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Abstract. Function Secret Sharing (FSS; Eurocrypt 2015) allows a dealer to share a function
f with two or more evaluators. Given secret shares of a function f , the evaluators can locally
compute secret shares of f(x) on an input x, without learning information about f .

In this paper, we initiate the study of access control for FSS. Given the shares of f , the evaluators
can ensure that the dealer is authorized to share the provided function. For a function family F
and an access control list defined over the family, the evaluators receiving the shares of f ∈ F
can efficiently check that the dealer knows the access key for f .

This model enables new applications of FSS, such as: (1) anonymous authentication in a multi-
party setting, (2) access control in private databases, and (3) authentication and spam preven-
tion in anonymous communication systems.

Our definitions and constructions abstract and improve the concrete efficiency of several re-
cent systems that implement ad-hoc mechanisms for access control over FSS. The main build-
ing block behind our efficiency improvement is a discrete-logarithm zero-knowledge proof-of-
knowledge over secret-shared elements, which may be of independent interest.

We evaluate our constructions and show a 50–70× reduction in computational overhead com-
pared to existing access control techniques used in anonymous communication. In other ap-
plications, such as private databases, the processing cost of introducing access control is only
1.5–3×, when amortized over databases with 500,000 or more items.

Keywords: Function secret sharing, verifiable FSS, access control, authentication, anonymous
communication, private databases, zero-knowledge multi-verifier proofs

⋆ This is the extended and corrected version of [41].
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1 Introduction

Function secret sharing (FSS) [7, 9] is at the core of many privacy-preserving systems, including
private databases [17, 18, 47], private telemetry [6], privacy-preserving machine learning [33, 38],
distributed oblivious RAM (ORAM) [22], anonymous communication [15, 23, 34, 46], and efficient
multi-party computation [10]. Since these applications involve the processing of private user data,
often in settings where users may be behaving maliciously, access control becomes an important
problem [23, 34, 46]. For example, in applications of FSS that involve privately reading from—or
writing to—a database [6, 22, 23, 34, 46], access control is necessary to prevent malicious users from
accessing or overwriting data belonging to other users.

FSS lets any user (called the dealer) distribute succinct secret shares of a function to a set of
function evaluators. These evaluators can efficiently—and non-interactively—evaluate the function
on a common input x to obtain secret shares of f(x). FSS guarantees that the function remains
private to strict subsets of the evaluators, which means that the evaluators do not learn anything
about f (beyond the function family that f belongs to).

In this paper, we investigate the problem of privately enforcing access control in the context of
FSS. We identify several existing applications of FSS that construct different ad-hoc solutions for
access control [23, 34, 46], highlighting the utility of formally studying this paradigm.

For example, FSS is often used for private information retrieval (PIR) [7, 13, 26, 47]. In PIR,
a dealer secret shares a selection function fi with the evaluators. The evaluators use the shares to
evaluate fi on a database DB and send back secret shares [fi(DB)], which encodes the ith item in
the database. The dealer then recovers the ith item by combining the returned shares. Importantly,
the evaluators who are given shares of fi learn nothing about fi (beyond the fact that fi is from the
“selection function” family) and therefore do not learn which item the dealer retrieved from DB.

In the PIR setting, access control could require that only users with an access key for the ith
item in the database can successfully share fi with the evaluators. More specifically, in applications
involving e-commerce [29], web queries [47], and media consumption [28], where users are only entitled
to retrieve some (but not all) items in the database, such access control is imperative. Likewise, in
private information writing applications, such as anonymous communication systems [23, 34, 46] and
private telemetry [6, 14], access control is crucial to prevent attacks by malicious users sending invalid
writes (e.g., by overwriting mailboxes of honest users [23, 34, 46]). Only users with a valid access key
for the ith database row should be able to write to it.

Defining the problem of private access control. We model access control as a one-to-one map-
ping between functions and keys. Each function (in a family of functions) is mapped to a verification
key and an access key. The evaluators hold the verification keys, and a dealer has one or more access
keys (we discuss key distribution in Section 3.4). A dealer secret shares the function fi through FSS
and, using the corresponding access key, provides a proof π proving access rights to fi under some
subset of verification keys. The evaluators (whom we also call the verifiers) can check the proof π
using the verification keys (without learning which keys were used) and decide whether or not the
dealer is entitled to an evaluation of the function fi. For example, in the PIR setting, knowledge
of the access key for the selection function fi, allows a user to distribute secret shares of fi to the
evaluators along with a proof π. The evaluators check π before evaluating the function to ensure that
the user is entitled to retrieve the ith item (without learning i).

Challenges. Privately enforcing access control over a secret-shared function is challenging. As men-
tioned above, the evaluators are oblivious to the function they are evaluating, which bars obvious
approaches to access control. That is, access control must maintain the privacy of the function (see
Section 1.1). Additionally, FSS is concerned with efficiency (computation and communication over-
heads for the dealer and the evaluators). As such, the access control mechanism must preserve the
efficiency guarantees of the FSS scheme. Finally, it is important to consider malicious evaluators that
may try to exploit the access control mechanism to violate privacy (this is a problem when designing
any form of verification over FSS [6, 9, 19]). Preventing malicious evaluators from violating privacy,
without relying on strong assumptions or inefficient solutions, can be difficult [5, 9, 19].

Goals. We identify efficiency and malicious security as the primary goals when modeling and design-
ing access control for FSS. More specifically—and following the requirements of FSS—we will require
communication efficiency and minimal interaction between verifiers. Our definition (described in Sec-
tion 3) captures these efficiency requirements by demanding (1) succinct proofs, (2) no interaction
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with the prover, and (3) at most one message exchanged between verifiers to check access rights
(note that this is in fact optimal as it is necessary to exchange one message to verify any proof over
secret-shares [5]). Importantly, by minimizing interaction between verifiers, we also obtain security
against any subset of malicious verifiers. More concretely, (3) ensures that any construction satisfying
our model never provides “feedback” to any subset of malicious verifiers which, in turn, ensures that
malicious verifiers obtain no information through the access control mechanism.

1.1 Background on FSS

FSS [7] takes a different approach to “traditional” secret sharing of data. With traditional secret
sharing, a dealer shares a value v with a set of s parties such that (1) knowledge of up to some
threshold number of shares does not reveal any information on v and (2) shares can be efficiently
recombined to recover v. FSS applies the same idea to functions where the dealer instead secret shares
a description of a function f : {0, 1}n → {0, 1}∗ with a set of s evaluators. Denote the shares of f
as [f ]. The evaluators can then locally compute shares [y] := [f ](x) on any input x. Informally, FSS
must satisfy three properties:

– Correctness. The jth party can evaluate their secret share of f on a public input x to obtain a
secret share of f(x).

– Privacy. No evaluator gains any information on f given a secret share of [f ].

– Efficiency. FSS requires the size of the secret shares to be small (sublinear in the size of the truth
table for f).

Boyle et al. [7, 9] provide constructions for several function families. Specifically, they describe efficient
FSS constructions for NC0 functions, constant conjunction search queries, and interval functions. Their
constructions are based only on the assumption that one-way functions exist [7]. The main primitive
behind their results is an FSS family for distributed point functions (DPFs) [7, 9, 26]. Subsequent
work of Boyle et al. [9] extends DPFs to FSS for decision trees and products of distinct secret-shared
functions. FSS schemes from stronger cryptographic assumptions yield constructions for all efficient
function families [7, 8, 21].

1.2 Prior work

Recent work on anonymous communication provides ad-hoc solutions to access control in the context
of FSS. Express [23] (USENIX 2021), Spectrum [34] (NSDI 2022), and Sabre [46] (S&P 2022) use
FSS for anonymous communication. In these systems, users privately write messages into mailboxes
using a DPF.

To prevent malicious users from corrupting mailboxes belonging to honest users, all three systems
require a form of access control applied over DPFs, which they enforce through a lightweight multi-
party computation protocol.

The access control mechanism in Express associates each mailbox with a secret “address.” The
evaluators keep the addresses secret. Only a dealer with knowledge of a mailbox address can success-
fully write to that mailbox.

Unfortunately, the mechanism used in Express has several drawbacks: (1) it does not generalize
to larger families of DPFs and currently remains specific to the two-party DPF construction for point
functions [7, 9], (2) the use of “addresses” for access control requires a large output range and leads
to a 5× computational overhead for the evaluators (and, more importantly, prevents optimization
techniques for DPFs [9]), and (3) the multi-party computation requires extra communication be-
tween evaluators and the dealer. In contrast, our model and constructions (Sections 4 and 5) require
only one message exchanged between verifiers and no interaction with the dealer. Additionally, our
constructions make minimal assumptions on the underlying DPF scheme, making them compatible
with DPF optimizations [9, 19].

Sabre extends Express by developing a different access control mechanism using zero-knowledge
proofs over secret shares. Their techniques reduce the computational overhead on the evaluators (es-
pecially in the context of anonymous communication where many users are assumed to be malicious)
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Fig. 1: Overview of FSS and our access control model. Left: In FSS without access control, a dealer distributes
shares of a function fi with the evaluators. 1 A setting with access control where the evaluators have Λ and
2 the dealer has an access key pk2 for f2. 3 the dealer (acting as the prover) with knowledge of the access
key for f2 distributes secret shares of the function f2 and proof shares π to the evaluators. 4 The evaluators
collectively check access rights to f2 using the proof shares [π] and the access control list Λ.

at the cost of significantly increasing communication between the dealer and the evaluators. Like
Express, Sabre is designed around two-party DPFs constructions [7, 9] and requires a round of in-
teraction between the evaluators to enforce access control. The access control mechanism of Sabre is
actually a special case of a generic approach to access control realized via zero-knowledge proofs over
secret-shares, which we describe in Section 7. However, their techniques are tailored to the anonymous
communication setting where (1) a large number of users are assumed to be malicious and (2) where
access control is verified in batches.

Spectrum provides yet a different technique for access control via secret-shared hashing. The idea
behind Spectrum is to have the evaluators “hash” the value being written to each mailbox using a
unique hash key associated with the mailbox. The evaluators only process writes from a dealer that
can prove, in zero-knowledge, that it knows the resulting hash value (which, in turn, proves that the
dealer knows the hash key of the mailbox). The technique is communication efficient and only requires
one message exchanged between verifiers to enforce access control (which aligns with our modeling of
access control).

In Section 4, we start by abstracting the access control construction of Spectrum. We then gener-
alize it further and develop new techniques to realize more efficient private access control schemes. In
Section 8, we show that our improved constructions reduce the computational overhead by 50–70×
in both Express and Spectrum and have 1,000× smaller proof sizes compared to Sabre.

1.3 Contributions

We make the following five contributions:

Contribution I. A model for Private Access Control Lists (PACLs) for FSS. Our definitions capture
the functionality requirements of several existing applications of access control for FSS [23, 34, 46]
and demand a stringent set of efficiency requirements that align closely with the goals of FSS.

Contribution II. PACL constructions for black-box DPFs and lightweight FSS classes derived from
DPFs. Our constructions are secure against malicious provers, guarantee privacy in the face of mali-
cious verifiers, have a constant-factor overhead (relative to sharing and evaluating the function), and
can be used as drop-in replacements in existing applications for significant efficiency improvements.

Contribution III. For the special case of verifiable FSS [19], we construct an optimized public-key
PACL for black-box verifiable DPFs (which gives rise to PACLs for a large class of verifiable FSS).
For this construction, we develop a zero-knowledge proof of discrete-logarithm knowledge over secret-
shared group elements. Our construction has 2,400× smaller proof sizes compared to a näıve approach
and is possibly of independent interest.

Contribution IV. PACLs for FSS for functions in P/poly (not just classes of FSS derived from DPFs).
Our generic construction is based on non-interactive zero-knowledge proofs over secret shares, instan-
tiated in the random oracle model.

Contribution V. An open-source implementation which we evaluate on several canonical applications,
such as anonymous user authentication in a distributed setting, access control in private databases,
and anonymous communication.
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2 Overview

Here, we define non-private access control for functions. We define private access control for FSS
in Section 3.

2.1 Access Control Lists (ACLs)

We define ACLs from a cryptographic lens in order to facilitate the definitions of private ACLs, which
we introduce in Section 3. Specifically, we define ACLs as a set of objects (in our case, functions)
each associated with access and verification keys.

Definition 1 (Access Control Lists).
Let λ ∈ N be a security parameter, F : {0, 1}n → {0, 1}∗ be a function family, and fi ∈ F . An ACL

scheme consists of an access control list Λλ (parameterized by λ) containing verification keys and an
efficiently computable predicate CheckAccess(Λλ, fi, sk) that outputs yes if and only if the access key
sk satisfies a relation R with respect to the verification key associated with fi in Λλ. For notational
convenience, we let N := |F| and omit the λ subscript when it is clear from context.

We note that Definition 1 is general and not specific to FSS (indeed, Definition 1 does not even
capture the notion of secret shares or distributed verifiers). We will define these notions in Section 3
when formalizing private ACLs for FSS. It is also natural to equip Definition 1 with completeness and
soundness properties (with respect to an adversary). These are likewise deferred to the formalization
of private ACLs in Definitions 3 and 4.

We now describe instantiations of CheckAccess from Definition 1. We will port these to private
ACLs for FSS in Section 3. We observe that, in most cases, the goal of CheckAccess is to check if the
provided access key matches with some unique verification key associated with the function fi. We
call this the match predicate. However, it is also possible that a function is associated with multiple
different verification keys. Such a predicate is especially useful for maintaining efficient access key
revocation in a setting with many users. A key can be removed for a given function without impacting
the validity of the remaining keys. In this scenario, we instantiate CheckAccess as an inclusion predicate
over a set of verification keys associated with the function.

