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Abstract. Consider a collection of finitely many polygons in C, such that for each side

of each polygon, there exists another side of some polygon in the collection (possibly the

same) that is parallel and of equal length. A translation surface is the surface formed by

identifying these opposite sides with one another. The H(1, 1) stratum consists of genus

two translation surfaces with two singularities of order one. A circle packing corresponding

to a graph G is a configuration of disjoint disks such that each vertex of G corresponds to a

circle, two disks are externally tangent if and only if their vertices are connected by an edge

in G, and G is a triangulation of the surface. It is proven that for certain circle packings

on H(1, 1) translation surfaces, there are only a finite number of ways the packing can vary

without changing the contacts graph, if two disks along the slit are fixed in place. These

variations can be explicitly characterized using a new concept known as splitting bigons.

Finally, the uniqueness theorem is generalized to a specific type of translation surfaces with

arbitrary genus g ≥ 2.

1. Introduction

Translation surfaces are an interesting facet of mathematics because they interrelate many

fields such as topology, differential geometry, complex analysis, and dynamical systems. They

are concrete and simple to describe but have many applications in pure math topics such as

rational billiards (see [12]), geodesic flows (see [4]), interval exchange transformations (see

[13]), and Teichmüller theory (see [3]). Important examples of translation surfaces that are

an active area of study include square-tiled surfaces (also known as origamis), defined later

in 2.15, and Veech surfaces.

The versatility of translation surfaces comes from the number of different perspectives

from which they can be considered. Translation surfaces can be thought of as quotient

spaces inheriting some of the topology of C, as locally Euclidean surfaces with a finite num-

ber of singularities, or as Riemann surfaces with an associated differential 1-form. All of

these perspectives will be fruitful in examining them.

Translation surfaces also have singularities known as cone points, around which the angle

is of the form 2π · k, where k > 1 is some integer. As such, the surfaces do not have a flat

smooth metric, which makes it appealing to investigate them geometrically as well. Indeed,

some of the properties of these cone points will make the investigation of circle packings,

which are typically considered in the framework of a flat metric, more interesting.
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Circle packings were popularized in the mathematics community throughWilliam Thurston’s

famous Notes on the subject (see [10]), delivered at a conference in Purdue in 1985. They

combine rigidity (tangencies between circles have a particular structure) with flexibility (the

radii and locations of circles can vary). They also provide a bridge between the combinatorial

nature of triangulations with the geometric nature of surfaces and circles, and have impor-

tant applications in discrete analytic function theory (see [9]) and conformal uniformization

(see [8]). Furthermore, according to a conjecture of Thurston that was proven by Rodin

and Sullivan in 1987 (see [7]), circle packings can provide a geometric view of the Riemann

mapping theorem.

As per the knowledge of the author, this is the first study of circle packings on translation

surfaces with genus g ≥ 2. Since the metric of such surfaces is not flat and smooth, one needs

to generalize the definition of circles, and in the process, circle packings on such surfaces.

These new definitions will be presented in §2.
By providing a framework to unite the two fields of translation surfaces and circle packings,

this paper sets up future work at their intersection. Possible approaches for further explo-

ration are given in §6. Beyond generalizing the notion of the uniqueness and existence of

circle packings to translation surfaces, it will also likely be fruitful to consider corresponding

analogs of other circle packing concepts, such as discrete analytic function theory, conformal

uniformization, and the Riemann mapping.

In this paper, we will examine the uniqueness of certain types of circle packings on trans-

lation surfaces. In §3, we will characterize all possible generalized circle configurations on

the doubled slit torus and then describe a particular class of circle packings on genus 2 trans-

lation surfaces that will be examined in future sections. In §4, we will prove several results

about a new concept known as splitting bigons, which will be used in future sections. We will

also generalize the results to surfaces with genus g ≥ 2. In §5, we will present results about

the uniqueness of certain types of circle packings on translation surfaces. In particular, we

will show that there are only a finite number of ways that a particular type of circle packings

on an H(1, 1) doubled slit torus can vary if two specific double circles are fixed in place. We

will then generalize this uniqueness theorem to genus g ≥ 2, showing that there are only a

finite number of ways for a particular type of circle packings on certain translation surfaces

to vary when 2g − 2 specific double circles are fixed in place.

2. Background

Before introducing translation surfaces formally, a few definitions are in order. A manifold

of real dimension n is a topological space such that every point has an open neighbourhood

that maps to an open subset of Rn via a homeomorphism known as a chart. Given two charts

hα and hβ with overlapping domains Uα and Uβ, respectively, we define the transition function

fα,β : hα (Uα ∩ Uβ) → hβ (Uα ∩ Uβ) to be fα,β = hβ ◦ hα. A complex manifold of dimension
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n has charts hα : Uα → Cn such that the transition functions fα,β are biholomorphic. A

Riemann surface is a connected complex manifold of dimension one (or equivalently, real

dimension 2).

Three formal definitions of translation surfaces are now presented from [11].

Definition 2.1. (First definition of translation surface). Let Cp be the set of all possible

finite unions of polygons in C such that each side is completely identified with an “opposite”

side that is a translation in the plane of the first. A translation surface is an equivalence

class of the relation ∼t on Cp such that P1,P2 ∈ Cp satisfy P1 ∼t P2 if and only if P1

can be cut into pieces along straight lines and these pieces can be translated and re-glued

to form P2. After each cut, the two new boundary segments formed must be identified, and

two resulting polygons can be glued together along a pair of edges if and only if these edges

are identified.

Example 2.2. The simplest translation surface is the torus C/Z[i].

Figure 1. In each of the three diagrams above, opposite and identified edges

have been given the same color. The first two surfaces are tori. All three of

the above surfaces are translation surfaces.

Definition 2.3. For a metric space M and an equivalence relation ∼ on M , a quotient

metric d on M/∼ is defined by:

d([x], [y]) = inf

(
n∑

i=1

d(pi, qi)

)
where the infimum is taken over sequences (p1, p2, . . . , pn) and (q1, q2, . . . , qn) such that [p1] =

x, [q1] = y, [qi] = [pi+1], and 1 ≤ i < n.

Definition 2.4. The Euclidean metric of a translation surface in Cp/ ∼t is the quotient

metric derived from the flat Euclidean metric on Cp ⊂ C.

Definition 2.5. A saddle connection on a translation surface is a geodesic for the associated

Euclidean metric going from one singularity to another, such that no other singularities lie

on the segment.

There is also a second way of looking at such a surface.
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Definition 2.6. (Second definition of translation surface). A translation surface is a closed

topological surface X, together with a finite set of points Σ (called singularities or cone

points) and an atlas of charts to C on X \ Σ whose transition maps are translations, such

that at each point p ∈ Σ there is some k > 0 (called the degree or order of p) and a

homeomorphism of a neighborhood of p to a neighborhood of the origin in the 2k + 2 half

plane construction that is an isometry away from p, depicted in Figure 2.

Figure 2. The construction involves taking k + 1 copies of the upper half

plane and k + 1 copies of the lower half plane with the usual flat metric, and

gluing them along the infinite rays [0,∞) and (−∞, 0] in alternating order.

The image above is taken from [11] and depicts the case for k = 1.

