r′))

must also be nonzero. At least one of β⊗̂η(u′ ⊗ r′, u′ ⊗ r′) and β⊗̂η(u′ ⊗ r′, t.(u′ ⊗ r′)) is
nonzero; this cannot be the case for forms in C. Hence, β⊗̂η has no other good pairs, which
proves the claim. □

Our work above fully determines the good pairs of β⊗̂η in the remaining cases. Now, we
will find when β⊗̂η is alternating.

Lemma 4.11. The form β⊗̂η is alternating if and only if at least one of β and η is alter-
nating.

Proof. The the object U ⊗ R can be decomposed as U ⊗ R = (m1 ⊕ nP ) ⊗ (p1 ⊕ qP ) =
mp1 ⊕ (2nq + mq + np)P . A basis for mp1 is given by the vectors vi ⊗ νj where 1 ≤ i ≤
m, 1 ≤ j ≤ p. By Proposition 2.4, the form β⊗̂η is alternating when β⊗̂η(vi⊗νj, vi⊗νj) = 0
for all 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Expanding, we have

β⊗̂η(vi ⊗ νj, vi ⊗ νj) = β(vi, vi)η(νj, νj) + β(vi, t.vi)β(t.νj, νj) = β(vi, vi)η(νj, νj).

By Proposition 2.4, β(vi, vi) = 0 for all 1 ≤ i ≤ m if and only if β is alternating, and
η(νj, νj) = 0 for all 1 ≤ j ≤ p if and only if η is alternating. Thus, β⊗̂η is alternating if and
only if β is alternating, η is alternating, or both β and η are alternating. □

We will now describe the form invariant Iβ⊗̂η when β⊗̂η is alternating. By Propositions 2.6
and 3.3, we can choose decompositions of U and R such that m1 ⊥ nP and p1 ⊥ qP . This
results in a decomposition U ⊗R = mp1⊕mqP ⊕ npP ⊕ 2nqP where the subobjects mp1,
mqP , npP , and 2nqP are mutually orthogonal.
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By Remark 3.23, the form invariant of β⊗̂η is equal to the form invariant of β⊗̂η restricted
to mqP ⊕npP ⊕ 2nqP . The restrictions of β⊗̂η to mqP , nqP , and 2nqP are all alternating,
so we can apply Lemma 4.3 to write

(4.3) Iβ⊗̂η = Iβ⊗̂η|mqP
+ Iβ⊗̂η|npP

+ Iβ⊗̂η|2nqP
.

Therefore, our approach will be to determine the form invariants of the restrictions of β⊗̂η
to the objects mqP , npP , and 2nqP .

Proposition 4.12. If β⊗̂η is alternating, then the form invariant of β⊗̂η restricted to
nP ⊗ qP = 2nqP is zero.

Proof. The object 2nqP contains the 2nq linearly independent vectors given by wi⊗χj, xi⊗χj

for 1 ≤ i ≤ n, 1 ≤ j ≤ q. Observe that t.(wi⊗χj) = xi⊗χj. Now, considerX-function andX-
form of β⊗̂η, which we will denote by f and g, respectively. For all 1 ≤ i, k ≤ n, 1 ≤ j, ℓ ≤ q,

g(xi ⊗ χj, xk ⊗ χℓ) = β⊗̂η(wi ⊗ χj, xk ⊗ χℓ)

= β(wi, xk)η(χj, χℓ) + β(wi, t.xk)η(t.χj, χℓ)

= β(wi, xk)η(χj, χℓ) + β(wi, 0)η(0, χℓ) = 0.

Furthermore, for all 1 ≤ i ≤ n, 1 ≤ j ≤ q,

f(xi ⊗ χj) = β⊗̂η(wi ⊗ χj, wi ⊗ χj) = β(wi, wi)η(χj, χj) + β(wi, xi)η(χj, 0) = 0.

A basis {b1, b2, . . . , b2nq} of the image of 2nqP under the map of the t-action can be con-
structed such that the vectors bnq+1, . . . b2nq are given by xi⊗χj, where 1 ≤ i ≤ n, 1 ≤ j ≤ q.
Using this basis, we construct the X-matrix of β⊗̂η restricted to 2nqP . It is of the form

A B

C 0

 ,

where A,B,C are matrix blocks and 0 represents the zero matrix. We know by the non-
degeneracy of the X-form (proved in Proposition 3.20) that M is invertible, so B and C
must also be invertible. We calculate that M−1 is equal to

0 C−1

B−1 B−1AC−1

.