Match predicate. The match predicate consists of an efficiently computable relation R(·, ·), N
verification (vk1, . . . , vkN ) and access (sk1, . . . , skN ) keys, such that R(vki, skj) = 1 if and only if i = j
and each tuple is uniquely associated with a canonical instance of fi ∈ F . CheckAccess is defined as:

CheckAccess(Λλ, fi, sk)

parse Λλ = (vk1, . . . , vkN )

if R(vki, sk) = 1 return yes,

else return no

That is, CheckAccess outputs yes if and only if the provided sk is related to the verification key
associated with fi.

Inclusion predicate. A generalization of the match predicate satisfying Definition 1 is the inclusion
predicate that associates each function with ℓ ≥ 1 verification keys,

Λλ :=

 (vk1,1 . . . vk1,ℓ)
...

(vkN,1 . . . vkN,ℓ)

 .

Any key in the row (vki,1 . . . vki,ℓ) can be used to satisfy the relation for fi. CheckAccess is defined as:

CheckAccess(Λλ, fi, sk)

parse Λλ =
(
(vk1,1, . . . , vk1,ℓ), . . . , (vkN,1, . . . , vkN,ℓ)

)
if ∃vki,j such that R(vki,j , sk) = 1 return yes,

else return no
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That is, CheckAccess outputs yes if and only if sk matches with any of the verification keys associated
with fi.

Boolean predicate. A generalization of the inclusion predicate satisfying Definition 1 is a monotone
boolean predicate (ANDs and ORs) over a list of CheckAccess outputs. Here, Λλ consists of ℓ sublists

Λ
(1)
λ , . . . , Λ

(ℓ)
λ and a predicate P defined over the bits bi ← CheckAccessi(Λ

(i)
λ , fi, sk) for i ∈ {1, . . . , ℓ}.

CheckAccess(Λλ, fi, sk) outputs yes if and only if P (sk, b1, . . . , bℓ) = 1.

2.2 Notation and cryptographic preliminaries

Notation. We use x ← Alg to denote assignment from a possibly randomized algorithm Alg and
x←R D to denote a random sample from a distribution D. We denote linear secret shares of x (resp.
function secret shares of f) as [x] (resp. [f ]) and [x]i (resp. [f ]i) as the ith secret share in the set
of shares encoding x (resp. f). We say an algorithm is efficient if it runs in probabilistic polynomial
time.

Linear Secret Sharing. A linear secret-sharing (LSS) scheme [42] consists of two (possibly random-
ized) algorithms Share(F,t,s) and Recover. Share generates s shares of a secret value in the field F such
that (1) any subset of t or more shares can be combined using the linear function Recover to reveal
the encoded value in the field F, (2) no subset of fewer than t − 1 shares provides any information
on the secret, and (3) shares can be added together to obtain a new share encoding the sum of the
secrets.

Remark 1. A consequence of the linearity of Recover is that it can be evaluated “in the exponent”
of a group. That is, given g[v]1 , . . . , g[v]t , it is possible to efficiently compute gv := gRecover([v]1,...,[v]t).
For simplicity of notation, we define ExpRecover: Gt → G to be the efficiently computable function
which takes as input (g[v]1 , . . . , g[v]t) and outputs gv with v := Recover([v]1, . . . , [v]t).

Discrete logarithm problem and assumption. Let λ ∈ N be a security parameter. For a cyclic
group G of prime order p = p(λ) with generator g, the Discrete Logarithm (DL) assumption states
that no efficient algorithm A can find x ∈ Fp satisfying y = gx for a uniformly random y ∈ G [31].

Function Secret Sharing. FSS is a generalization of LSS; rather than secret-sharing a value, FSS
captures the notion of secret sharing functions.

Definition 2 (FSS [7]). Let 2 ≤ t ≤ s be integers and F : {0, 1}n → {0, 1}∗ be a family of functions
and let N = |F|. A (t, s)-FSS scheme for F consists of efficiently computable (possibly randomized)
algorithms Gen and Eval with the following syntax:

– Gen(1λ, f)→ (κ1, . . . , κs). Takes as input a security parameter 1λ and function f ∈ F . Outputs s
evaluation keys κ1, . . . , κs.

– Eval(κi, x)→ [y]i. Takes as input an evaluation key κi and x ∈ {0, 1}n. Outputs secret share [y]i.

The functionality must satisfy the following properties:

– Correctness. A (t, s)-FSS scheme is correct if for all subsets I ⊆ {1, . . . , s} where |I| ≥ t, there
exists an efficient output decoder Decode such that for all f ∈ F :

Pr

[
(κ1, . . . , κs)← Gen(1λ, f) :
Decode({[y]i ← Eval(κi, x) | i ∈ I}) = f(x)

]
= 1.

– Privacy. For all I ⊂ {1, . . . , s} subset of indices such that |I| < t, let DI be the distribution over
{κi | i ∈ I} where κi is sampled according to Gen(1λ, f). A (t, s)-FSS scheme (Gen,Eval) is private
if there exists an efficient simulator S such that DI ≈c S(1λ, I). That is, the distribution of any
subset of (t−1) FSS keys reveals no information on the function f to the subset of computationally
bounded evaluators.
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– Efficiency. A (t, s)-FSS scheme is efficient if (1) each key κi is at most O(λN ϵ) in size, for any
ϵ < 1 (possibly dependent on n) and (2) Decode runs in time O(λs).

Following Boyle et al. [7], we assume Decode is a linear function of the inputs (e.g., a summation over
the outputs of Eval). As such, we will write [f ]i to denote the ith FSS key κi and [f(x)]i to denote
the ith share of the evaluation Eval(κi, x). We will also assume that Decode := Recover so as to allow
for output reconstruction “in the exponent” of a group (see Remark 1).

3 Private Access Control Lists

In this section, we formalize the notion of private ACLs applied to FSS (Definition 2). A private ACL
(PACL) is instantiated between a prover and a set of s verifiers. The prover holds an access key sk
and the function fi ∈ F . The verifiers hold secret-shares [fi] and have the access control list Λ (see
Definition 1) for the function family F . The verifiers determine whether or not CheckAccess outputs
yes, without learning fi. See Figure 1 for an overview.

Efficiency constraints. As highlighted in Section 1, a PACL scheme is efficient if it has a small
communication overhead for the prover (relative to sharing f) and at most one message exchanged
between verifiers. By requiring that only one, constant-sized message is exchanged between verifiers,
we achieve optimal communication (up to constant factors) and ensure function privacy against
malicious verifiers deviating from protocol. (Our definition will also implicitly eliminate all solutions
that involve the prover in the verification process.)

3.1 Public-key PACL

A public-key PACL scheme consists of four algorithms: KeyGen, Prove, Audit, and Verify, parame-
terized by a function family F , and integers 2 ≤ t ≤ s. Prove is used by the prover to generate
an access control proof for a function fi. The other algorithms are used by the verifiers to enforce
access control. The Audit and Verify algorithms, combined, instantiate CheckAccess for the family of
functions in the distributed setting. Audit and Verify only reveal the output of CheckAccess (yes or
no). without revealing any other information to the verifiers. We leave any public parameters as an
implicit input to all algorithms.

Definition 3 (PACL: Syntax, Completeness, & Efficiency). Let λ ∈ N be a security param-
eter, integer N := 2n, and F :=

{
fi : {0, 1}n → {0, 1}∗ | 1 ≤ i ≤ N

}
be a family of functions. Fix

integers 2 ≤ t ≤ s and let (Gen,Eval) instantiate a (t, s)-FSS scheme for F . A (t, s)-PACL scheme
consists of efficient algorithms KeyGen, Prove, Audit, and Verify defined as follows:

– KeyGen(1λ, f)→ (vk, sk). Takes as input a security parameter 1λ and a function f ∈ F . Outputs a
new pair of verification and access keys (vk, sk).

– Prove(f, sk)→ ([π]1, . . . , [π]s). Takes as input a function f ∈ F and access key sk. Outputs a vector
of s proof secret shares ([π]1, . . . , [π]s).

– Audit(Λ, [f ]i, [π]i)→ τi. Takes as input access control list Λ = (vk1, . . . , vkN ), function secret share
[f ]i of f sampled according to Gen, and proof share [π]i. Outputs audit token τi.

– Verify(T := {τi | i ∈ I}) → yes/no. Takes as input a set of t or more audit tokens indexed by the
set I ⊆ {1, . . . , s}. Outputs yes or no.

The above functionality must satisfy:

– Completeness. Let CheckAccess be as defined in Definition 1. A (t, s)-PACL scheme is complete if
for all security parameters λ, for all subsets I ⊆ {1, . . . , s} with |I| ≥ t, for all Λ := (vk1, . . . , vkN )
where ∀i, vki is sampled according to KeyGen, and for all secret shares ([f ]1, . . . , [f ]s) of f ∈ F
sampled according to Gen(1λ, f), it holds that:

Pr

 ([π]1, . . . , [π]s)← Prove(f, sk);
{τi ← Audit(Λ, [f ]i, [π]i) | i ∈ I} :
Verify({τi | i ∈ I}) = CheckAccess(Λ, f, sk)

 = 1,

where the probability is taken over the randomness of KeyGen and Prove.
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– Efficiency. The size of each proof share [π]i is most O(λN ϵ) for any ϵ < 1 (possibly dependent on
n). The size of each audit token τi is O(λ).

Remark 2. We will primarily be interested in PACLs where ϵ, as defined in the efficiency property of
Definition 3 (PACL), matches the ϵ of Definition 2 (FSS). This translates to a constant overhead in
communication over sharing f itself via FSS (i.e., without any access control).

Definition 4 (PACL, Soundness & Privacy). A PACL scheme (as defined in Definition 3) must
satisfy the soundness and privacy properties, which are defined as follows.

– Soundness. There exists a negligible function negl such that for all efficient algorithms A, security
parameters λ ∈ N, and subsets I ⊆ {1, . . . , s} where |I| ≥ t,

Pr[PkSoundnessPACL,A,I(λ) = yes] ≤ negl(λ),

where PkSoundnessPACL,A,I(λ) is defined in Figure 2.

Game PkSoundnessPACL,A,I(λ)

1 : for i ∈ {1, . . . , N} :

2 : (vki, ski)← KeyGen(1λ, fi)

3 : Λ := (vk1, . . . , vkN ), T = {}

4 : ([fγ ], [πγ ])← AGetKey(1λ, Λ)

5 : fγ ← Recover([fγ ])

6 : for i ∈ I :

7 : τi ← Audit(Λ, [fγ ]i, [πγ ]i)

8 : return Verify({τi | i ∈ I}) = yes

and fγ ∈ F and γ ̸∈ T

Oracle GetKey(j)

1 : T := T ∪ {j}
2 : return skj

Fig. 2: PACL soundness game.

In words, no efficient algorithm A can forge a proof π that verifies with non-negligible probability
without knowledge of an access key for fγ .

– Privacy. For all subsets I ⊂ {1, . . . , s} such that |I| < t, define J := {1, . . . , s} \ I and DI,J to
be the distribution over {([π]i, τ∗i ) | i ∈ I} ∪ {τj | j ∈ J} where each [π]i is sampled according to
Prove(f, sk), each τ∗i is sampled arbitrarily, and τj ← Audit(Λ, [f ]j , [π]j) for all j ∈ J . A (t, s)-PACL

is private if there exists an efficient simulator S such that: DI,J ≈c S(1λ, I, {τ∗i | i ∈ I}). That is,
the distribution of proof shares and audit shares reveal nothing about f or the access key sk to a
subset of at most t− 1 computationally bounded (possibly malicious) verifiers.

3.2 Symmetric-key PACL

For some applications [23, 46], it is useful to relax the definition of soundness of Definition 4 and
let the access control list Λ consist of the secret keys rather than public keys (see prior approaches
in Section 1.2). In this regime, the soundness definition must exclude Λ from the inputs to the
adversary A. In practical terms, symmetric-key PACLs do not protect against snapshot attacks where
an adversary might momentarily compromise a verifier and learn Λ (allowing it to subvert the access
control at a later point in time) [25].

Definition 5 (PACL: Symmetric-key soundness). There exists a negligible function negl such
that for all efficient algorithms A, security parameters λ ∈ N, and subsets I ⊆ {1, . . . , s} where |I| ≥ t,

Pr[SkSoundnessPACL,A,I(λ) = yes] ≤ negl(λ),
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where SkSoundnessPACL,A,I(λ) is defined in Figure 3.

Game SkSoundnessPACL,A,I(λ)

1 : for i ∈ {1, . . . , N} :

2 : ski ← KeyGen(1λ, fi)

3 : Λ := (sk1, . . . , skN ), T = {}

4 : ([fγ ], [πγ ])← AGetKey(1λ)

5 : fγ ← Recover([fγ ])

6 : for i ∈ I :

7 : τi ← Audit(Λ, [fγ ]i, [πγ ]i)

8 : return Verify({τi | i ∈ I}) = yes

and fγ ∈ F and γ ̸∈ T

Oracle GetKey(j)

1 : T := T ∪ {j}
2 : return skj

Fig. 3: Symmetric-key PACL access soundness game.

In words, no efficient algorithm A, without knowledge of the access key, can forge a proof π that
verifies with non-negligible probability. Unlike Definition 4, here Λ is private to the verifiers and is
not given to A.

3.3 Security against malicious verifiers

Privacy. Definition 3 guarantees privacy against any subset of fewer than t malicious verifiers. Only
one message (the audit token) is exchanged by the verifiers to check the proof. Thus, the audit token of
each honest verifier is guaranteed to be computed independently of audit tokens output by malicious
verifiers. As a consequence of this, the simulator S—as defined in Definition 4—can simply ignore the
audit tokens output by malicious verifiers (i.e., malicious verifiers have no influence over the output
of the honest verifiers). This simplifies the analysis required in our security proofs (Section 4.4).