Remark 2.7. For any translation surface with genus g > 1, cone points arise from the fact

that no such surface can admit a flat smooth metric (by the Gauss-Bonnet theorem).

Definition 2.8. The angle around a point p in a translation surface is 2π if p ∈ X \ Σ and

2π · (k + 1) if p ∈ Σ has degree k.

Example 2.9. In the octagon in Figure 1, there is one singularity of order 2 and angle 6π.

Proposition 2.10. Let the n cone points have degree d1, d2, . . . , dn. Then, we have:
n∑

i=1

di = 2g − 2

where g is the genus of the translation surface.

Definition 2.11. Let g > 1 and consider a partition κ of 2g− 2. A stratum H(κ) is defined

to be a collection of translation surfaces such that the order of each cone point is given by

κ.

Example 2.12. Suppose g = 2. Then the two partitions κ are given by (2) and (1, 1).

Elements of the stratum H(2) have one cone point of degree 2 and elements of the stratum

H(1, 1) have two cone points each of degree 1. The regular octagon is a member of H(2)

whereas the square-tiled surface in Figure 3 is a member of H(1, 1).

We present a final algebraic definition of translation surfaces as Riemann surfaces. This

will be useful in examining the hyperelliptic involution in Proposition 2.36.
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Definition 2.13. (Third definition of translation surface). A translation surface is an

Abelian differential (global section of cotangent bundle) on a Riemann surface.

The significance of this definition comes from the following idea from [11], which allows

one to think about such surfaces algebraically.

Proposition 2.14. If ω is an Abelian differential on a Riemann surface X, and Σ is the

set of zeros of ω, then X \ Σ admits an atlas of charts to C whose transition maps are

translations.

One important type of translation surface is the square-tiled surface, also called an origami.

Definition 2.15. A square-tiled surface is a translation surface obtained from identifying

opposite sides of a finite collection of unit squares in R2.

Figure 3. The square-tiled surface shown above has genus 2 and two singu-

larities, both of order 1 and cone angle 4π. The image is taken from [4].

Remark 2.16. Many non-square-tiled translation surfaces, such as a regular 2n-gon, can be

thought of as the “deformed” versions of square-tiled surfaces in a way that is made precise

in [4].

Some important background on the concept of circle packings will now be introduced.

Definition 2.17. A triangulation (simplicial 2-complex) of a surface S is a locally finite

decomposition of S into a collection of topologically closed triangles such that any two are

either disjoint, intersect at either one or two vertices, or intersect at a single edge.

Triangulations are permitted to be degenerate in nature, including bigons and loops.

Definition 2.18. A bigon in a triangulation consists of two vertices that are connected via

two distinct edges.

Remark 2.19. Two bigons are considered distinct if and only if they share at most one vertex.

There will be considerably more to say about bigons in future sections.

For a given finite union of polygons P ∈ Cp with boundary ∂P and opposite sides identi-

fied, denote by I(x) the set of all points in the plane identified with a specific x ∈ C.
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Definition 2.20. A polygonal sector p is defined to be a closed region in C bounded by the

sides of P and by a single arc with angle 0 < α ≤ 2π.

Definition 2.21. A collection of polygonal sectors P is defined to be a finite set of disjoint

polygonal sectors in C.

Definition 2.22. A boundary segment of a polygonal sector p ∈ P is a segment in C that

is one of the finitely many segments that make up the broken line ∂p ∩ ∂P.

Let G be a graph with |P | vertices where there exists an edge between two polygonal

sectors if and only if there exists a boundary segment of one that identifies entirely with a

boundary segment of the other. An equivalence relation ∼ on P is defined such that A ∼ B

if and only if A and B are connected in G.

Definition 2.23. A collection of polygonal sectors is defined to be a configuration of gen-

eralized circles if each of the following four conditions hold:

• For all p ∈ P , let x ∈ ∂p. Then for all y ∈ I(x), there exists q ∈ P with p ∼ q and

y ∈ ∂q.

• For all p ∈ P , let x ∈ p − ∂p. Then for all y ∈ I(x), there exists q ∈ P with p ∼ q

and y ∈ q − ∂q.

• For every polygonal sector A:∑
A∼B

α(B) = 2π · k

for some positive integer k where α : P → [0, 2π) is a function that takes in a

polygonal sector and outputs the angle of its sole arc. The disk
⋃

A∼B

B is called a

k-circle.

• Every k-circle is also a circle with respect to the quotient metric on the translation

surface i.e. there exists a unique point c called the center and a nonnegative real r

called the radius such that for every point x on the circle, d(x, c) = r, where d is the

Euclidean metric in Definition 2.4.

Definition 2.24. For a circle configuration on a surface, the contacts graph is defined to be

a graph G with n vertices v1, v2, . . . , vn corresponding to the generalized circles c1, c2, . . . , cn

such that vi and vj are connected if and only if ci and cj are externally tangent.

Definition 2.25. A circle packing on a translation surface is defined to be a configuration

of generalized circles on the surface such that the contacts graph is a triangulation of the

surface.

An example of a circle packing on a sphere is illustrated in Figure 4.
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Figure 4. A valid circle packing on a sphere, taken from [9].

The following theorem, from [9], is quite fundamental to the study of circle packing.

Theorem 2.26. (Koebe-Andreev-Thurston, 1936). Let K be a simple planar graph. Then

there exists a collection of topological circles PK on the Riemann sphere with K as its contacts

graph. Furthermore, if K is an triangulation of the Riemann sphere, this circle packing is

univalent and unique (up to a Möbius transformation).

One extension of the result to a torus, due to [8], is given below.

Theorem 2.27. (Schramm, 1996). Let T be a torus with universal cover π : C → T . Let

G̃ = (Ṽ , Ẽ) be a graph embedded in C that is invariant under the deck transformations of

π, and let G = (V,E) = π(G̃). Let Pv be a smooth topological disk corresponding to each

v ∈ V . Then there exists a doubly periodic packing Q whose contacts graph is G̃ and has Qv

homothetic to Pπ(v).

As per [9], it can also be generalized to any Riemann surface with a flat metric, as follows.

Theorem 2.28. Let K be a triangulation of a compact genus g surface. Then there exists

a unique conformal structure on K such that the resulting Riemann surface SK supports

a circle packing on K that fills the surface. The packing is unique up to the conformal

automorphisms of SK.

The automorphisms of complex tori can be characterized as follows, according to [6].

Proposition 2.29. Suppose that X = C/Λ is a complex torus and F : X → X is an

automorphism. Then F is induced by a linear map G(z) = az + b, where a, b,∈ C and

aΛ = Λ. Additionally, a is a root of unity and has a finite number of possibilities.

Using this theorem, one can show the following corollary that will be useful for subsequent

proofs.

Corollary 2.30. Let P = (Pv, v ∈ V ) and Q = (Qv, v ∈ V ) be two circle packings on the

same torus based upon the same triangulation, and suppose that there exist vertices a, b ∈ V
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such that Pa = Qa and Pb = Qb. Then P and Q are identical circle packings (i.e. Pv = Qv

for all vertices v ∈ V ).