Thus, M−1
kk = 0 for 1 ≤ k ≤ nq and f(bk) = 0 for nq < k ≤ 2nq. The form invariant of β⊗̂η

restricted to 2nqP evaluates to Iβ⊗̂η|2nqP
=

2nq∑
k=1

f(bk)M
−1
kk = 0. □

Proposition 4.13. Suppose β⊗̂η is alternating. If β is not alternating, then the form
invariant of β⊗̂η restricted to m1⊗ qP = mqP is mIη|qP .
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Proof. The objectm1 is the direct sum ofm 1 objects, for each of which the restriction of β is
non-degenerate. The object mqP is the direct sum of m copies of 1⊗qP . Each 1⊗qP object
is alternating, so applying Lemma 4.3 reduces the claim to proving that Iβ⊗̂η|1⊗qP

= Iη|qP .

This is true because β⊗̂η|1⊗qP
∼= η|qP . □

Proposition 4.14. Suppose β⊗̂η is alternating. If β is alternating, the form invariant of
β⊗̂η restricted to m1⊗ qP = mqP is zero.

Proof. The object m1 is the direct sum of m
2
21 objects, each of which has a basis {u1, u2}

such that β(u1, u1) = 0, β(u2, u2) = 0, and β(u1, u2) = 1. The object 21⊗ qP is alternating,
and mqP is the direct sum of m

2
copies of 21⊗ qP . Applying Lemma 4.3 to these m

2
objects,

we only need to show that Iβ⊗̂η|21⊗qP
= 0. We will do so by directly calculating this form

invariant.
The object 21 ⊗ qP contains the 2q linearly independent vectors given by u1 ⊗ ωi and

u1 ⊗ χi, where t.(u1 ⊗ ωi) = u1 ⊗ χi for 1 ≤ i ≤ q. Denote the X-function and the X-form
of β⊗̂η by f and g, respectively. For 1 ≤ i ≤ q, we have

f(u1 ⊗ χi) = β⊗̂η(u1 ⊗ ωi, u1 ⊗ ωi) = β(u1, u1)η(ωi, ωi) = 0,

and for all 1 ≤ i, j ≤ q, we have

g(u1 ⊗ χi, u1 ⊗ χj) = β⊗̂η(u1 ⊗ ωi, u1 ⊗ χj) = β(u1, u1)η(ωi, χj) = 0.

We can construct a basis {b1, b2, . . . b2q} of the image of 21 ⊗ qP under the map of the
t-action such that the vectors bq+1, . . . , b2q are given by u1 ⊗ χi for 1 ≤ i ≤ q. Let M be the
X-matrix of β⊗̂η on this basis. By the same reasoning used for the case in Lemma 4.12,
M−1

kk = 0 for 1 ≤ k ≤ q and f(bk) = 0 for q < k ≤ 2q, which proves that

2q∑
k=1

f(bk)M
−1
kk = 0.

Having shown that the form invariant of β⊗̂η restricted to each 21⊗ qP object is zero, we
also have Iβ⊗̂η|m1⊗qP

= 0. □

By commutativity, the previous two lemmas prove that Iβ⊗̂η|npP
= pIβ|nP when η is not

alternating and Iβ⊗̂η|npP
= 0 when η is alternating.

Given an alternating form β⊗̂η, we can now find the form invariant of β⊗̂η using (4.3).
At least one of β and η must be alternating by Lemma 4.11. By Propositions 4.12, 4.13,
and 4.14, Iβ⊗̂η = 0 when both β and η are alternating, Iβ⊗̂η = mIη|qP = mIη when β is not
alternating, and Iβ⊗̂η = pIβ|nP

= pIβ when η is not alternating.

Our work in this section determines the good pairs of β⊗̂η, when β⊗̂η is alternating, and
the form invariant of β⊗̂η when the form is alternating. This enables us to calculate the
tensor product on our isomorphism classes.
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⊗ A B C D E(1) E(a) F(a)
A A B C D E(1) E(a) F(pa)
B B C F(0) E(1) F(pna) F(pa)
C C C C C C
D D E(1) E(a) F(0)
E(1) C E(1) E(1)
E(b) a = b → D;

a ̸= b → E((ab+1)/(a+ b))
F(0)

F(b) F(0)

In the table above, we again use a and b to denote arbitrary scalars. The top row describes
the isomorphism class of β (onm1⊕nP ), and the leftmost column describes the isomorphism
class of η (on p1⊕ qP ).
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