Soundness. In contrast, note that the soundness property of PACLs is only guaranteed if all verifiers
follow the protocol. This is a natural consequence of the fact that FSS itself only guarantees integrity
of the output if all evaluators adhere to the protocol (any malicious evaluator can incorrectly compute
[fi](x) to corrupt the final output). As such, access control is only well-defined when verifiers have a
vetted interest in ensuring correctness of the function evaluation.

3.4 Key distribution

Key distribution is a challenging problem in many real-world systems. Systems using FSS and PACLs
must handle distributing the verification and access keys to the users (dealers) and function evaluators
(verifiers). This can be done through a variety of techniques. For example, a trusted setup can take
place to generate and distribute the keys. Alternatively, anonymous communication channels can
be used to register with the evaluators by providing a verification key for a particular function.
Ultimately, the key distribution mechanism itself is orthogonal to the goals of PACLs as it depends
significantly on the deployment setting (e.g., see Express [23] and Spectrum [34]).

4 Group-based constructions

In this section, we describe our PACL constructions for the class of distributed point functions (DPFs).
DPFs are the main primitive behind more complex FSS classes constructible from minimal assump-
tions [7, 9]. By focusing on DPFs, our PACL constructions become applicable to larger classes of FSS,
which we explain further in Section 6.

10



Distributed Point Functions (DPFs). A point function Pi is a function that evaluates to 1 on
input i and evaluates to 0 on all other inputs j ̸= i. A distributed point function is an instance of
FSS for the family of point functions. More generally, DPFs can be defined to output any value m at
index i [26]. We focus on m = 1 for simplicity and note that our constructions generalize to arbitrary
m.

4.1 PACLs for DPFs

Parameters. Let G be a group of prime order p = p(λ) with generator g in which the discrete
logarithm problem is assumed to be computationally intractable. We assume that the family of
(distributed) point functions has range Fp. In the special case of two-party DPF constructions, which
output in a binary field [7, 9], our constructions can be adapted by simply “interpreting” the binary
secret share as an element of Fp, resulting in subtractive secret shares of either −1 or 1 at the special
index, which the prover knows.

Overview. In Section 4.1.1, we construct a DPF-PACL for the match predicate of Section 2.1.
Our construction can be seen as a generalization of the technique used by Newman et al. [34]. In
Section 4.1.2, we extend this technique to a DPF-PACL for the inclusion predicate of Section 2.1.

4.1.1 DPF-PACL for match predicate In Algorithm 1, we present the construction for a
DPF-PACL with CheckAccess instantiated for the match predicate described in Section 2.1. Loosely
speaking, the idea behind the construction is to use the DPF to locally select shares of the ith
verification key in Λ. Two facts make this possible: (1) all the verifiers have Λ = (gα1 , . . . , gαN ) and
(2) the FSS key κ encoding a DPF can be used to privately retrieve the ith entry in any vector by first
evaluating the DPF [yj ] ← DPF.Eval(κ, j) and then computing the inner-product “in the exponent”
as: g[αi] := g⟨(α1,...,αN ),([y1],...,[yN ])⟩. This allows the verifiers to locally obtain a (multiplicative) secret
share g[αi]. To verify knowledge of αi, the prover distributes to the verifiers additive secret shares of
π := −αi (described in Prove). Each verifier computes τi := (g[αi])g[π] using Audit and reveals τi to
all other verifiers. All verifiers proceed to check that τ = g0 (described in Verify).

Theorem 1. There exists a DPF-PACL for the FSS family DPF : {0, 1}n → Fp with proof size O(λ)
and audit size O(λ), where CheckAccess is instantiated as the match predicate of Section 2.1.

4.1.2 DPF-PACL for inclusion predicates We now describe how to instantiate a DPF-PACL
with an inclusion predicate (Section 2.1). Each function is associated with ℓ access keys. As such, Λ
consists of N verification keys, where each verification key consists of ℓ subkeys. For each vki ∈ Λ,
any of the ℓ subkeys can be used to prove access rights for the function fi.

Theorem 2. Let sℓ be the size of a DPF key for a point function with domain {1, . . . , ℓ}. There
exists a DPF-PACL for the FSS family DPF : {0, 1}n → Fp with proof size O(λ+ sℓ) and audit size
O(λ), where CheckAccess is instantiated as the inclusion predicate of Section 2.1.

Algorithm 2 presents our construction of DPF-PACL for inclusion predicates. At a high level, the
verifiers “select” the ith row in the matrix Λ using fi (similarly to Algorithm 1) by computing the
inner product between the evaluation of fi on its domain and the access control matrix. However, the
challenge is then to have the verifiers obliviously select the jth column in the selected row. Because
the resulting row is secret-shared, the verifiers cannot recursively select the column using another
DPF, as it would require the vector to be known by all verifiers. Revealing the column does not work
either as it would violate the privacy requirement of Definition 4. One option is to use zero-knowledge
proofs over secret shares [5, 14]. However, we opt for a simpler and more efficient approach. First,
the verifiers generate ℓ sums of verification keys for each row in the access control list (resulting in
a total of Nℓ terms). One of these sums can then be used as a “correction term” by the prover to
select only the jth column in the row. To see how, consider a row Ri = (gαi,1 , . . . , gαi,ℓ). Each of the

ℓ correction terms gwi,1 , . . . , gwi,ℓ associated with the ith row is defined as: gwi,j :=
∏ℓ

k=1,k ̸=j g
αi,k .

The jth entry in the multiplicatively secret-shared row [Ri] := (g[αi,1], . . . , g[αi,ℓ]) can be recovered

as: g[αi,j ] :=
(∏ℓ

k=1 g
[αi,k]

)
/g[wi,j ].
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Algorithm 1: dpf-pacl for match predicates

Public parameters: integers 2 ≤ t ≤ s, function family F = {fi : {0, 1}n → Fp | 1 ≤ i ≤ N},
and group G = (g, p).

– KeyGen(1λ, fi):

1: αi ←R Fp

2: vki := gαi , ski := −αi

3: return (vki, ski)

– Prove(f, sk):

1: ([π]1, . . . , [π]s)← Share(Fp,t,s)(sk)

2: return ([π]1, . . . , [π]s)

– Audit(Λ, [f ]i, [π]i):

1: parse Λ = (gα1 , . . . , gαN ) and [f ]i = κi

2: [yj ]i ← DPF.Eval(κi, j), ∀j ∈ {1, . . . , N}
3: A :=

∏N
j=1 (g

αj )
[yj ]i // Inner product in G.

4: τi := A · g[π]i
5: return τi

– Verify(T ):
1: parse T := {τ1, . . . , τt}.
2: C ← ExpRecover(τ1, . . . , τt) // See Remark 1 for definition.

3: return C
?
= 1G

The prover can easily select the correction term gwij by generating a separate DPF for the point
function Pω and sending it to the verifiers. The verifiers use the DPF to select the ωth term in the
list of correction terms. To see how, notice that we can “flatten” the correction terms into a list of
size Nℓ elements and take the inner product to get a secret share of the ωth correction term, as in
Section 4.1.1.

Unfortunately, while the prover can now select the correct key in the list, this idea also creates
an avenue for an attack. A malicious prover can subvert access control entirely by selecting multiple
correction terms to “annihilate” a row. The prover can send a distributed multi-point function (a
point function that evaluates to 1 on multiple inputs) to select all ℓ correction terms of a row in Λ.
Then, (

ℓ∏
k=1

g[wi,k]

)
=

(
ℓ∏

k=1

g[αi,k]

)(ℓ−1)

,

which means that: (
ℓ∏

k=1

g[wi,k]

)/(
ℓ∏

k=1

g[αi,k]

)(ℓ−1)

= g[0].

Hence, the verifiers would recover shares of g0 for which the discrete logarithm is simply zero. To
prevent this attack, we leverage the following insight: each correction term is associated with a unique
access key in Λ. As a consequence, we can instantiate a separate DPF-PACL to enforce access control
over the vector of correction terms. Specifically, we generate an access key βi,j for wi,j and apply
Algorithm 1 to enforce the access control over the set of correction terms. The access key is now a
tuple (αi,j , βi,j), and verification consists of checking access control for two DPFs: the implicit DPF
(Pi) and the DPF selecting the correction term.

4.2 Optimizations and extensions

We briefly highlight some optimizations and extensions that can be applied to Algorithms 1 and 2.
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Algorithm 2: dpf-pacl for inclusion predicates

Public parameters: integers 2 ≤ t ≤ s, function family F = {fi : {0, 1}n → Fp | 1 ≤ i ≤ N},
and group G = (g, p).

Let (Prove′,Audit′,Verify′) be as in Algorithm 1.

// Parties can locally pre-compute correction terms ahead of time to avoid recomputing them in Audit.

// Only required for efficiency, not correctness.

– Precomputation: // Compute correction terms.

1: parse Λ = (vk1, . . . , vkN ), vkj = (vkj,1, . . . , vkj,ℓ)

2: for j ∈ {1, . . . , N}, k ∈ {1, . . . , ℓ}:
2.1: parse vkj,k = (gαj,k , gβj,k)

2.2: gw(j−1)ℓ+k :=
∏ℓ

l=1,l ̸=k g
αj,l

– KeyGen(1λ, fi):

1: (αi,1, . . . , αi,ℓ)←R Fℓ
p, (βi,1, . . . , βi,ℓ)←R Fℓ

p

2: for j ∈ {1, . . . , ℓ}
2.1: vki,j := (gαi,j , gβi,j ), ski,j := (−αi,j ,−βi,j , j)

3: return (vki,1, . . . , vki,ℓ), (ski,1, . . . , ski,ℓ)

– Prove(f, sk):

1: parse f = Pi and sk = (α, β, γ)

2: ([α]1, . . . , [α]s)← Share(Fp,t,s)(α)

3: ω := (i− 1)ℓ+ γ // γth key in row i.

4: (κ′
1, . . . , κ

′
s)← DPF.Gen(1λ, Pω)

5: ([β]1, . . . , [β]s)← Prove′(Pω, β)

6: [π]j := ([α]j , [β]j , κ
′
j) for j ∈ {1, . . . , s}

7: return ([π]1, . . . , [π]s)

– Audit(Λ, [f ]i, [π]i):

1: parse Λ = (vk1, vk2 . . . , vkN ),
vkj = (vkj,1, . . . , vkj,ℓ), vkj,k = (gαj,k , gβj,k),
[f ]i = κi, and [π]i = ([α]i, [β]i, κ

′
i)

2: [yj ]i ← DPF.Eval(κi, j) for j ∈ {1, . . . , N}
3: (A1, . . . , Aℓ) :=

∏N
j=1(g

αj,1 , . . . , gαj,ℓ)[yj ]i

4: Λ′ := (gw1 , . . . , gwNℓ), τ
(0)
i ← Audit′(Λ′, κ′

i, [β]i)

5: [cj ]i ← DPF.Eval(κ′
i, j), ∀j ∈ {1, . . . , Nℓ}

6: W :=
∏Nℓ

j=1 (g
wj )

[cj ]i // Use pre-computed correction term.

7: A :=
(∏ℓ

j=1 Aj

)
· (W )

−1
, τ

(1)
i := A · g[α]i

8: return τi := (τ
(0)
i , τ

(1)
i )

– Verify(T ):
1: parse T = {τ1, . . . , τt} and τi = (τ

(0)
i , τ

(1)
i )

2: if Verify′
({

τ
(0)
1 , . . . , τ

(0)
t

})
= no then return no

3: C ← ExpRecover(τ
(1)
1 , . . . , τ

(1)
t ) // See Remark 1.

4: return C
?
= 1G
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Reducing communication and computation. We present Algorithm 2 with a separate DPF
for the selection of the correction term. This would result in an additive overhead of O(λ(Nℓ)ϵ)
in communication (ϵ as defined in Definition 2). However, we observe that we can use the “FSS
tensoring” transformation described by Boyle et al. [9] to capitalize on the common “backbone” of
the underlying DPF being authenticated and reduce the communication overhead from O(λ(Nℓ)ϵ)
down to O(λℓϵ). Specifically, the prover can use Pi(i) (the non-zero output of the DPF) as a mask
for κ′ (the key for the DPF selecting the correction term). In this way, κ′ only needs a range of ℓ
(rather than Nℓ) leading to the reduced proof size. In the interest of space, we point the reader to
Boyle et al. [9] for a full description of the FSS tensoring technique.

Sparse domain auditing. The constructions presented in Algorithms 1 and 2 require O(N) work
per verifier to compute Audit. However, in practice, the evaluators (i.e., verifiers) might only evaluate
f on a sparse subset of the domain rather than the entire domain of the function. In this case, the
verifiers only need to compute Audit on the matching subset of the domain on which they evaluate
f . Taking this to its extreme, if the verifiers only evaluate f on a constant number of inputs, then
this optimization leads to Audit running in O(1) time. Furthermore, the ACL Λ need only contain
O(1) keys. More generally, for a subset S ⊆ {1, . . . , N} of the DPF domain, we need |S| keys in Λ
and evaluate Audit on the |S| inputs, making the verifier work O(|S|). Given this optimization, the
overhead of PACLs is essentially constant relative to the evaluation of the function itself. A downside,
however, is that the prover may need to know S (or a subset thereof) when computing Prove. More
specifically, we can view this optimization as enforcing access control on a smaller function f ′ that
coincides with f on all inputs in the subset S. That is, f ′(x) = f(x) for all x ∈ S but it may be the
case that f ′(x′) ̸= f(x′) for all x′ ̸∈ S, which naturally requires the prover to know f ′.