Remark 2.31. The idea behind this proof is that Proposition 2.29 implies that the conformal

automorphism group for tori has 2 degrees of freedom (since b ∈ C and a has a finite number

of possible values). Thus, fixing two circles on the surface is sufficient to fix all the other

circles in the packing in place as well.

We will now introduce a natural map on genus 2 Riemann surfaces.

Definition 2.32. A Riemann surface is called hyperelliptic if and only if it is conformally

equivalent to the curve formed from the two-valued analytic function:

f(z) =

√√√√ n∏
i=1

(z − ai)

for n > 4.

Remark 2.33. For n = 1, 2, the curve formed from f(z) is conformally equivalent to the

Riemann sphere. For n = 3, 4, the curve formed from f(z) is conformally equivalent to the

complex torus.

Hyperelliptic surfaces are important because of the following result from [1].

Proposition 2.34. Every hyperelliptic surface M admits a unique conformal involution

η that has exactly 2g + 2 fixed points, where g is the genus of M . Furthermore, M/η is

equivalent to the Riemann sphere.

Definition 2.35. A hyperelliptic involution is the involution associated with a hyperelliptic

Riemann surface.

Proposition 2.36. Every Riemann surface M of genus 2 is hyperelliptic (i.e. admits a

conformal hyperelliptic involution η : M → M with exactly six fixed points).

Remark 2.37. Since every translation surface can be thought of as a Riemann surface with an

associated Abelian differential as per Definition 2.13, it follows that every genus 2 translation

surface is hyperelliptic. The hyperelliptic involution for a genus 2 surface provides a natural

symmetry of this surface.

A key result about genus 2 translation surfaces (from [1]) is that they can be thought of

in terms of their saddle connections and the hyperelliptic involution.

Theorem 2.38. (McMullen, 2007). Let M be a translation surface of genus 2 (either in the

H(1, 1) stratum or the H(2) stratum). Then M contains a saddle connection J such that

J ̸= η(J) and splits along J ∪ η(J) into the connected sum of two slit tori. Refer to Figure

5.
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Figure 5. The surface depicted above is an arbitrary genus 2 surface that

has been expressed as the connected sum of two slit tori. It belongs in the

H(1, 1) stratum. In order to express an H(2) surface as per the theorem, one

of the slits needs to start and end at the same point of the torus. This image

is taken from [1].

It follows that any surface in H(1, 1) can be thought of as a doubled slit torus (i.e. the

connected sum of two slit tori) in terms of a unique hyperelliptic involution. There is also

another way of thinking about H(2) surfaces (from [11]).

Proposition 2.39. Every genus 2 translation surface in H(2) can be decomposed into a

cylinder and a single slit torus as per a saddle connection J ̸= η(J).

3. Doubled Slit Torus

Any translation surface in the H(1, 1) stratum can be expressed as a doubled slit torus

(i.e. the connected sum of two slit tori) in terms of a unique hyperelliptic involution. The

following proposition gives a way to characterize all possible circle configurations on a doubled

slit torus.

Proposition 3.1. Every circle configuration of an H(1, 1) doubled slit torus can be thought

of as a pair (P,Q) of collections of generalized circles on the torus (equivalently, doubly

periodic circle configurations on the plane) such that for every generalized circle C in P and

Q, the slit either intersects C in two distinct points, passes through the center of C, or does

not intersect C at all.

Remark 3.2. The center of C is guaranteed to exist as a point by the fourth condition

in Definition 2.23. The conditions on the slit also arise from this fourth condition, which

requires that the circle respect the metric of the surface.

Proof. Every generalized circle configuration on a doubled slit torus consists of flat circles,

whose interior and boundary do not contain any part of the slit, and non-flat circles. The
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flat circles must be fully contained on one of the slit tori that the doubled slit torus is made

out of, and so belongs to either collection P or Q depending on which tori it lies on.

Now, consider an arbitrary non-flat circle C. By the fourth condition of Definition 2.23,

the center of C must necessarily exist, and the circle must respect the Euclidean metric of

the surface, as defined in Definition 2.4. Suppose, for the sake of contradiction, that the slit

did not pass through the center of C and at least one end of the slit lies in the interior of

C. Then the center of C must lie in exactly one of the slit tori, and so belongs either in

collection P or collection Q.

The idea is that C must be a double circle, with one copy on each slit torus. Suppose, for

the sake of contradiction that there was only a single copy of C with radius r on one of the

slit tori. Let A be the center of C. Then there exists a point B on C such that AB does

not intersect the slit and d(A,B) = r. Now, consider any point X on the portion of the slit

contained in the interior of C. Connecting the center to X and extending, one can see that

it will intersect at a point Y on the boundary of C, in the first slit tori but not the second.

However, d(A, Y ) > r = d(A,B), as one must go around the slit and cannot pass directly

through it (since C is a single circle). Therefore, C does not respect the Euclidean metric

as desired.

Since the second copy of C on the other slit torus must have a distinct center A′ ̸= A

(since the center A does not lie on the slit), there is a contradiction since Definition 2.23

requires there to be exactly one center. Therefore, either the center of C must pass through

the slit or the slit must pass entirely through C (see figure 7 for an example of the latter

case). This completes the proof of the proposition. □

Example 3.3. This gives a way to generate possible circle configurations, and check whether

or not the contacts graph forms a triangulation. For example, start with the circle configu-

ration T of the torus, as shown in Figure 6.

Figure 6. The univalent circle configuration above consists of two circles,

and its contacts graph is simply K2.

Set P = Q = T . The two singularities are constrained by the conditions on the slit.

Figures 7-11 illustrate some of the possible locations of the slit, and the resulting circle

configuration. Here, regions with the same color comprise a single generalized circle.
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Figure 7. Both the yellow and the green circles are tangent to the orange

and purple circles. The slit can be moved without changing the configuration

as long as both singularities lie outside the circles and the slit intersects a

circle. If the slit does not intersect any circle, the resulting contacts graph will

not be connected.

Figure 8. The yellow 2-circle is tangent to the orange and purple circles. It

is not required that the center be a singularity, as illustrated in the diagram.

Rather, if a slit does not pass through a circle entirely, it is sufficient for the

slit to pass through the center.

Figure 9. The yellow 2-circle is tangent to the purple 2-circle. In this case,

one singularity must lie at one of the four corners because the slit must be

fully contained in the square and pass through the center of the purple circle.

The other singularity can be anywhere along the diagonal inside the yellow

circle past the center.
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Figure 10. The yellow and green circles are both tangent to the purple 2-

circle. One of the singularity lies at the corner of the square because the slit

must pass through the center of the purple circle. In this configuration, the

other singularity must lie in one of the two adjacent interstice regions, as shown

above.

Figure 11. The yellow and green circles are both tangent to the purple 2-

circle. One of the singularity lies at the corner of the square because the slit

must pass through the center of the purple circle. In this configuration, the

other singularity must lie in one of the two opposite interstice regions, as shown

above.

The following result also holds.

Proposition 3.4. Suppose there exists a pair (P,Q) of collections of generalized circles

on the torus (equivalently, doubly periodic circle configurations on the plane) such that the

contacts graphs of both P and Q form a triangulation on each torus. Furthermore, suppose

that both ends of the slit are located at the center of a generalized circle and that every point

along the slit either lies on the boundary of or is enclosed inside of a generalized circle. Then

the contacts graph of the circle configuration (P,Q) is a triangulation of the H(1, 1) doubled

slit torus.

Remark 3.5. The key idea behind the proof is that the conditions guarantee that all the

interstice regions between the generalized circles are triangular and do not contain singular-

ities.
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Proof. It is first checked that all the faces of the contacts graph of (P,Q) are triangles (or

degenerate triangles). Clearly all the faces in just P and all the faces in just Q are triangles

since P and Q each form a triangulation on their respective torus. Hence, it is necessary to

check the faces at least one of whose vertices lies in both P and Q (namely, the slit).

First, let there be k circles C1, C2, . . . , Ck such that for all 1 ≤ i < k, the double circle Ci

is externally tangent to the double circle Ci+1. Then the slit goes from the center of C1 to

the center of Ck and passes through the centers of each of the circles. This forms k−1 bigons

corresponding to the tangencies between the double circles of the from Ci and Ci+1. Now,

consider the faces formed with at least one vertex on the slit and all the remaining (of which

there are at least one) vertices on the same slit torus. Note that these faces are completely

contained in a single slit torus, and thus must be contained in either the triangulation formed

by P or the triangulation formed by Q, as desired.

We now check the other condition for a triangulation, namely that any two triangles should

intersect in an edge, a single vertex, two vertices, or not at all. If both triangles belong to

the same slit torus, the result is clear since P and Q each triangulate their respective slit

tori. Suppose that one of the triangular faces is one of the k − 1 bigons formed by Ci and

Ci+1. Then the other face is either another of those bigons (in which case the intersection is

either empty or a single vertex) or the other face is a triangle whose sides are fully contained

in one of the slit tori (in which case the intersection is either an edge of the bigon, a single

vertex of the bigon, or empty).

Now, suppose that one triangle belongs to one slit tori and the other triangle belongs to

the other slit tori, and none of them are one of the k − 1 bigons. Then either the triangles

do not intersect at all, or they intersect in two points (namely the vertices of one of the k−1

bigons), or they intersect in a single point (the vertex of one of the bigons), or they share an

edge (that is a part of one of the bigons). This completes the proof of the proposition. □

Remark 3.6. A special case of the above result is when the slit connects the centers of two

externally tangent double circles.

This will be a useful result, as many of the circle packings that will be explored have a

triangulation as defined by the previous proposition.

4. Splitting Bigons

The topological properties of bigons, as defined in Definition 2.18, will be considered as

follows.

Definition 4.1. The associated loop defined by a bigon between V1 and V2 can be determined

by starting at V1, traversing an edge to V2, and then returning to V1 via the other edge.

Remark 4.2. The associated loop does not depend on whether one starts traversing at V1 or

at V2.
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Definition 4.3. A splitting bigon is a bigon whose associated loop contains exactly two

vertices in the triangulation and topologically disconnects the doubled slit torus into two

disjoint slit tori.

Consider the following lemma.

Lemma 4.4. Let there be an arbitrary splitting bigon between two points V1 and V2 in the

triangulation of a doubled slit torus. Then, after removing the vertices V1 and V2, the edges

between them, and the loops containing just V1 or just V2, the resulting graph contains exactly

two connected components.

Proof. Consider two arbitrary vertices A,B of the triangulation such that A ̸= V1, V2 and

B ̸= V1, V2. Suppose that the doubled slit torus is divided by the splitting bigon into two

different slit tori Γ1 and Γ2. Then A,B are each part of either Γ1 or Γ2, since neither lie on

the associated loop of the bigon.

If A,B ∈ Γ1 or A,B ∈ Γ2, then there exists a path along the triangulation from A to B

that does not pass through either V1 or V2 (otherwise, the same splitting bigon topologically

splits the slit tori A and B are on, which is impossible). If A and B belong to different

tori, then any path between them along the edges of the triangulation must contain a point

on the bigon (namely, either V1 or V2). Thus, after removing V1, V2 and all loops and edges

containing them, A and B become disconnected. This completes the proof of the lemma. □

Let B1 and B2 be two distinct splitting bigons that are both a part of T . Denote the two

points in the splitting bigon B1 as V1 and V2. A equivalence relation ∼ is set up with exactly

two classes among all other vertices in the triangulation such that X ∼ Y if and only if there

exists a path from X to Y not passing through V1 or V2. The two vertices belonging to the

bigon B2 must be part of the same equivalence class under ∼ by definition.

Consider the following second lemma.

Lemma 4.5. Suppose that the doubled slit torus is topologically split by the associated loop

of the splitting bigon B1 into two disjoint slit tori Γ1 and Γ2. Every point on the associated

loop of the other splitting bigon B2 lies on the same slit torus Γi, where i ∈ {1, 2}.

Proof. There are two cases, depending on how many vertices the two splitting bigons B1 and

B2 have in common. Note that by Remark 2.19, they either have one vertex in common or

none at all.

Case 1 (One common vertex). The two vertices of B2 are either of the form V1 and

V3 or of the form V2 and V3, where V3 ̸= V1, V2.

Let Γi be the slit torus (chosen out of Γ1,Γ2) containing V3. Suppose for the sake of

contradiction, that there was a point, not necessarily a triangulation vertex, X ∈ B2 on Γ3−i

(the other slit torus). Then, any path along the associated loop of B2 from X to V3 must

have passed through a point on the associated loop of B1. If it passed through V1, there
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is a completed loop V1 to X to V1 before V3 is reached, and so it is considered a separate

bigon between V1 and X. If it passed through V2, the bigon would contain three distinct

points on the triangulation (V1, V2, V3), which contradicts the given. There can not be any

other point of intersection Y ̸= V1, V2 between B1 and B2 or else Y would be a vertex of the

triangulation T , which is a contradiction since both B1 and B2 contain exactly two vertices

in T .

Case 2 (No common vertex). The two vertices defining B2 are of the form V3 and V4

such that {V1, V2} and {V3, V4} are disjoint.

If V3 and V4 belonged to distinct tori, then B2 and B1 would necessarily intersect at some

point X, which would belong to T . This is a contradiction since both B1 and B2 contain

exactly two vertices in T . Thus, V3 and V4 must belong to the same slit torus. Call this

slit torus Γi where i ∈ {1, 2}. Suppose for the sake of contradiction, that there was a point

X ∈ B2 on Γ3−i (the other torus). Then, any path from X to V4 would intersect B1 at either

V1 or V2. Without loss of generality, suppose it intersects at V1. This is a contradiction since

B2 cannot contain three distinct vertices of T (namely V3, V4, and V1). This completes the

proof of the lemma. □

Consider the following result.

Proposition 4.6. Let T be a triangulation of an H(1, 1) doubled slit torus. If B1 and B2

are two distinct splitting bigons that are both a part of T , then the associated loops of B1 and

B2 are topologically equivalent.

Proof. Divide the doubled slit torus along B1 to form two slit tori Γ1 and Γ2, as before. By

Lemma 4.5, there exists a slit torus Γi for 1 ≤ i ≤ 2 such that every point on the associated

loop of B2 lies on Γi. This allows one to cut the surface Γi along B2. If Γi did not disconnect,

then B2 is unable to disconnect the entire doubled slit torus as well, which contradicts the

fact that B2 is a splitting bigon. Therefore, cutting along B2 disconnects Γi into two surfaces

S1 and S2 with disjoint interiors such that S1#S2 = Γi. Without loss of generality, denote

the surface containing the points on the associated loop of B1 to be S1 and the other one to

be S2.