Public-key vs. symmetric-key DPF-PACL. When G is chosen to be a group in which the
discrete logarithm problem is assumed to be computationally intractable [4] (e.g., when G = F∗

p),
then the construction satisfies the soundness property of PACLs as defined in Definition 4. When
G is a field Fp, then we get a symmetric-key PACL satisfying the relaxed soundness property in
Section 3.2 (i.e., no security against adversaries obtaining a snapshot of a server state).

4.3 Aggregating PACLs

A nice property of our DPF-PACL constructions (Sections 4.1.1 and 4.1.2) is the ability to aggregate
proofs across different DPFs and access control lists. Concretely, our constructions satisfy the following
two aggregation properties. At a high level, for any integer q that is polynomial in the security
parameter λ and family of point functions F :
1. Let Λ be an ACL for the family F and let f1, . . . , fq ∈ F have associated access keys α1, . . . , αq ∈ Λ,

then α′ :=
∑q

i=1 ski is an access key for f ′(x) :=
∑q

i=1 fi(x). This aggregation property allows
the verifiers to simultaneously enforce access control on q distinct functions in the family for the
computational and bandwidth overhead of verifying a single function in the family.

2. Our constructions permit aggregating proofs from multiple separate ACLs to simultaneously en-
force access control on a vector of functions (f1, . . . , fq) ∈ Fq. For a vector of ACLs (Λ1, . . . , Λq),
the ACL Λ′ :=

⊙q
i=1 Λi (where ⊙ denotes the group operation applied component-wise) is an

ACL for the vector (f1, . . . , fq) such that CheckAccess(Λi, fi, ski) = yes for all i. This aggrega-
tion property allows for batched verification of q functions, each associated with a separate ACL:

the verifiers first compute g[α
(1)], . . . , g[α

(q)] individually for each function using the corresponding

ACL. Then g[α] :=
⊙q

i=1 g
[α(i)] can be verified using Λ′. While the computational overhead of

this aggregation property remains proportional to verifying each function individually, it permits
compact proofs and audits.

4.4 Security analysis

In this section, we prove security of Algorithms 1 and 2 with respect to Definitions 3 and 4. We first
prove a useful lemma which says that any adversary that wins the PkSoundnessPACL,A,I(λ) game
in our DPF-PACL constructions with some function (not necessarily a DPF), must also implicitly
output a valid DPF and access key.
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Lemma 1. If there exists an efficient A that wins the PkSoundnessPACL,A,I(λ) game for our DPF-

PACL constructions (Algorithms 1 and 2) with non-negligible probability δ(λ) for some function f̂γ
and proof π̂ where f̂γ is not sampled from FDPF, then, there exists an efficient A′ that wins the
PkSoundnessPACL,A,I(λ) game with probability δ(λ), where A′ outputs fγ and π such that fγ ∈ FDPF.

Proof. Deferred to Appendix B.1.

Theorem 3. Let p be a prime chosen with respect to a security parameter λ and let G be any group
of order p in which the discrete logarithm problem is assumed to be computationally intractable.

Algorithm 1 (DPF-PACL for match predicates) satisfies the completeness, efficiency, soundness,
and privacy properties of Definitions 3 and 4 with CheckAccess as defined in Section 2.1 (match
predicate).

Proof. We prove each property in turn.

Completeness. Let i be the special index of the encoded point function. Consider the exponent of
the recovered audit: logg(C) = logg(A · g−α) = (

∑N
j=1 αjyj)− α. We have: (

∑N
j=1 αjyj) = αi if i ̸= 0

and 0 otherwise. As such, logg(C) = αi −α. By construction, α := αi, so it follows that logg(C) = 0.
Therefore, C = g0 = 1G, as required.

Soundness. Assume, towards contradiction, that there exists an efficient prover A and non-negligible
function δ such that for all I ⊆ {1, . . . , s} where |I| ≥ t:

Pr[PkSoundnessPACL,A,I(λ) = yes] ≥ δ(λ).

By Lemma 1, we can assume that fγ (output by A in Figure 2) is a point function with special
index γ. Construct an efficient algorithm B that solves the discrete logarithm problem as follows. On
input y := gx, sample random γ′ ←R {1, . . . , N} and (α1, . . . , αN ) ←R FN

p . Set Λ := (gα1 , . . . gαN )

but replace gαγ′ with y. Let T := {}. Run AGetKey(1λ, Λ). Respond to each GetKey(j) query with
αj (unless j = γ′, in which case abort) adding j to T . Obtain fγ and π from A. If γ ̸= γ′ output fail.
Else, output −π. The list Λ constructed by B matches the distribution of KeyGen because y := gx

is a random element of G. If A succeeds, then Verify outputs yes, which means that C = 1G and so
it holds that x = −π. The probability that γ = γ′ is 1

N and so B succeeds with probability at least
1
N δ(λ), which remains non-negligible. As such, B successfully recovers the discrete logarithm in G,
contradicting the assumption that the discrete logarithm is computationally intractable in G.

Privacy. We construct an efficient simulator S for the view of any subset of t−1 (possibly malicious)
verifiers. On input (1λ, I, {τ∗i | i ∈ I}), S proceeds as follows:

1: J := {1, . . . , s} \ I.
2: ([0]1, . . . , [0]s)← Share(Fp,t,s)(0).

3: ([π]1, . . . , [π]s)← Share(Fp,t,s)(0).

4: τk := g[0]k for all k ∈ I ∪ J .

5: Output {([π]i, τi) | i ∈ I} ∪ {τj | j ∈ J}.
First, note that the τ∗i ’s are independent of the honest verifier outputs (see Section 3.3) and therefore
do not influence the simulator. The distribution output by S matches the distribution of any subset
I ⊂ {1, . . . , s}, where |I| < t, because in the real view, (1) the proof shares [π] are output by Share
which guarantees that any subset of fewer than t shares is information-theoretically hiding and (2)
the audit tokens are (computationally-hiding) multiplicative secret shares of g0 = 1G (in contrast, S
outputs information-theoretically hiding multiplicative shares). The audit tokens in the real view are
not information-theoretically hiding because they are computed using the output of the DPF, which
consists of computationally-hiding secret shares. The output of S thus only differs on (2). However,
if there is an efficient distinguisher for (2), then the FSS scheme is not private, a contradiction.

Efficiency. Each proof share [π]i is an element of G and thus is of size O(λ). Each audit token is
also of size O(λ).

Theorem 4. Let p be a prime chosen with respect to a security parameter λ and let G be any group
of order p in which the discrete logarithm problem is assumed to be computationally intractable.
Algorithm 2 (DPF-PACL for Inclusion Predicates) satisfies the completeness, efficiency, soundness,
and privacy properties of Definitions 3 and 4 for the inclusion predicate of Section 2.1.

Proof. The proof follows a similar structure to the proof of Theorem 3 but involves more tedious
calculations. We defer the proof to Appendix B.2.

15



5 Faster PACLs for DPFs from Verifiable DPFs

In this section, we introduce a concretely more efficient construction of DPF-PACL for the class of
verifiable DPFs (VDPFs) [19] (also known as extractable DPFs [6]). A VDPF allows the evaluators to
efficiently check if the DPF is well-formed (see Appendix A), which we will capitalize on to construct
more efficient PACLs.

The primary source of inefficiency in Algorithms 1 and 2 is due to the group operations required
in computing the PACL audit. If, instead, the verifiers could “select” the public key over a field (e.g.,
Fp) rather than in G, then computing the audit token would be bottlenecked by operations over the
field instead of (possibly expensive) group operations in G.

There are two technical challenges with this approach. First, if the audit is not computed in G,
the verifiers end up with additive shares of [gαi ] (rather than multiplicative shares g[αi]) which does
not lend itself to the efficient verification procedure of Algorithms 1 and 2. To overcome this problem,
we introduce a building block we call a Schnorr Proof over Secret Shares (SPoSS; Section 5.1), which
allows a prover to efficiently prove to a set of verifiers that it knows the discrete logarithm of an
additively secret-shared element.

The second challenge is that, in the proof of security, the knowledge extractor (see Section 4.4)
would not have the guarantee that the resulting additive secret shares encode a verification key from
Λ (it could be any linear combination of group elements). This rather subtle problem is a barrier
to proving soundness when taking this approach with (non-verifiable) DPFs. To overcome this, we
restrict our focus to VDPFs, which ensures that the verifiers always obtain a valid group element
from Λ. We then prove security similarly to the proof of Theorem 3.

5.1 Schnorr Proof over Secret Shares (SPoSS)

SPoSS is a non-interactive proof system instantiated in the random oracle model between a prover
and a set of two or more verifiers. The verifiers hold additive secret shares of a group element y :=
gx. The prover provides a zero-knowledge proof-of-knowledge of x (i.e., the discrete logarithm of
y base g). SPoSS is a concrete instantiation of a general zero-knowledge proof system over secret
shares [5, 14] and can be thought of as a secret-shared analog of a Schnorr proof [39]. We define the
formal requirements of SPoSS in Definition 6 and prove security of our construction in Appendix B.3.
The proof size of our SPoSS construction is significantly smaller compared to generic approaches
based on zero-knowledge proofs (see Section 8).

Definition 6 (SPoSS). Let λ ∈ N be a security parameter and let G be a cyclic group of order q =
q(λ) with generator g. A non-interactive zero-knowledge proof of discrete-logarithm knowledge over a
(t, s)-secret-shared element y, consists of efficient (possibly randomized) algorithms (Prove,Audit,Verify)
with the following functionality. We leave G and g as implicit inputs.

– Prove(x)→ ([π]1, . . . , [π]s). Takes as input integer x ∈ Zq. Outputs proof shares ([π]1, . . . , [π]s).

– Audit([y]i, [π]i)→ τi. Takes as input a secret share [y]i and a secret share [π]i. Outputs audit token
τi.

– Verify(T := {τi | i ∈ I})→ yes/no. Takes as input any subset of t or more audit tokens indexed by
the set I ⊆ {1, . . . , s}. Outputs yes if and only if π is a valid proof of discrete logarithm knowledge
with respect to y ∈ G.

The functionality must satisfy the following properties.

Completeness. For all x ∈ Zq and y := gx, and all subsets I ⊆ {1, . . . , s} such that |I| ≥ t,

Pr


([y]1, . . . , [y]s)← Share(F,t,s)(y);
([π]1, . . . , [π]s)← Prove(x);
{τi ← Audit([y]i, [π]i) | i ∈ I} :
Verify({τi | i ∈ I}) = yes

 = 1,

where the probability is over the randomness of Prove.
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Argument-of-knowledge. If there exists an efficient (possibly malicious) prover P∗ such that for all
group elements y, P∗ produces [π∗] such that Verify({τi | i ∈ I}) = yes (where τi ← Audit([y]i, [π

∗]i),
for all i ∈ I) with probability δ(λ), then there exists an efficient knowledge extractor E and negligible
function negl such that,

Pr
[
x← EP∗

(y) : y = gx
]
≥ δ(λ)− negl(λ),

where the probability is over the randomness of P∗. In words, E recovers the discrete logarithm x
from valid proofs output by P∗. SPoSS is an argument (rather than a proof) of knowledge because
the prover has to be computationally bounded in the random oracle model.

Zero-knowledge. For all subsets I ⊂ {1, . . . , s} such that |I| < t, define J := {1, . . . , s} \ I and
DI,J to be the distribution over {([π]i, τ∗i ) | i ∈ I} ∪ {τj | j ∈ J} where [π]i is sampled according to
Prove(x), τ∗i is sampled arbitrarily, and τi ← Audit([y]i, [π]i) for all j ∈ J . SPoSS is zero-knowledge if
there exists an efficient simulator S such that DI,J ≈ S(1λ, I, {τ∗i | i ∈ I}). That is, the view induced
by the proof shares and audit tokens reveals no information about x or y to any subset of fewer than
t− 1 computationally bounded (possibly malicious) verifiers.

SPoSS: Main idea. The main idea behind SPoSS is to leverage the additive and multiplicative
homomorphism of secret shares over the Zp−1 and F∗

p, respectively. Our construction assumes G = F∗
p.

However, our approach generalizes to any group where the group operation can be described as
an arithmetic circuit over a ring. Notice that, given share [x]i in Zp−1, each verifier can obtain a
multiplicative share of x by computing g[x]i . At a high level, the SPoSS verification procedure goes
as follows. Each verifier holds additive secret-shares of [y]i and [x]i (secret shared over Zp and Zp−1,
respectively). First, each verifier computes g[x]i to obtain a multiplicative secret share of x. Notice
that g[x]i is defined over the field Fp and that the group operation of F∗

p is multiplication modulo p.
The verifiers then compute the group operation (multiplication in Fp) over the additive shares using
a prover-assisted computation. Notice that as a result of this computation, the verifiers hold additive
secret shares [gx]. Third, the verifiers compute [w] := [y]− [gx] and swap their shares of [w] to check
if w = 0.

5.1.1 Protocol overview We describe SPoSS in Algorithm 3. For clarity, we describe the protocol
with two verifiers but note that all our techniques extend to a many-verifier setting. In Algorithm 3,
the verifiers first derive additive shares of g[x]i , which we denote by [g[x]i ]. With two verifiers, this is
done by simply letting Verifier A set [g[x]A ]A := g[x]A and verifier B set [g[x]A ]B := 0 (observe that
[g[x]A ]A + [g[x]A ]B = g[x]A , as required of additive secret sharing). Verifier B proceeds to do the same
with g[x]B . If it were possible to compute the product [g[x]A · g[x]B ] non-interactively over the additive
secret shares, then the verifiers could locally obtain [gx]. Unfortunately, doing so requires interaction
between the verifiers. Instead, in Algorithm 3, we use a standard approach from zero-knowledge proofs
over secret-shares [5, 14] and have the prover “assist” the verifiers in the computation. Specifically, the
prover provides a Beaver multiplication triple [3], enabling the verifiers to compute the multiplication.
(We provide an overview of Beaver multiplication in Appendix C for completeness.)