Then the genus of S2 is necessarily 1 as B2 divides the double torus into two slit tori since

it is a splitting bigon. Since the genus of Γi is also 1 and S1#S2 = Γi, it follows that the

genus of S1 is 0. Thus, S1 is homeomorphic to a sphere and has a trivial fundamental group.

Since the associated loops of both B1 and B2 fully lie on S1, the loops must be topologically

equivalent. This completes the proof of the proposition. □

Color the two holes of a doubled slit torus red and blue in some arbitrary order. Consider

the following lemma.

Lemma 4.7. Suppose that there are k distinct splitting bigons. Then, there exists a way to

order them as B1, B2, . . . , Bk such that for all 1 ≤ i ≤ k, Bi divides the doubled slit torus
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into two slit tori Ti,1 and Ti,2 with disjoint interiors such that Ti,1 contains the red hole, Ti,2

contains the blue hole, and there exist i − 1 other splitting bigons whose associated loop is

completely contained in Ti,1.

Proof. This result will be proven using induction on i.

Base Case. Suppose that i = 1. It will be shown that there exists a splitting bigon

B1 such that T1,1 does not contain the associated loop of any of the other splitting bigons.

Suppose, for the sake of contradiction, that no such B1 exists. Then, for all splitting bigons

X that split the doubled slit torus into T1 and T2 with T1 containing the red hole, there

exists some other splitting bigon X1 whose associated loop lies completely in T1. Similarly,

applying this idea to X1, it can be deduced that there must exist an X2 whose associated

loop is even closer to the red hole. Continuing this ad infinitum, there must exist an infinite

sequence X1, X2, . . . of distinct splitting bigons, which contradicts the finiteness of the total

number of splitting bigons.

Inductive Hypothesis. Suppose that for some 1 ≤ i ≤ k − 1, there exists a splitting

bigon Bi that divides the the doubled slit torus into two slit tori Ti,1 and Ti,2 such that Ti,1

contains the red hole and there exist i − 1 other splitting bigons whose associated loop is

completely contained in Ti,1.

Inductive Step. It will be shown that there exists a splitting bigon Bi+1 such that Ti+1,1

contains the associated loop of exactly i splitting bigons. Furthermore, i of these bigons can

be identified through the inductive hypothesis, namely B1, B2, . . . , Bi. Thus, it remains to

show that the associated loop of no other splitting bigon is contained in Ti+1,1.

Suppose, for the sake of contradiction, that no such Bk exists. Then, for all splitting

bigons X that split the doubled slit torus into T1 and T2 with T1 containing the red hole,

there exists a splitting bigon X1 ̸= Bj for any 1 ≤ j ≤ i whose associated loop lies completely

in T1. Similarly, applying this idea for X1, it is deduced that there must exist an X2 ̸= Bj

for any 1 ≤ j ≤ i whose associated loop is even closer to the red hole. Continuing this

ad infinitum, there must exist an infinite sequence X1, X2, . . . of distinct splitting bigons,

which contradicts the finiteness of the total number of splitting bigons. This completes the

inductive step and thus the proof of the lemma. □

This idea of ordering the bigons can be used as follows.

Proposition 4.8. The splitting bigons B1, B2, . . . , Bk, as per Lemma 4.7, divide the doubled

slit torus into k + 1 surfaces with disjoint interiors, namely two slit tori Γ′
1, Γ

′
2, and genus

zero surfaces Si for 1 ≤ i < k and Si such that Si is bounded by the bigons Bi and Bi+1 for

all i.

Proof. Suppose that the doubled slit torus is cut along Bi and Bi+1 for some 1 ≤ i < k.

Then three surfaces S1,S2,S3 are formed such that S1 contains the red hole, S2 has genus

zero, and S3 contains the blue hole, with Bi forming the boundary between S1 and S2 and
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Bi+1 forming the boundary between S2 and S3. Let Si = S2.

By Lemma 4.7, all the surfaces of the form Si must have disjoint interiors as there exists

no splitting bigon whose associated loop is contained in Si.

Now, suppose that B1 divides the doubled slit torus into T1,1 and T1,2, where T1,1 contains

the red hole; similarly, Bk divides the doubled slit torus into Tk,1 and Tk,2, where Tk,1 contains

the red hole. Then, after cutting along all the splitting bigons B1, B2, . . . , Bk, the surfaces

Si are formed as indicated previously, as well as Γ′
1 = T1,1 (which contains the red hole) and

Γ′
2 = Tk,2 (which contains the blue hole). This completes the proof of the proposition. □

Remark 4.9. The preceding results characterize the structure of all the splitting bigons in a

doubled slit torus. By Lemma 4.7, it can be seen that they can be ordered in a “line” from

one hole to the other and by Lemma 4.8, it can be seen that adjacent splitting bigons bound

a surface with genus zero.

The following lemma can also be shown, which will help to establish some of our uniqueness

results.

Lemma 4.10. Let T be a triangulation on a doubled slit torus, and let a splitting bigon con-

sisting of vertices V and V ′ divide the surface into two slit tori Γ1 and Γ2. Then there exists

a unique way to determine an unordered pair of subgraphs {T , T ′} such that T triangulates

slit torus Γ1, T ′ triangulates slit torus Γ2, and T ∪ T ′ = T .

Proof. Both V and V ′ must belong to both T , T ′. The edges, if any, connecting V to V ′, not

contained in the bigon, as well as any loops containing just V or just V ′, are each contained

in exactly one of Γ1 or Γ2. Otherwise, they must pass through V or V ′ or an additional third

vertex on the bigon, neither of which are possible by assumption.

It needs to be decided which of T and T ′ is to triangulate which of Γ1,Γ2. Without loss

of generality, assume that T is to triangulate Γ1 and T ′ is to triangulate Γ2. Since it may

be the other way around, the pair is described as being unordered.

If such an edge or loop is contained in Γ1, then it must be placed in T and not in T ′.

If such an edge or loop is contained in T2, then it must be placed in T ′ and not in T .

Lastly, all other vertices, edges, and loops are contained in exactly one of the two connected

components, and so must belong to T if they are part of Γ1 and T ′ otherwise. Therefore,

there is only one possible way to divvy up T into T and T ′. This completes the proof of the

lemma. □

These results can now be generalized to surfaces of higher genus.

Definition 4.11. A translation surface with genus g ≥ 2 is called slitted if it belongs in the

stratum H(1, 1, . . . , 1, 1) and is composed of g different tori (with up to two slits) connected

to one another sequentially.
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The definition of a splitting bigon can be generalized to an arbitrary slitted translation

surface.

Definition 4.12. A splitting bigon B in a slitted translation surface S is a bigon such that

if one cuts along the associated loop of B, the surfaces S1 ∪ S2 = S that are formed each

have genus at least one.

Remark 4.13. A doubled slit torus is an example of a slitted translation surface, and the

definition of a splitting bigon over the doubled slit torus matches the generalized definition.