Preventing malicious provers. As observed in prior work [14], prover-assisted multiplication can allow
the prover to cheat by introducing a linear term in the output of the multiplication, which would
result in the verifiers computing [ŷ] := [g[x]A · g[x]B +∆], for some ∆. To defend against this attack,
in Algorithm 3, the verifiers instead check that [r(g[x]A · g[x]B )] − [r(y)] = [0] where r is a random
scalar chosen by the verifiers. As long as the prover does not choose r, the proof is guaranteed to fail
for any ∆ ̸= 0 with probability 1− 1

p , when instantiated over Fp [14].

Removing interaction. Finally, in Algorithm 3, to avoid interaction between verifiers, we apply the
Fiat-Shamir transform [24] and let the prover (instead of the verifiers) choose r using a random
oracle H. This makes SPoSS mesh with our PACL definition (which only allows for one message
exchanged between verifiers). Concretely, we use the distributed analog of Fiat-Shamir described in
the full version of Boneh et al. [5]. Given a random oracle H, the prover generates a proof using H
to simulate the choice of r by the verifiers. As noted in [5], in the distributed setting, the resulting
r can leak information about the shares. To prevent this, in Algorithm 3, we follow the blueprint of
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Algorithm 3: Schnorr proof over secret shares

Public parameters: Group F∗
p = (g, p) and random oracle H.

– Prove(x):

1: ([x]A, [x]B)← Share(Zp−1,2,2)(x)

2: yA := g[x]A , yB := g[x]B

3: ([a]A, [b]A, [c]A, [a]B , [b]B , [c]B)← Beaver(2,2)(Fp)

4: a← [a]A + [a]B , b← [b]A + [b]B // See optimization in Section 5.1.1

5: zA, zB ←R {0, 1}λ // Random nonces.

6: rA ← H(zA, [x]A, a, [c]A), rB ← H(zB , [x]B , b, [c]B)

7: r ← rA ⊕ rB

8: d← rg[x]A − a, e← g[x]B − b

9: [π]A := (a, [x]A, a, [c]A, r, d, e, zA)

10: [π]B := (b, [x]B , b, [c]B , r, d, e, zB)

11: return ([π]A, [π]B)

– Audit([y]i, [π]i):

1: parse [π]i := (i, [x]i, u, [c]i, r, d, e, zi)

2: r̂i ← H(zi, [x]i, u, [c]i)

3: ŷ ← g[x]i

4: if i = a: if i = b:

4.1: f ← rŷ − u

4.2: [v]i ← (de/2) + eu

4.3: [w]i ← [v]i + [c]i − r[y]i

4.1: f ← ŷ − u

4.2: [v]i ← (de/2) + du

4.3: [w]i ← [v]i + [c]i − [y]i

5: τi := ([w]i, r̂i, r, f, d, e)

6: return τi

– Verify({τA, τB}):
1: parse τA = ([w]A, r̂A, r, d̂, d, e)

2: parse τB = ([w]B , r̂B , r, ê, d, e)

3: r̂ ← r̂A ⊕ r̂B , w ← [w]A + [w]B

4: return w = 0 and r̂ = r and d̂ = d and ê = e
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[5] and generate random nonces zA and zB , that are independent of the proof shares and serve to
“mask” the inputs to H.

Reducing proof size. We observe that because each verifier sets all but their own additive share of
ŷi := g[x]i to zero, the ith verifier knows the value of all other verifiers’ “secret” share of [ŷi] (they are
always zero). As a consequence, only the verifier holding the non-zero share needs to mask it when
computing the Beaver multiplication (see Appendix C). This corresponds to revealing a (from the
Beaver triple) to Verifier A and b to Verifier B, where the Beaver triple is of the form ([a], [b], [ab]).
Because a and b are random, they still serve as a mask when computing the Beaver multiplication.
We apply this optimization in Algorithm 3.

5.2 VDPF-PACL using SPoSS

In this section, we describe how SPoSS can be used to construct a VDPF-PACL. We focus on con-
structing a VDPF-PACL for the match predicate since extending the construction to inclusion pred-
icates can be achieved by following the blueprint of Algorithm 2. We describe our construction in
Algorithm 4. The main idea is that, following private selection of the verification keys (as in Algo-
rithm 1 but now over Fp) with a VDPF (Definition 8), each verifier holds an (additive) secret-share
of y := gαi (in contrast to Algorithm 1, where the verifiers hold multiplicative secret shares of y). To
prove knowledge of αi, the prover provides a SPoSS proof to the verifiers for the secret-shared group
element y. The verifiers then proceed to verify the SPoSS proof and accept if it passes.

Algorithm 4: vdpf-pacl for match predicates

Public parameters: integers 2 ≤ t ≤ s, function family F = {fi : {0, 1}n → Zp−1 | 1 ≤ i ≤ N},
and group F∗

p = (g, p).

– KeyGen(1λ, fi): as in Algorithm 1.

– Prove(f, sk):

1: parse f = Pi

2: ([π]1, . . . , [π]s)← SPoSS.Prove(sk)

3: return ([π]1, . . . , [π]s)

– Audit(Λ, [f ]i, [π]i):

1: parse Λ = (gα1 , . . . , gαN ) and [f ]i = κi

2: ([yj ]i, ρi)← VDPF.Eval(κi, j), ∀j ∈ {1, . . . , N}
3: A :=

∑N
j=1(g

αj )[yj ]i
4: τ̃i ← SPoSS.Audit(A, [π]i)

5: return τi := (τ̃i, ρi)

– Verify(T ):
1: parse T = {(τ1, ρ1), . . . , (τt, ρt)}.
2: return SPoSS.Verify({τ1, . . . , τt})

and VDPF.Verify({ρi, . . . , ρt})

5.3 Security analysis

Theorem 5. Let p be a prime chosen with respect to a security parameter λ ∈ N and let G be any
group of order p in which the discrete logarithm problem is assumed to be computationally intractable.
Algorithm 4 (VDPF-PACL for match predicates) satisfies the completeness, efficiency, soundness,
and privacy properties of Definitions 3 and 4, with CheckAccess as defined in Section 2.1 (match
predicate).
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Proof. We prove each property in turn.

Completeness. The inner-product computed over the keys results in parties holding secret shares of
gαi (where i is the special index of the encoded point function). It then follows from the completeness
of the SPoSS protocol (see Appendix B.3) that VDPF.Verify must pass following an honest audit
procedure. The other half of the Verify conjunction follows from the completeness of VDPFs (see
Appendix A).

Soundness. Assume, towards contradiction, that there exists an efficient prover A and non-negligible
function δ such that for all I ⊂ {0, 1}:

Pr[PkSoundnessPACL,A,I(λ) = yes] ≥ δ(λ).

By the soundness property of VDPFs (see Definition 8 in Appendix A), we can assume that fγ
(output by A in the PkSoundnessPACL,A,I(λ) game defined in Figure 2) is a point function with
special index γ. This restricts A to outputting a well-formed VDPF, which implies that both verifiers
obtain secret shares of gαγ from Λ when computing the inner product in Audit of Algorithm 4. We
construct an efficient extractor B that solves the discrete-logarithm problem as follows.

1: On input y := gx, generate a planted instance of Λ with y in a random index (as in the proof of
Theorem 3).

2: Run A on inputs (y, 1λ, Λ) and obtain as output ([fi], [π]).

3: Simulate the SPoSS knowledge extractor on input [π] (see Appendix B.3) and obtain x.

4: Output x.

If A succeeds, then B recovers the discrete logarithm of gx via the SPoSS knowledge extractor,
contradicting the assumption that the discrete logarithm is computationally intractable in G. By
contrapositive, soundness of Algorithm 4 follows.

Privacy. As with the proof of the DPF-PACL privacy, we construct an efficient simulator S for the
view of any subset of t − 1 (possibly malicious) verifiers. We use the efficient simulators SVDPF and
SSPoSS to generate the view of the VDPF (Definition 8 in Appendix A) output and SPoSS proof
(Definition 6), respectively. On input (1λ, I, {τ∗i | i ∈ I}), S proceeds as follows:

1: J := {1, . . . , s} \ I.
2: parse τ∗i = (τ̂i, ρ̂i) for all i ∈ I.

3: {([π]i, τi) | i ∈ I} ∪ {τj | j ∈ J} ← SSPoSS(1λ, I, {τ̂i | i ∈ I}).
4: {( , ρi) | i ∈ I} ∪ {ρj | j ∈ J} ← SVDPF(1

λ, I, {ρ̂i | i ∈ I}).
5: Output {([πi], (τi, ρi)) | i ∈ I} ∪ {(τj , ρj) | j ∈ J}.
The distribution output by S matches the distribution of any subset of t − 1 verifiers because: (1)
the proof share [π]i and audit tokens τ1, . . . , τs are output by the SPoSS simulator SSPoSS, which
guarantees statistical indistinguishability of the view and (2) the VDPF simulator SVDPF guarantees
computational indistinguishability of the VDPF verification tokens ρ1, . . . , ρs.

Efficiency. Each proof share [π]i and audit token τi consists of a constant number of elements in Fp

and thus is of size O(λ) (see Definition 6 and Appendix B.3). By definition of VDPFs, the size of ρi
satisfies our efficiency constraint. (We note that under the VDPF formulation presented by de Castro
and Polychroniadou [19], the efficiency of the verification procedure is not explicitly defined but can
be seen as an implicit requirement.)

6 PACLs for FSS from DPF-PACLs

We now describe a set of PACL constructions for classes of FSS derived from DPFs. These trans-
formations are taken from Boyle et al. [7, Section 3.2] and form the class of functions that can be
efficiently secret-shared using lightweight cryptographic assumptions. More expressive classes of FSS
are believed to require heavier tools [7], for instance, fully-homomorphic encryption [21].

PACLs for range functions and decision trees. Boyle et al. [7, 9] describe how to apply linear
combinations of DPFs to derive FSS for range functions (and more generally decision trees [9]).
Range functions and decision trees can be viewed as special cases of distributed multi-point functions
(DMPF), which evaluate to a non-zero value on multiple inputs. In turn, DMPFs can be viewed as
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an aggregation of DPFs (this also follows from the linear-composition of FSS [7, Section 3.2]). By the
aggregation property of DPF-PACLs (Section 4.3), we immediately obtain PACLs for DMPFs and,
as a result, PACLs for range functions and decision trees.

PACLs for small function classes. FSS for all functions with a small domain |F| can be obtained
via a DPF that “selects” the function fi ∈ F in the canonically ordered function family F [7].
Our DPF-PACL construction applies to this class of FSS directly as a result. Following similar
transformations, Boyle et al. [7] obtain FSS for data matching and NC0 functions, which we briefly
describe next.

PACLs for data matching functions. Data-matching functions are parameterized by a set S ⊆
{1, . . . , N} of ℓ ∈ O(1) elements and a value v ∈ {0, 1}n such that fS,v(x) = 1 if xi = vi,∀i ∈ S. FSS
for this class of functions can be realized using a DPF with a range large enough to describe all

(
n
ℓ

)
2ℓ

possible values of fS,v (hence the requirement that ℓ is constant). As a consequence, our DPF-PACL
can be applied directly to this family of FSS by associating each access key with the corresponding
canonically ordered function.

PACLs for NC0 functions. The class NC0 captures all functions that can be represented by constant-
depth boolean circuits C : {0, 1}u → {0, 1}v with fan-in 2 (two inputs per gate). We can trivially

consider a DPF-PACL where Λ corresponds to all possible such circuits, of which there are vO(u2d )

in total. However, this is a näıve approach. As observed by Boyle et al. [7], it is possible to leverage
the bit-wise parallel structure of NC0 circuits and DPFs to realize efficient FSS for NC0 functions.
Specifically, any circuit C ∈ NC0 can be decomposed into v 1-bit-output, depth-d sub-circuits. For u-

bit inputs, each such sub-circuit has only O(u2d) possibilities. For each sub-circuit, we can generate a

DPF for the ith canonical ordering of all O(u2d) possible circuits. Repeating this for all v sub-circuits
yields an FSS scheme consisting of v DPF keys (one for each sub-circuit). Using the aggregation
property of our DPF-PACL construction described in Section 4.3, it is possible to enforce access
control over the v DPFs simultaneously. However, it becomes necessary to enforce access control over
the unique combination of sub-circuits since each DPF-PACL operates independently of the gloabal
circuit C. To achieve this, we can apply a “generic PACL” (Section 7) over the combination of sub-
circuits (in conjunction with DPF-PACLs for each sub-circuits) using a zero-knowledge proof over
secret-shared data.

7 Generic PACLs from distributed zero-knowledge proofs

In this section, we describe how to construct PACLs for any FSS class (formally, FSS for all functions
in P/poly [7]). Our approach relies on secret-shared non-interactive proofs (SNIPs) [14] and Fiat-
Shamir over SNIPs [5]. We describe these preliminaries in Section 7.1.

7.1 Preliminaries

SNIPs [14] (and their generalizations [5]) can be used to prove that any (public) arithmetic circuit
C evaluates to 1 on a secret-shared input x provided that the following two conditions are met: (1)
the circuit C is known to the verifiers and (2) the prover knows the input x and C. SNIPs guarantee
that the verifiers (who hold secret shares of x) do not learn any information except that C(x) = 1.
The efficiency of SNIPs is measured by the size of a SNIP proof and the interaction between verifiers
(note that SNIPs are non-interactive for the prover). The size of a SNIP is proportional to the number
of multiplication gates in the circuit and can be verified in one round of interaction. We provide a
formal definition of SNIPs in Definition 7. We frame the definition to follow the syntax of Definition 3
by abstracting the verifier interaction using algorithms Audit and Verify.

Definition 7 (Secret-shared Non-interactive Proof (SNIP) [14]). Let λ ∈ N be a computa-
tional security parameter, F be a finite field, and t and s be integers such that 2 ≤ t ≤ s. Let C be
any arithmetic circuit (defined over F) where for an x ∈ F, it holds that C(x) = 1. A SNIP is a zero-
knowledge proof system instantiated between a prover and s verifiers holding t-out-of-s secret shares
of x, where the prover convinces the verifiers that C(x) = 1, in zero knowledge. In the random oracle
model, a SNIP proof system consists of three (possibly randomized) algorithms (Prove,Audit,Verify):
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– Prove(x,C) → ([π]1, ..., [π]s). Takes as input the input x and the arithmetic circuit C. Outputs a
vector of t-out-of-s proof secret shares.

– Audit([x]i, [π]i)→ τi. Takes as input a t-out-of-s secret share of x and the corresponding proof share.
Outputs a verification string τi.

– Verify(T := {τi | i ∈ I}) → yes/no. Takes as input any subset of t or more verification strings
indexed by the set I ⊆ {1, . . . , s}. Outputs yes if it holds that C(x) = 1.

A SNIP must satisfy the correctness, soundness, zero-knowledge, and efficiency properties of a multi-
verifier zero knowledge proof system [5, 48].

– Correctness. For all arithmetic circuits C and for all x such that C(x) = 1, then for all subsets
I ⊆ {1, . . . , s} such that |I| ≥ t,

Pr


([x]1, . . . , [x]s)← Share(t,s)(x);
([π]1, . . . , [π]s)← Prove(x,C);

{τi ← Audit([y]i, [π]i) | i ∈ I} :
Verify({τi | i ∈ I}) = yes

 = 1,

where the probability is taken over the randomness of Share and Prove.

– Soundness. There exists a negligible function negl such that for all efficient A, subsets I ⊆
{1, . . . , s} where |I| ≥ t, and x such that C(x) ̸= 1,

Pr

 ([π∗]1, . . . , [π
∗]s)← A(1λ, C);

{τi ← Audit([x]i, [π
∗]i) | i ∈ I} :

Verify({τi | i ∈ I}) = yes

 ≤ negl(λ).

where the probability is taken over the randomness of A

– Zero-knowledge. For all subsets I ⊆ {1, . . . , s} such that |I| < t, define J{1, . . . , s} \ I and let
DI,J be the distribution over {[(π]i, τ∗i | i ∈ I} ∪ {τj | j ∈ J} where each πi is sampled according
to Prove, each τ∗i is sampled arbitrarily, and each τj is sampled according to Audit. A SNIP is
zero-knowledge if there exists an efficient simulator S such that DI,J ≈ S(1λ, I, {τi | i ∈ I}). That
is, no subset of fewer than t (possibly malicious) verifiers gain any information about x (in the
information theoretic sense).

– Efficiency. The size of each proof share [π]i is bounded by the number of multiplication gates in
C, and the size of τi is constant (in the security parameter).

Fiat-Shamir for SNIPs. The Fiat-Shamir transform [24] is a standard technique used to eliminate
interaction in zero-knowledge proofs. At a high level, Fiat-Shamir allows the prover to generate its own
challenges with the help of a random oracle by “simulating” the randomness chosen by the verifiers in
the interactive proof system. With SNIPs, however, the situation is slightly different because SNIPs
are already non-interactive for the prover. Instead, Fiat-Shamir can be applied to SNIPs to reduce
the interaction required when verifying the proof [5, 48]. Specifically, the verification of the SNIP
with Fiat-Shamir requires only one message exchanged between verifiers (instead of one round of
interaction consisting of two sequential messages).

As observed in [5], the main challenge in the distributed setting is that the shares of each verifier
must be kept secret from the other verifiers. If Fiat-Shamir were to be applied directly over the proof
share given to each verifier, then it could leak information about the proof shares of other verifiers
(and possibly leak information about x). The high-level idea to get around this problem is to have
the prover randomize each share with a random nonce, which it distributes to the verifiers along with
the proof shares. Using the nonce, the verifiers are able to verify consistency of the challenge used
to check the proof without learning any information on the secret shares held by the other verifiers.
(See [5, 6.2.3] for details.)
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How Fiat-Shamir is applied to SNIPs. When verifying a SNIP proof, the verifiers first jointly sample
a random value r and proceed to perform a randomized polynomial identity test using the DeMillo-
Lipton-Schwartz–Zippel lemma [20, 40]. The Fiat-Shamir transform can be used to let the prover
sample the “challenge” randomness r on behalf of the verifiers using a random oracle. The verifiers
then simply check the consistency of the proof (i.e., verify the polynomial identity test), which only
requires exchanging one message.

Remark 3. Note that we implicitly apply the above template of SNIPs with Fiat-Shamir in our SPoSS
construction of Section 5.1 to minimize interaction between verifiers down to one message.

7.2 Construction

At a high level, we construct PACLs for P/poly-FSS as follows. As in our group-based constructions,
the dealer first distributes shares of the function f using the FSS scheme and shares of the access key
sk to all verifiers. In addition, the prover distributes a SNIP proof showing that (1) [f ] corresponds
to some valid output of FSS.Gen and (2) the access key sk is such that CheckAccess(Λ, f, sk) = 1.
(Without loss of generality, we assume that both FSS.Gen and CheckAccess are described as arithmetic
circuits over a field F.) The verifiers then check the SNIP using their shares of f and sk.

While this approach to generic PACLs is conceptually simple, there is an efficiency challenge that
needs to be addressed. By definition, CheckAccess takes the entire access control list Λ, which would
result in a large (linear in |Λ|) proof size, violating the efficiency property of PACLs. Specifically,
the näıve approach requires the prover to incorporate the entire access control list into the SNIP
when proving that CheckAccess(Λ, f, sk) = 1, even if sk only depends on one verification key in Λ.
We overcome this efficiency problem by using any vector commitment scheme [12, 32] (described by
algorithms VC.Commit and VC.Verify). We instead define vki := H(fi∥ski), where H is a collision-
resistant hash function (CRHF) sampled by the verifiers and ski is the access key for function fi. The
verifiers compute a commitment to all verification keys using VC.Commit, publishing the resulting
commitment c and all the openings e1, . . . , eN such that VC.Verify(c, vki, ei) = 1. See ?? for an example
where we instantiate the vector commitment using a Merkle tree [32]. The prover then sends [ṽk], [sk],
[ẽ], and three SNIP proofs: (1) a proof that FSS.Gen(1λ, f ; r) = [f ], where r describes the random
coins of FSS.Gen, (2) a proof that ṽk = H(f, sk), and (3) a proof that Verify(c, ṽk, ẽ) = 1. The verifiers
check the three SNIP proofs using their shares [f ] and [sk]. If the proofs are accepting, then the
verifiers are convinced that the dealer knows the access key sk associated with f and that their shares
of f were output according to FSS.Gen. The size of the SNIP proofs is bounded by O(s + log |Λ|)
rather than O(|Λ|), where s is the number of multiplication gates in FSS.Gen.

Proposition 1. Algorithm 5 satisfies the completeness, soundness, privacy, and efficiency guarantees
of Definition 4.

Proof (sketch). We give a high-level proof sketch for each property in turn.

Completeness. Completeness follows from the correctness of vector commitment scheme and com-
pleteness of SNIPs (Definition 7). If the FSS shares of f are generated correctly (output by FSS.Gen,
then π0 is accepted by the completeness of SNIPs. Similarly, for π1 and π2, where completeness is
easy to see. As a result, Verify outputs yes.

Soundness. Soundness follows from the binding property of the vector commitment scheme and the
soundness guarantee of SNIPs. Specifically, π0 proves that [f ] is the output of FSS.Gen, π1 proves
that the prover knows a pre-image of the form f∥sk for the verification key ṽk, and π2 proves that
ṽk is in the key list Λ (i.e., a valid verification key). Note that the same f (which the verifiers hold a
secret share of) is used by the verifiers when checking the validity of π0, π1, and π2, which binds the
proofs together.

Privacy. Privacy follows directly from the privacy guarantee of SNIPs since the only information
revealed is (1) the proof shares [π0], [π1], and [π2] and (2) the SNIP verification strings.

Efficiency. The size of [π0] is proportional to the number of multiplication gates in FSS.Gen. The
size of [π1] is proportional to the number of multiplication gates in VC.Verify (bounded by O(log |Λ|)
when instantiated using a Merkle tree [32]). The audit token consists of the SNIP verification strings,
which are of size O(λ).
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Algorithm 5: Generic PACL with SNIPs

[t] Public parameters: CRHF H, vector commitment c to the list of verification keys Λ, and
commitment openings e1, . . . , eN to each verification key in Λ.

– KeyGen(1λ, fi)

1: Sample ski ←R {0, 1}λ.
2: Compute vki := H(fi∥sk).
3: Output (ski, vki).

– Prove(f, sk):

1: Compute ṽk := H(f∥sk) and ẽ := ei.

2: Compute SNIP proofs (using the Fiat-Shamir transform) for the following statements:

2.1: [π0] for the statement “FSS.Gen(1λ, f ; r) = [f ]”.

2.2: [π1] for the statement “ṽk = H(f, sk)”.

2.3: [π2] for the statement “VC.Verify(c, ṽk, ẽ) = 1”.

3: Output proof shares [π] := ([π0], [π1], [π2], [ṽk], [ẽ]).

– Audit(Λ, [f ]i, [π]i):

1: Parse [π]i := ([π0]i, [π1]i, [π2]i, [ṽk]i, [ẽ]i).

2: Compute the SNIP verification strings τ (0), τ (1), and τ (2) for [π0]i, [π1]i, and [π2]i, respec-
tively.

3: Output audit token τi := (τ
(0)
i , τ

(1)
i , τ

(0)
2 ).

– Verify(T ):

1: Parse each τi ∈ T as τi = (τ
(0)
i , τ

(1)
i , τ

(2)
i ).

2: T (j) :=
{
τ
(j)
i | i ∈ {1, . . . , |T |}

}
, for all j ∈ {0, 1, 2}.

3: Output yes if and only if all three sets T (0), T (1), T (2) of SNIP verification strings are
accepting.

Remark 4 (Efficiency). The proof size for our generic FSS PACL construction is proportional to the
size of the Gen circuit. However, FSS is only concerned with the share size and not the running time of
Gen. As such, it is possible that Gen runs in time proportional to the truth table of the function being
secret shared (e.g., see programmable DPFs [11]). In this case, the size of the SNIP proof—which
has a size proportional to the circuit size of Gen—can negate the efficiency of the FSS scheme. An
interesting direction for future work would be to make the proof size only depend on the size of the
function secret shares and be independent of Gen. However, we note that in all known constructions
of FSS for P/poly [7, 21], Gen runs in sublinear time relative to the truth table.

8 Implementation and evaluation

In this section, we describe our implementation and evaluation of the (V)DPF-PACL constructions
from Sections 4 and 5. Our evaluation focuses on the state-of-the-art two-party FSS schemes [9, 19].
Multi-party FSS constructions are less efficient [7] or require heavier cryptographic assumptions, mak-
ing them concretely slower [15, 34]. Because we are interested in evaluating the overhead of PACLs,
evaluating our constructions in a two-party setting results in worst-case overheads relative to baseline
FSS evaluations. We evaluate our implementation for applications of FSS, including private informa-
tion retrieval, distributed anonymous authentication, and anonymous communication protocols.

Implementation. We implement PACLs in Go v1.16. and C in approximately 4,500 lines of code.
Our implementation is open-source [1]. We instantiate G as the P-256 elliptic curve group (part of
the crypto/elliptic package in Go) in our DPF-PACL construction for public-key (pub) soundness
(Definition 4) and as Z2λ for symmetric-key (sym) soundness (Definition 5). For our public-key
VDPF-PACL construction, we instantiate G as F∗

p with a 3072-bit prime p as specified in RFC3526.
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Environment. We use Amazon Elastic Cloud Compute (EC2) for our experiments. We run experi-
ments on a c4.4xlarge (16 vCPUs; 32 GB RAM) Amazon Linux general-purpose virtual machine.
We use AES-NI-enabled CPUs for fast PRG evaluations, as well as other (V)DPF-specific optimiza-
tions [9, 19].

Methodology. We run each experiment between 10 and 1,000 times (depending on the experiment)
and report the average over the trials. 95% confidence interval is occasionally invisible.

Optimizations. In a setting with two verifiers, we observe that Verify simply has each verifier checking
that each secret share corresponds to a share of zero. If the parties convert their shares to subtractive
(rather than additive) secret shares, then this check becomes an equality check (both parties have
the same subtractive share if it’s a share of zero). Therefore, to avoid sending all secret shares, the
verifiers can send succinct hashes of their audit shares to reduce communication.

8.1 Prover costs

The proving costs for our PACL constructions are minimal. The prover only needs to generate (V)DPF
keys (for inclusion predicates) in our (V)DPF-PACL constructions. The complexity of (V)DPF.Gen
is linear in the (V)DPF domain size n [7, 9] and remains below 20 ms for practical values of n (i.e.,
n ≤ 128). In our VDPF-PACL construction, the prover also has to compute the SPoSS proof. We
benchmark SPoSS.Prove at 30 ms of CPU time (bottlenecked by exponentiation in F∗

p).