Lemma 4.14. Let S be an arbitary slitted translation surface, and suppose that B1 and B2

are both splitting bigons of S. Then if B1 divides S into surfaces S1 and S2, every point on

the associated loop of B2 lies on Si for some choice i ∈ {1, 2}.

Remark 4.15. The proof of this result is almost the same as that of Lemma 4.5.

To characterize these splitting bigons, consider the following two lemmas, which generalize

Lemma 4.7 and Lemma 4.8.

Lemma 4.16. For some sequence of positive integers k1, k2, . . . , kg−1, the splitting bigons of

a slitted translation surface S can be ordered as B1,1, B2,1, . . . , Bk1,1, B1,2, B2,2, . . . , Bk2,2, B1,3,

. . . , Bkg−1,g−1 such that Bp,i represents a bigon whose associated loop splits S into a genus i

surface S1 and a genus g − i surface S2 such that all Bx,y where either y < i or both x < p

and y = i lie in S1 and all remaining other bigons lie in S2.

Proof. The result is shown by induction on g ≥ 2.

Base Case. The case of g = 2 yields g− 1 = 1, and so there is a single value k1 for which

the bigons are ordered B1,1, B2,1, . . . , Bk1,1 such that when S is divided along Bi,1, bigons of

the form Bj,1 for j < i lie on one slit torus, and bigons of the form Bj,1 for j > i lie on the

other slit torus. Therefore, the result follows from Lemma 4.7.

Inductive Hypothesis. Suppose that for some g − 1, the splitting bigons in all slitted

translation surfaces S ′ of genus g− 1 can be numbered as B1,1, B2,1, . . . , Bk1,1, B1,2, B2,2, . . . ,

Bk2,2, B1,3, . . . , Bkg−2,g−2 such that Bp,i represents a bigon whose associated loop splits S ′ into

a genus i surface S ′
1 and a genus g− 1− i surface S ′

2 such that all Bx,y where either y < i or

both x < p and y = i lie in S ′
1 and all remaining other bigons lie in S ′

2.

Inductive Step. The result will be proven for a slitted translation surface S of genus g.

The idea is to consider a subsurface S ′ of S consisting of the first g − 1 slit tori connected

together. Then S ′ is a slitted translation surface of genus g−1 such that the splitting bigons

of S ′ are all splitting bigons of S. By the inductive hypothesis, these can be numbered as

B1,1, B2,1, . . . , Bk1,1, B1,2, B2,2, . . . , Bk2,2, B1,3, . . . , Bkg−2,g−2 subject to the given condition.

Now, consider the remaining kg−1 splitting bigons of S that are not part of S ′. Cutting

along any of these bigons results in an S2 surface of genus 1. The hole in the slit torus S2
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can be colored red and the bigons B1,g−1, B2,g−1, . . . , Bkg−1,g−1 can be ordered based upon

their proximity to the red hole, where B1,g−1 is the farthest and Bkg−1,g−1 is the closest (this

is possible by using the same method as in the proof of Lemma 4.7).

Then, consider an arbitrary splitting bigon of S denoted by Bp,i that splits S into S1 and

S2, where S1 has genus i and S2 has genus g − i. Suppose first that i = g − 1. Then all

bigons of the form Bx,y with y < g− 1 will clearly lie in S1, and by the ordering of bigons of

the form Bx,g−1 stated above, all x < p and y = g− 1 will also lie in S1. However, all bigons

Bx,y with x > p and y = g − 1 will lie in S2. Now, suppose that i < g − 1. The ordering

then works by the inductive hypothesis for all bigons of the form Bx,y with y ̸= g − 1. But

the bigons with y = g − 1 also must all lie in S2, since they are not splitting bigons of S ′.

Therefore, the ordering satisfies the given condition, completing the inductive step. □

Lemma 4.17. The splitting bigons {Bx,y, x ≤ ky}, as per Lemma 4.16, divide the slitted

translation surface into 1 +
g−1∑
i=1

ki surfaces with disjoint interiors, each of which is bounded

by at most two splitting bigons and has genus either zero or one.

Proof. Suppose that the slitted translation surface is cut along two consecutive bigons Bp,q

and Br,s in the ordering given by Lemma 4.16, such that both s = q and r = p + 1 or

s = q + 1, p = kq, r = 1. Then three surfaces S1,S2,S3 are formed such that S1 has genus

q, S3 has genus g − s, S2 has genus s− q, and S1#S2#S3 = S.

But s = q or s = q + 1, and so s − q ∈ {0, 1}. Therefore, surfaces of the form S2 above

necessarily have genus either zero or one. Consider all of the surfaces of the form S2 and

number them in order S1, S2, . . . , Sk−1 where k =
g−1∑
i=1

ki is the total number of splitting

bigons. By Lemma 4.7, all the surfaces of the form Si must have disjoint interiors as there

exists no splitting bigon whose associated loop is contained in Si.

Now, suppose that B1,1 divides the doubled slit torus into a surface T of genus one and

another surface of g − 1; similarly, Bkg−1,g−1 divides the doubled slit torus into a surface of

g− 1 and another surface T ′ of genus one. Then, after cutting along all the splitting bigons,

the surfaces Si are formed as indicated previously, as well as T and T ′. Therefore, there are

k− 1 + 2 = k+ 1 total surfaces with disjoint surfaces, each bounded by at most two bigons,

whose connected sum is S, and each of which has genus either zero or one. This completes

the proof of the proposition. □

5. Uniqueness Results

Suppose that there exists a circle packing P on the doubled slit torus with an associated

triangulation T . Furthermore, suppose that the packing contains two double circles C1 and

C2 such that the slit connects the centers of the two circles.



20 NILAY MISHRA

Figure 12. An illustration of the circle packing P . Here, C1 is the green

double circle and C2 is the yellow double circle. The two copies of each double

circle on the different slit tori have differing radii. The circles C1 and C2 are

tangent at two distinct points, which are colored red.

Remark 5.1. Note that the two copies of C1 on the different slit tori need not have the same

radius, as illustrated in Figure 12. Similarly, the two copies of C2 need not have the same

radius, only the same center.

Note that the bigon connecting the vertices corresponding to C1 and C2 must be splitting

since the two double circles topologically divide the doubled slit torus into two slit tori.

Number the k splitting bigons as B1, B2, . . . , Bk as per Lemma 4.7.

Definition 5.2. For a circle packing Q containing C1 and C2 (which are fixed in place) of

the same doubled slit torus with the same associated topological triangulation T , the order

i of Q is defined to be the unique 1 ≤ i ≤ k such that the bigon Bi consists of the vertices

v1 and v2, corresponding to C1 and C2, respectively, in Q.

Consider the following lemma.

Lemma 5.3. Let P ′ be a circle packing containing C1 and C2 of the doubled slit torus on

the same triangulation T . If the order of P is equal to the order of P ′, then P ′ is equal to P

or is equal to a hyperelliptic involution of P .

Proof. Denote the shared order of both packings as i and let V1, V2 ∈ T be the vertices cor-

responding to circles C1 and C2 respectively in both circle packings. Then V1 and V2 make

up the bigon Bi in T .