8.2 Communication costs

Tables 1 and 2 report the concrete communication overheads on the prover and the verifiers. To
remain independent of the underlying DPF construction, we let sℓ denote the size of a DPF with
range ℓ (e.g., sℓ = log(ℓ) · (λ+ 2) bits [9]).

In Table 1, we compare communication costs to other approaches for DPF access control. Ex-
press [23] and Sabre [46] operate in the symmetric-key (sym) setting, satisfying the relaxed PACL
soundness definition (Section 3.2). Newman et al. [34] construct an access control mechanism sim-
ilar to Algorithm 1 satisfying the soundness definition of Definition 4. Using SPoSS for verifying
discrete-logarithm knowledge results in over 2,400× less communication compared to a näıve ap-
proach (described in Appendix D) and a 1,000× smaller proof size compared to Sabre [46].

Table 1: Proof size (Prover → Verifier) and audit token size (Verifier ↔ Verifier) for (V)DPF-PACL with
the match predicate for access control (Algorithm 1). ∗Estimated (see Appendix D).

Match predicate Prover → Verifier Verifier ↔ Verifier

dpf-pacl 32 B 64 B

vdpf-pacl (SPoSS) 1952 B 816 B

(v)dpf-pacl (sym) 16 B 16 B

vdpf-pacl (näıve)∗ 4.7 MB 816 B

Express [23] (sym) 2 kB 184 B

Spectrum [34] 32 B 64 B

Sabre [46] (sym) (40 + 120n) kB 16 B

8.3 Verification costs

We report the processing time in Figures 4 and 5. Introducing PACLs results in a concrete processing
overhead relative to evaluating fi (here, fi is either a DPF or DMPF), especially when the number
of evaluations of the function is small (e.g., less than 64). However, as the number of evaluations
increases, the amortized cost of access control decreases (the overhead of the group exponentiation
in Verify is amortized over the evaluations of fi). FSS itself is typically only of interest in settings
where the function is evaluated on a large number of inputs (otherwise, it is more efficient to just

25



Table 2: Proof size (Prover → Verifier) and audit token size (Verifier ↔ Verifier) for (V)DPF-PACL with
inclusion predicate for access control (Algorithm 2) and ℓ access keys per function in the FSS family. We
denote by sℓ the size (in B) of a (V)DPF key with a range of {1, . . . , ℓ}. Prior techniques [23, 34, 46] do not
support inclusion predicates. ∗Estimated (see Appendix D).

(inclusion predicate) Prover → Verifier Verifier ↔ Verifier

dpf-pacl (16 + sℓ) B 32 B

vdpf-pacl (SPoSS) (1952 + sℓ) B 816 B

(v)dpf-pacl (sym) (16 + sℓ) B 16 B

vdpf-pacl (näıve)∗ (4.7× 106 + sℓ) B 816 B

Table 3: Overhead of introducing public-key (pub; Section 3) and symmetric key (sym; Section 3.2) PACLs
to DPF and DMPF classes of FSS. As the FSS class becomes more complex (e.g., FSS for DMPFs such
as inequality and range functions), the overhead of enforcing access control diminishes. We set the (V)DPF
domain to {0, 1}32. All benchmarks are amortized over 100,000 evaluations of the FSS.

FSS.Eval
Baseline

DPF-PACL
(match predicate)

DPF-PACL
(inclusion predicate)

sym pub sym pub

DPF 1.41 µs 1.42 µs 5.66 µs 33.10 µs 84.11 µs

DMPF 90.44 µs 90.46 µs 93.26 µs 122.22 µs 213.47 µs

VFSS.Eval
Baseline

VDPF-PACL
(match predicate)

VDPF-PACL
(inclusion predicate)

sym pub sym pub

DPF 1.46 µs 1.47 µs 1.69 µs 33.66 µs 36.11 µs

DMPF 93.14 µs 93.19 µs 93.50 µs 125.52 µs 128.71 µs

secret share [f(x)] rather than [f ]). As such, it is more reasonable to consider the amortized overhead
that access control introduces. For our DPF-PACL construction (reported in Figure 4), the amortized
overhead plateaus at approximately 5× the baseline cost of evaluating fi with around 28 evaluations.
This is primarily due to the linear number of group (elliptic curve) exponentiations required in the
Audit procedure. In contrast, for our VDPF-PACL construction (reported in Figure 5), which requires
only a constant number of group exponentiations in F∗

p, we observe a larger initial overhead but far
better amortized overhead. The larger initial overhead is entirely due to the single exponentiation in
F∗
p (which we benchmark at approximately 13 ms). All our constructions have a lower overhead as

the complexity of the FSS increases (e.g., when applying PACLs to DMPFs) thanks to the aggre-
gation properties described in Section 4.3. To better understand the asymptotic amortization of our
constructions, we report the tail values of Figures 4 and 5 in Table 3, where we amortize over 100,000
evaluations of the DPF and DMPF.

8.4 Applications of PACLs

Private databases with access control. Systems that use multi-server PIR (e.g., [15, 17, 18, 28,
30, 47]) can take advantage of (V)DPF-PACLs to restrict access to database items. (Gupta et al. [28]
specifically leave open the problem of supporting authenticated media consumption through Popcorn.)
Other systems such as Dory [17] use DPFs for private keyword queries in a remote database. For
example, Wang et al. [47] use PIR (realized using DPFs) to build privacy-preserving restaurant,
geolocation, and flight searches. Gupta et al. [28] use PIR for privacy-preserving movie streaming.
In Figure 6, we report the overhead of introducing access control in PIR via VDPF-PACLs. As the
items in the database become larger, the overhead of introducing access control diminishes. Part of
the overhead from introducing PACLs to PIR is due to switching from operations in a binary field
(xors) to operations in Fp, which are concretely slower. Ostrovsky and Shoup [37] describe a read-
and-write private database, which can be realized using DPFs [9]. Applying VDPF-PACLs to this
setting would result in similar overheads to the PIR setting.

Anonymous authentication. We identify a potentially interesting application of PACLs for the
purpose of anonymous user authentication (for instance, password-based authentication [27]) in a dis-
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Fig. 5: Our VDPF-PACL construction is dominated by the exponentiation in F∗
p (dashed lined) and has a

higher initial overhead compared to the DPF-PACL construction. In contrast to DPF-PACLs, our VDPF-
PACL construction amortizes almost entirely after 64 evaluations and has an asymptotically smaller overhead.

tributed setting. Denote each user pseudonym by i and let ski be the corresponding key (or password).
We can set Λ to be the set of valid account keys and let fi be the point function with special index i.
Applying our VDPF-PACL construction over [fi], the verifiers can learn if user i has a valid account
(and knows the key ski associated with vki) without learning which account was used to authenticate.
In Table 4, we benchmark the processing time required to authenticate a user as a function of the
number of accounts in the database.

Table 4: Evaluation of VDPF-PACLs applied to anonymous user authentication with varying number of
accounts (evaluation points).

Anonymous authentication with VDPF-PACLs

Number of accounts: 250K 500K 1M 2M

Authentication time: 103 ms 192 ms 381 ms 757 ms

Faster anonymous communication. Our VDPF-PACL construction can be applied out-of-the-box
to the anonymous communication systems Express [23], Sabre [46], and Spectrum [34] to improve their
concrete performance. In Figure 7, we show that swapping their implicit access control mechanism
with our VDPF-PACL construction improves performance by a factor of 50–70×. Sabre [46]’s com-
putational overhead is on-par with baseline FSS (and DPF-PACLs satisfying symmetric-key sound-
ness Section 3.2 and Table 1) but requires significantly larger proofs for access control purposes
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Fig. 7: Our VDPF-PACLs significantly improve performance of anonymous communication systems that re-
quire access control. These performance improvements come from two sources: (1) the ability to use optimized
DPF constructions with our DPF-PACLs (e.g., the access control in Express requires concretely slower DPF
constructions) and (2) the better amortization of VDPF-PACLs.

(approximately 3.5 MB; see Table 1). However, we note that Sabre [46] achieves other nice properties
that are tailored to anonymous communication (see Section 1.2).

9 Conclusion

We modeled and formalized the notion of private access control for FSS. Our constructions can be
applied to a variety of FSS applications and improve the performance of ad-hoc methods found in
prior work. We also present a generic theoretical construction that has exciting potential for future
work. Finally, we evaluate our constructions and showcase their performance on several concrete
use cases, ranging from anonymous authentication and communication to access control in private
databases. Our evaluation shows that introducing access control results in minimal overheads relative
to baseline FSS and amortizes well asymptotically when the function is evaluated on many inputs.
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A Verifiable DPFs

de Castro and Polychroniadou [19] present definitions for (2, 2)-VDPF constructions. We generalize
their definitions to any (t, s)-VDPF scheme.

Definition 8 (VDPF [19]). Let λ ∈ N be a security parameter and F be any finite field. Fix a
domain {0, 1}n. A VDPF consists of three (possibly randomized) algorithms (Gen,Eval,Verify):

– Gen(1λ, i ∈ {0, 1}n,m ∈ F) → (κ1, . . . , κs). Takes as input a security parameter, an index i ∈
{0, 1}n, and message m. Outputs a set of evaluation keys encoding function Pi,m such that Pi,m(i) =
m.

– Eval(κ,X ⊆ {0, 1}n) → ([v], ρ). Takes as input an evaluation key κ and a subset of values in the
domain. Outputs a secret share of a vector v, where the jth coordinate of v corresponds to a share
of Pi,m(j) for j ∈ X, and a verification string ρ.

– Verify({ρi | i ∈ I})→ yes/no. Takes as input any subset of t or more verification strings indexed by
the set I ⊆ {1, . . . , s}. Outputs yes if and only if {[v]i | i ∈ I}, as output by Eval using {κi | i ∈ I},
encodes a point function on the evaluated set of inputs X.
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A (t, s)-VDPF must satisfy the correctness, privacy, and efficiency properties of FSS (Definition 2).
Additionally, a VDPF must guarantee soundness. Informally, soundness requires that Verify outputs
no for any set of evaluation keys that do not encode a point function on the evaluated points.

– Correctness. A (t, s)-VDPF is correct if for all j ∈ {0, 1}n, for all m ∈ F, and all subsets I ⊆
{1, . . . , s}, such that |I| ≥ t, there exists an efficient algorithm Decode such that

Pr

[
(κ1, . . . , κs)← Gen(1λ, i,m) :

Decode({Eval(κi, {j}) | i ∈ I}) = Pi,m(j)

]
= 1,

where the probability is over Gen.

– Soundness. A (t, s)-VDPF is sound if for all (possibly maliciously generated) keys (κ∗
1, . . . , κ

∗
s),

adversarially chosen inputs X∗ ⊆ {0, 1}n, and ρi sampled according to ( , ρi) ← Eval(κ∗
i , X

∗) for
i ∈ I, |I| ≥ t, it holds that

Pr[Verify({ρi | i ∈ I}) = yes] ≥ 1− negl(λ),

if and only if the correctness property of FSS is satisfied, where the probability is taken over the
adversary’s choice of randomness.

– Privacy. For all subsets I ⊂ {1, . . . , s} such that |I| < t, define J := {1, . . . , s} \ I and DI,J to be
the distribution over {(κi, ρ

∗
i ) | i ∈ I} ∪ {ρi | j ∈ J} where κi is sampled according to Gen, each ρ∗i

is sampled arbitrarily, and each ρi is sampled according to Eval. A (t, s)-VDPF is private if there
exists an efficient simulator S such that DI,J ≈c S(1λ, s, I, {ρ∗i | i ∈ I}). That is, all subsets of fewer
than s evaluation keys and the entire set of verification strings (of which t− 1 might be maliciously
generated), reveal no information on the point function Pi,m encoded in the set of keys (κ1, . . . , κs).

B Deferred proofs

B.1 Proof of Lemma 1

The proof hinges on the aggregation property of our construction (Section 4.3). Consider an efficient

A that outputs f̂γ and π̂ where f̂ is not a point function (and also not the trivial identity function

f(x) = 1G for all x). Then, it holds that f̂γ =
∑

j∈S ajfj , where S ⊆ {0, 1, . . . , N}, each fj is a
point function, and aj are arbitrary scalars in Zp \ {0}. Construct an adversary A′ that breaks the
PkSoundnessPACL,A,I(λ) game with fγ = Pγ (a point function) as follows. First, run A to get

function f̂γ . Then compute fγ := f̂γ −
∑

j∈S,j ̸=γ ajfj and π := π̂ −
∑

j∈S,j ̸=γ ajαj (recall that A′ is
allowed to query for all αj provided j ̸= γ). Finally, output fγ and π. It must hold that γ ∈ S (if this
were not the case then A does not succeed as it queried all the necessary access keys skj for j ∈ S).
By the aggregation properties of our construction (described in Section 4.3), it follows that fγ is a
point function and π is a valid access proof for fγ . Thus, A′ succeeds with the same probability as A.

B.2 Proof of Theorem 4 (security of Algorithm 2)

Completeness. Consider C ∈ G as computed in Verify:

C :=

(∏ℓ

j=1
Aj

)
·
(∏N,ℓ

j=1
g−cj ·wj

)
· gα.

Examining “the exponent,” we get that:

logg(C) =
∑N

j=1

∑ℓ

k=1
αj,k · yj −

(∑Nℓ

j=1
wj · cj

)
+ α.

If fi is a DPF instance, then yj = 1 only for j = i. Thus,

logg(C) =
∑ℓ

k=1
αi,k −

(∑Nℓ

j=1
wj · cj

)
+ α.
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Further, if (κ′
1, . . . , κ

′
s) encode a DPF for the (i − 1)ℓ + γ = ωth index, then all cj = 0 for j ̸= ω.

Therefore,

logg(C) =
∑ℓ

k=1
αi,k − wω + α.

However, by construction, wω =
∑ℓ

k=1,k ̸=γ αi,k, and so we get that: logg(C) = αi,γ + α = 0, by

construction since α = −αi,γ . Therefore, it holds that C = g0 = 1G and Verify outputs yes, making
the construction complete.

Soundness.Assume, towards contradiction, that there exists an efficientA that wins the PkSoundnessPACL,A,I(λ)

game with non-negligible probability δ(λ). Then, A outputs secret shares of f̂γ (corresponding to
point function Pγ) encoded as keys (κ̂1, . . . , κ̂s) and proof shares ([π̂]1, . . . , [π̂]s) such that for all
I ⊆ {1, . . . , s} where |I| ≥ t,

Pr

[
τi ← Audit(Λ, [f̂γ ]i, [π̂]i),∀i ∈ I :

Verify({τi | i ∈ I}) = yes

]
≥ δ(λ).

Without loss of generality (by Lemma 1), we can assume that A outputs f̂γ sampled from the
family of point functions when considering Algorithm 2. For notational simplicity, we “expand” the
N verification keys in Λ (each containing ℓ subkeys) so as to make Λ consist of Nℓ verification keys.
We now construct an efficient algorithm B that solves the discrete logarithm problem as follows. On
input y := gx,

1: (α1,1, . . . , αN,(ℓ−1))←R FN×(ℓ−1)
p .

2: Λ := (gα1,1 , . . . , gα1,ℓ , . . . , gαN,1 , . . . , gαN,(ℓ−1) , y).

3: Run AGetKey
(
1λ, Λ

)
and answer each GetKey(i) query with (αi,1, . . . , αi,ℓ) for all i ̸= N . If A

queries GetKey on input N , then abort.

4: Obtain output ([f̂γ ], [π̂]) from A.
5: Recover f̂γ and (f̂ω, α̂, β̂) from [f̂γ ] and [π̂], respectively.

6: Output α̂.

By the aggregation properties of our DPF-PACL constructions and Lemma 1 and soundness of
Algorithm 1 (Section 4.4), it holds that α̂ is the discrete logarithm of y whenever A succeeds in
PkSoundnessPACL,A,I(λ) with a DPF fN and using the ℓth key in Λ for fN . The probability that
A outputs fN is 1

N and the probability A uses the ℓth key for row N is 1
ℓ . Thus, B succeeds with

probability at least 1
Nℓδ(λ) which remains non-negligible, contradicting the hardness of the discrete

logarithm problem.

Privacy. We construct an efficient simulator S for the view of any subset of at most t− 1 (possibly
malicious) verifiers. Let S ′ be the simulator in the proof of Theorem 3. On input (1λ, I, {τ∗i | i ∈ I}),
S proceeds as follows:

1: J := {1, . . . , s} \ I.
2: parse τ∗i = (τ̂

(0)
i , τ̂

(1)
i ) for all i ∈ I.

3: ([0]1, . . . , [0]s)← Share(Fp,t,s)(0).

4: ([z′]1, . . . , [z
′]s)← Share(Fp,t,s)(0).

5: (κ′
1, . . . , κ

′
s)← DPF.Gen(1λ, P1).

6:
{(

[π′]i, τ
(0)
i

)
| i ∈ I

}
∪
{
τ
(0)
j | j ∈ J

}
← S ′(1λ, I, {τ̂ (0)i | i ∈ I}).

7: [π]i := ([z′]i, [π
′]i, κ

′
i).

8: τ
(1)
k := g[0]k for all k ∈ I ∪ J .

9: τk := (τ
(0)
k , τ

(1)
k ) for all k ∈ I ∪ J .

10: Output {([π]i, τi) | i ∈ I} ∪ {τj | j ∈ J}.
The distribution output by S matches the distribution of any subset I ⊂ {1, . . . , s}, where |I| < t
because: (1) any subset of {[0]1, . . . , [0]s} of size < t is uniformly distributed and therefore matches
the distribution of any subset of {[α]1, . . . , [α]s} of size < t in the real view, (2) [π′]i is guaranteed to
be computationally indistinguishable by the proof of Theorem 3, (3) the DPF key for point function
Pω (in the real view) is computationally indistinguishable to κ′

i corresponding to point function P1 by
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the privacy of FSS (Definition 2), and (4) the audit tokens are (computationally-hiding) multiplicative
secret shares of (1G, 1G) in the real view and uniformly random multiplicative secret shares in the
output of S. An efficient distinguisher for (4) would also contradict the privacy property of FSS. Note

that we ignore the extraneous input τ̂
(0)
i (parsed from τ∗) because it does not influence the output

of honest verifiers in the real view (see Section 3.3).

Efficiency. Using the “FSS tensoring” [9] optimization (see Section 4.1.2), the size of each proof
share is O(λ+ sℓ) where sℓ is the size of a DPF key encoding a point function with range {1, . . . , ℓ}.

B.3 Security of SPoSS

Proposition 2. The SPoSS construction in Algorithm 3 satisfies the correctness, argument-of-knowledge,
and zero-knowledge properties (Definition 6) required of a secret-shared non-interactive proof system,
in the random oracle model [5].

Proof of Proposition 2. We prove each property in turn: completeness, argument-of-knowledge,
and zero-knowledge.

Completeness. We show that if the prover is honest, then Verify outputs yes. In Algorithm 3, Verify
outputs yes if and only if wA + wB = 0 and r̂ = r, d̂ = d, and ê = e. The equality of r̂ = r, d̂ = d,
and ê = e follows by inspection. To see why it holds that wA + wB = 0, observe that

wA + wB = vA − ryA + vB − ryB

= v − ry

= 2(
de

2
) + ea+ db+ (cA + cB)− ry

= (rŷA − a)

d

(ŷB − b)

e

+ea+ db+ c− ry

= rŷ − a(ŷB) + a(ŷB)− ry

= r(ŷ − y) = 0 by assumption that ŷ = gx = y.

Argument-of-knowledge. We construct an efficient extractor E that recovers the discrete logarithm
of y from a proof [π] output by a possible malicious prover P∗. E proceeds as follows:

1: Run P∗(y) to obtain as output (πA, πB) where

πA = (a, [x]A, a, [c]A, r, d, e, zA)

πB = (b, [x]B , b, [c]B , r, d, e, zB).

2: Output x = [x]A + [x]B .

If (πA, πB) is a valid SPoSS proof valid, then wA + wB = 0. In turn, we have that rŷ − (rŷA)b −
a(ŷB) + ab + ea + db − ry + c = 0 for some randomness r (see completeness proof). The malicious
prover P∗ can choose arbitrary a, b, c. As such, we have that c = ab + ∆ for some ∆ [14], which
yields rŷ − (rŷA)b− a(ŷB) + 2ab+ ea+ db− ry +∆ which reduces to r(ŷ − y) +∆ = 0. Thus, either
(1) the malicious prover obtained r from H such that r(ŷ− y) = −∆ (which happens with negligible
probability given H is a random oracle) or (2) ŷ = y and ∆ = 0 which implies that (ŷ − y) = 0 and
therefore g[x]A+[x]B = ŷ = y and so x = [x]A + [x]B is the discrete logarithm, as required.

Zero-knowledge. To prove that SPoSS is zero-knowledge, we construct an efficient simulator S
that given i ∈ {a,b} and τ∗i , outputs a statistically indistinguishable view to that of verifier i (the
simulator generalizes to the many-verifier case). On input (1λ, {i}, {τ∗i }), S proceeds as follows:

1: j ∈ {a,b} \ {i}.
2: ([w]A, [w]B)← Share(Fp,2,2)(0).

3: [x]i ←R Zp−1.

4: [c]i, u, d, e←R Fp.
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5: r̂i, r, zi ←R {0, 1}λ.
6: [π]i := ([x]i, u, [c]i, r, d, e, zi).

7: τA ← ([w]A, r̂i, r, d, d, e), τB ← ([w]B , r ⊕ r̂i, r, e, d, e).

8: Output {([π]i, τi)} ∪ {τj}.

Analysis. Consider the distribution of [π]i in the real view of the ith verifier. Observe that [π]i consists
of (1) secret shares [x]i and [c]i, (2) masks zi and u (see optimization described in Section 5.1.1), (3)
Beaver multiplication openings d, e, and (4) the distributed Fiat-Shamir randomness r. All these values
are generated by the prover. (1), (2) and (3) are uniformly distributed. (4) is uniformly distributed
due to the mask zi [5]. As such, the distribution of [π]i, as output by S, matches that of the real view
of the ith verifier.

Now, consider τj , which consists of (1) a secret share [w]i, (2) random oracle outputs r̂ and r
(which are identical when the prover is honest and distributed uniformly due to the mask zj) and (3)
Beaver multiplication openings f (computed by verifier j and d, e given by the prover). (1) and (3)
are uniformly distributed due to [c]j being uniform share and the mask uj . Moreover, f is either d or
e and thus provides no new information. (2) reveals no new information because r̂ = r and r is given
to all verifiers.

We conclude that the output distribution of S is distributed identically to the view of verifier i in
Algorithm 3, which concludes the proof of zero-knowledge.

C Beaver’s Protocol

We provide a brief overview of Beaver’s [3] approach to multiplication of secret shares as adapted by
Corrigan-Gibbs and Boneh [14]. We focus on the setting with two parties; see [14] for a more general
exposition. Given two parties holding additive shares [x] and [y], encoding field elements x and y, the
parties must securely compute shares of [xy], encoding the value xy ∈ F. A Beaver triple consists of
additive shares of ([a], [b], [c]) such that a and b are random field elements and c := ab ∈ F. If the
parties are given shares of a Beaver triple, then the parties can compute a secret share encoding the
product two secret shares x and y as follows. Each party locally computes:

[d]← [x]− [a] and [e]← [y]− [b],

and broadcasts its shares of d and e. The parties recover d and e and locally compute: [xy] :=
d[b] + e[a] + [c] + de

2 . This works because

d[b] = (x− a)[b] = [xb− ab],

e[a] = (y − b)[a] = [ya− ab],

de

2
=

xy − xb− ay + ab

2

(de2 is a 2-out-of-2 “share” of de = xy − xb− ay + ab) and so we get that:

d[b]+e[a] +
de

2
+ [c] =

= [xb− ab] + [ya− ab] + [xy − xb− ay + ab] + [c]

= [xb− ab+ ya− ab+ xy − xb− ay + ab+ c]

= [xy − ab+ c]

= [xy].

As such, Beaver’s technique reduces the rounds of communication required to compute a multiplication
over secret shares down to one round [3].

D Näıve SPoSS using SNIPs

Here, we estimate the overhead of näıvely applying a SNIP for verifying a Schnorr proof over secret
shares. Verification in Schnorr requires computing an exponentiation in G. This translates to an
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exponentiation with a secret-shared exponent in our case. Using the textbook approach to modular
exponentiation (e.g., repeated squaring) or even tailored techniques (e.g., [2, 16, 35, 36, 45]), requires
computing a bit decomposition to convert the secret-shared exponent into binary secret-shares. A bit
decomposition circuit requires O(λ log λ) multiplication gates, where λ := ⌈log p⌉ [16, 36, 45]. Using
the explicit multiplication complexity listed by Toft [45, Table 2] for their bit decomposition protocol,
we get that the total number of multiplications to compute the circuit is M = 31 · λ log(λ) + 71 · λ+
30 ·
√
λ. When G = F∗

p and log p ≈ 3072, then we have:

M = 32 · 3072 · log(3072) + 71 · 3072 + 30 ·
√
3072 ≈ 1.4× 106.

The SNIP proof requires sending one Beaver triple (3λ bits per verifier) and two elements of Fp

per multiplication gate in the circuit (the proof consists of a degree-2M polynomial interpolating the
multiplication gates). This results in (3·3072)+2·(3072)·M bits = (9216)+(6144)·(1.4×106) bits ≈ 1
GB of communication per verifier.

However, we can be more clever and have the prover secret-share the bit decomposed exponent
as part of the proof. In this case, the verifiers only need to check that the secret shares encode a
binary number and then apply the group operation (multiplication in Fp) λ times. We now describe
the arithmetic circuit computing an exponentiation with a bit-decomposed exponent and repeated
squaring. To the best of our knowledge, this is the most optimal generic approach to verifying a
Schnorr proof over secret shares.

First, the verifiers check that each secret-shared bit ai for i ∈ {1, . . . , λ} is either 0 or 1. The
arithmetic circuit computing this check is defined as C(ai) = 1 + a2i − ai. Therefore, the arithmetic
circuit for checking the validity of the binary decomposition requires λ multiplication gates and makes
the SNIP proof consist of 2λ elements of Fp. The total size, in bits, is therefore 2λ2.

Second, the verifiers much check the repeated squaring circuit, which requires computing the group
operation (one multiplication in Fp) λ times. This makes the SNIP proof consist of 2λ elements of
Fp. The total size of the repeated squaring proof, in bits, is therefore 2λ2 as well.

Combined, the total proof size is:

(3 · 3072)
Beaver triple

+2 · (3072)2

binary check

+ 2 · (3072)2

repeated squaring

bits

= (9216) + 2 · (3072)2 + 2 · (3072)2 bits

≈ 4.7 MB.

Note that using an elliptic curve instead of F∗
p (which would allow us to work over a field of

roughly order p ≈ 2256 instead of p ≈ 23072) does not improve the situation. While the proof size
for the validity of the binary decomposition (checking that C(ai) = 1, for all i) would be roughly
12× smaller, these savings are negated by the complexity of the elliptic curve group operation, which
requires multiple field multiplications to compute the group operation [43, 44]. The advantage of
working with F∗

p is that we only require one multiplication in Fp to apply the group operation.
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