After removing V1 and V2, the edges between them, and the loops containing just V1 or

just V2, exactly two connected components are left by Lemma 4.4. As before, an equivalence

relation ∼B is set up on all the vertices of T except for V1 and V2 with two equivalence

classes such that X ∼i Y holds if and only if there exists a path from X to Y along T

passing through neither V1 nor V2.

Now, suppose that Bi divides the doubled slit torus into two tori Ti,1 and Ti,2. By Lemma

4.10, there exists a unique unordered pair of subgraphs {T , T ′} such that T triangulates Ti,1



ON THE UNIQUENESS OF CERTAIN TYPES OF CIRCLE PACKINGS ON TRANSLATION SURFACES 21

in circle packing P and T ′ triangulates Ti,2 in circle packing P , and T ∪ T ′ = T .

In circle packing P ′ then, either T triangulates Ti,1 and T ′ triangulates Ti,2, or T ′ triangu-

lates Ti,1 and T triangulates Ti,2. Let T1 be the element of {T , T ′} that actually triangulates

Ti,1 in P ′ and let T2 be the other element.

Extend the surfaces Ti,1 and Ti,2 (which are both slit tori) to tori Ti,1 and Ti,2 by adding

in a surface of genus zero. Then T1 triangulates Ti,1 and T2 triangulates Ti,2, as there is

simply an extra bigon face being added and none of the other conditions for triangulation

are broken.

Now, separate circle packings P ′
1 and P ′

2 can be considered on Ti,1 and Ti,2 with associated

triangulations T1 and T2 respectively. Note that both P ′
1 and P ′

2 contain the two circles C1

and C2, which are fixed in place on the doubled slit torus. By Corollary 2.30, it is known

that the remaining circles on each of the extended tori (and thus the slit tori as well) must

be fixed in place. This implies that the entire circle packing is fixed. Therefore, the only

way to vary the entire circle packing P ′ is to swap T1 as being T or T ′, which is exactly the

hyperelliptic involution, as desired. This completes the proof of the proposition. □

This lemma can be used to prove the following theorem, our first main uniqueness result.

Theorem 5.4. Suppose that a circle packing P with an associated triangulation T is fixed

on an H(1, 1) doubled slit torus that contains two externally tangent double circles C1 and

C2, such that the slit connects the centers of these two circles. Then, there are only a

finite number of possibilities for a second, distinct circle packing P ′ with the triangulation T

containing C1 and C2 (which are fixed in place).

Proof. Consider the vertices v1 and v2 in T corresponding to C1 and C2, respectively, as per

the circle packing P ′. Then, there is a splitting bigon determined by v1 and v2. Suppose

that this splitting bigon is of the form Bi, where 1 ≤ i ≤ k. Then there are k possibilities

for i.

Suppose the value of i is fixed. By Proposition 5.3, there are at most two possibilities for

P ′. Therefore, there are at most 2k possibilities for the circle packing P ′, of which 2k − 1

are distinct from the original packing P . This is a finite number, as desired. □

Definition 5.5. Define the number of splitting bigons in a given triangulation T to be d(T ).

Remark 5.6. The proof of the previous theorem establishes an upper bound of 2 · d(T ) − 1

possibilities for P ′ ̸= P also containing C1 and C2. A lower bound for the number of

possibilities for P ′ ̸= P is zero, achieved when d(T ) = 1 and the subgraphs T and T ′ are

equal.

This uniqueness result can be generalized to surfaces with genus g > 2, using Lemma 4.16

and Lemma 4.17. This requires the following definition.
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Definition 5.7. For a circle packing Q of the same slitted translation surface with the same

triangulation T containing circles of the form Cj,1 and Cj,2 (which are fixed in place along

the jth slit in sequential order, which connects the centers of the two circles), the order i of

Q with respect to the jth slit is defined to be the unique 1 ≤ i ≤ kj such that the bigon Bi,j

consists of the vertices v1 and v2, corresponding to Cj,1 and Cj,2, respectively, in Q.

Suppose that there exist two circle packings P and P ′ on the same slitted translation

surface each containing externally tangent double circles Cj,1 and Cj,2, which are fixed in

place on the jth slit (that connects the centers of the two circles). Suppose further that P

and P ′ have the same associated topological triangulation T . Consider the following lemma.

Lemma 5.8. Let B and B′ be two arbitrary splitting bigons in the shared triangulation T ,

whose associated loops bound surfaces SP and S ′
P with respect to the packings P and P ′,

respectively. Then, the genus of SP is equal to the genus of S ′
P .

Proof. Consider any circle packing Q on T and the surface SQ bounded by the associated

loops of bigons B and B′. It suffices to show that the genus of SQ is invariant. Let v1

and v2 correspond to the vertices of B and v3 and v4 correspond to the vertices of B′ (note

that v1, v2, v3, v4 need not all be distinct). Then consider all vertices and edges on a path

in T from a vertex vi to vj, where i ∈ {1, 2} and j ∈ {3, 4}. Along with B and B′, they

form a subgraph T ′ in T . This subgraph T ′ forms a triangulation of SQ is invariant of the

actual packing Q. Therefore, the Euler characteristic of T ′ is invariant of Q. But since T ′

triangulates SQ, the Euler characteristic of SQ is invariant. It follows that the genus of SQ

is invariant, since χ(SQ) = 2− 2g(SQ). This completes the proof of the lemma. □

This idea can be used to show the following theorem.

Theorem 5.9. Suppose that S is a genus g slitted translation surface with g > 1 and that P

is a circle packing containing Cj,1 and Cj,2 (for all 1 ≤ j ≤ g−1), such that the double circles

are fixed in place along the jth slit sequentially, which connects their centers. Then, there are

only a finite number of circle packings P ′ ̸= P on S with the same associated triangulation

T that also contain all the double circles of the form Cj,1 and Cj,2 fixed in place along each

slit.

Proof. Number the splitting bigons of P in order as {Bx,y, y ≤ kx} for k1, k2, . . . , kg−1. Con-

sider the splitting bigon corresponding to the first slit in P ′. Since this bigon divides S into

a surface of genus one and a surface of genus g − 1, there are two cases.

Case 1. The splitting bigon corresponding to the first slit in P ′ is of the form Bx,1 for

x ≤ k1. It will be shown that the bigon corresponding to the jth slit in P ′ must be of the

form Bx,j for x ≤ kj via induction on j.

Base Case. If j = 1, the result is clear by the case assumption.

Inductive Hypothesis. Suppose that the splitting bigon corresponding to the jth slit
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in P ′ is of the form Bx,j for some j < g − 1.

Inductive Step. Let B be the splitting bigon corresponding to the j + 1th slit in P ′.

By Lemma 5.8, B needs to correspond to a bigon in P that bounds a surface of genus one

with the splitting bigon Bx,j corresponding to the jth slit. Therefore, B = By,j−1 for some

y or B = By,j+1 for some y. However, splitting S along the associated loop of B must result

in a genus j + 1 surface and a genus g − 1− j surface as B corresponds to the j + 1th slit.

Therefore, B = By,j−1 is impossible, forcing B = By,j+1, which completes the inductive step.

Therefore, there are
g−1∏
i=1

ki ways to choose which splitting bigons correspond to which slit

in this case.

Case 2. The splitting bigon corresponding to the first slit in P ′ is of the form Bx,g−1 for

x ≤ kg−1. It will be shown that the bigon corresponding to the jth slit in P ′ must be of the

form Bx,g−j for x ≤ kg−j via induction on j.

Base Case. If j = 1, the result is clear by the case assumption.

Inductive Hypothesis. Suppose that the splitting bigon corresponding to the jth slit

in P ′ is of the form Bx,g−j for some j < g − 1.

Inductive Step. Let B be the splitting bigon corresponding to the j+1th slit in P ′. By

Lemma 5.8, B needs to correspond to a bigon in P that bounds a surface of genus one with

the splitting bigon Bx,g−j corresponding to the jth slit. Therefore, B = By,g+1−j for some y

or B = By,g−1−j for some y. However, splitting S along the associated loop of B must result

in a genus j + 1 surface and a genus g − 1− j surface as B corresponds to the j + 1th slit.

Therefore, B = By,g+1−j is impossible, forcing B = By,g−1−j, which completes the inductive

step.

Note that every assignment of a splitting bigon to a slit in this case constitutes a topologi-

cal reversal of the resulting triangulation as per the assignment in the previous case, and vice

versa. Therefore, there are at most
g−1∏
i=1

ki ways to choose which splitting bigons correspond

to which slit in this case (with there being zero new ways if the triangulation is topologically

invariant under reversal).

Once the splitting bigons corresponding to each slit in P ′ are determined explicitly, sub-

graphs T1, T2, . . . , Tg can be formed such that Ti triangulates the ith slit torus sequentially

in order and
g⋃

i=1

Ti = T .

Note that T2, T3, . . . , Tg−1 are determined uniquely. For given splitting bigons B and B′

that correspond to the consecutive ith slit and i+1th slit, consider all the vertices and edges

of paths from a vertex in B to a vertex in B′, in addition to the vertices and edges of the

bigons themselves, as in the proof of Lemma 5.8. This creates a unique triangulation Ti+1.

This process works for all 1 ≤ i < g − 1.

Suppose all the splitting bigons and elements of T2, . . . , Tg−1 from T are eliminated. Two

unordered connected components, denoted T1 and Tg, are left, both of which triangulate a
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slit torus. Note that T1 and Tg can both be swapped if they are different. Suppose that they

are and there exist two distinct triangulations T and T ′ of a genus one slit torus such that

T1 = T , Tg = T ′ or T1 = T ′, Tg = T . Since:

T ∪ T2 ∪ T3 ∪ · · · ∪ Tg−1 ∪ T ′ = T = T ′ ∪ T2 ∪ T3 ∪ · · · ∪ Tg−1 ∪ T

and T is distinct from T ′, we have that T2∪T3∪ . . .∪Tg−1, a triangulation of the connected

sum of the g−2 tori in the middle, must be topologically invariant under reversal. Therefore,

the two embeddings of T in S formed by swapping T and T ′ must be reversals of each other.

But the duplicity of reversals has already been taken care of in Case 2 above, so these do

not create more possibilities for P ′ that have not already been counted while determining

the assignment of splitting bigons to slits.

Consider the slit tori Γ1,Γ2, . . . ,Γg such that Γ1#Γ2# . . .#Γg = S. Suppose now that

there exists a tuple (T1, T2, . . . , Tg) such that Ti triangulates Γi. For each i, the slit torus Γi

can be extended to the torus Γi by adding in either one or two surfaces of genus zero. Then

Ti triangulates Γi for all 1 ≤ i ≤ g, as there are simply either one or two extra bigon faces

being added and none of the other conditions for triangulation are broken.

Now, consider separate circle packings P ′
1, P

′
2, . . . , P

′
g aon Γ1,Γ2, . . . ,Γg, respectively, with

associated triangulations T1, T2, T3, . . . , Tg respectively. Note that each packing P ′
i contains

either two double circles or four double circles that are fixed in place. By Corollary 2.30, it

is known that the remaining circles on each of the extended tori (and thus the slit tori as

well) must be fixed in place. This implies that the entire circle packing is fixed.

Since there are at most 2 ·
g−1∏
i=1

ki ways to choose which splitting bigons correspond to

which slit as well as an orientation with respect to reversal (as per the casework), there

are at most 2 ·
g−1∏
i=1

ki possibilities for the circle packing P ′ since there is exactly one tuple

(T1, T2, T3, . . . , Tg) up to orientation with respect to reversal. One of these possibilities is

P ′ = P , so there are at most 2 ·
g−1∏
i=1

ki − 1 other possibilities for P ′ ̸= P . Since this bound is

finite, the proof of the theorem is complete. □

Remark 5.10. If g = 2 is plugged into the upper bound of 2·
g−1∏
i=1

ki−1 derived in the preceding

proof, Theorem 5.4 is recovered (in particular, the bound in Remark 5.6).

6. Research Directions

The goals of this research project can be put into two categories: existence and uniqueness.

Existence refers to showing that a circle packing exists for an arbitrary triangulation, under

certain conditions. Uniqueness refers to showing that no two circle packings can have the

same contacts graph and be fundamentally distinct with respect to the surface.

In this paper, we have made some progress towards showing the uniqueness of certain
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types of circle packings on translation surfaces. Below are some ideas regarding next steps

for continuing to investigate this.

• Investigating uniqueness for circle packings on doubled slit tori with k double circles

C1, C2, . . . , Ck, as in the proof of Proposition 3.4, for which each adjacent pair of

which is externally tangent, fixed in place.

• Investigating uniqueness for circle packings in the H(2) stratum, where the slit has

exactly one endpoint. More generally, investigating uniqueness for circle packings on

a surface with a cone point of order greater than 1.

• Investigating uniqueness for circle packings of arbitrary square-tiled surfaces as in

2.15. This has the added benefit that many non-squared-tiled translation surface can

be thought of as deformations of square-tiled ones as in Remark 2.16.

One of the entry points to existence is to answer the following question, extending the

Koebe-Andreev-Thurston theorem to genus 2 translation surfaces.

Question 6.1. Given an arbitrary triangulation T of a genus 2 translation surface M , can

one always find a circle packing of some M ′ with contacts graph T such that M and M ′ lie

in the same stratum?

A similar question can be posed regarding square tilings on such surfaces, which are in

many respects quite similar to circle packings.

Question 6.2. Given an arbitrary translation surface M , can one always find a square tiling

of some other translation surface formed by applying an affine transformation to M?

This was inspired by a result by Cong (see [2]), showing that while the translation surface

formed by a regular octagon can never be square-tiled, there exists an affine transformation

such that the resulting surface can be square-tiled.

Another question regarding the uniqueness of circle packings is whether or not the upper

bounds described in §5 can always be achieved.

Question 6.3. Does there exist a distinct circle packing of every order 1 ≤ i ≤ k, as in the

proof of Theorem 5.4?

This question can also be generalized to genus g > 2, as follows.

Question 6.4. Does there exist a distinct circle packing of every tuple of orders (x1, x2, . . . , xg−1)

with respect to each of the g − 1 slits sequentially where 1 ≤ xi ≤ ki for all 1 ≤ i ≤ g − 1,

as in the proof of Theorem 5.9?
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