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Abstract. Elliptic curves are an important class of Diophantine equations. We study certain
special solutions of elliptic curves called Heegner points, which are the traces of images under
modular parametrizations of complex multiplication points in the complex upper half-plane. We
prove, for pairs of elliptic curves with isomorphic Galois representations, a general congruence
of stabilized formal logarithms. This is done by first showing that the isomorphism of Galois
representations implies a congruence of stabilized modular forms and then translating these to
the congruence of formal logarithms using Honda’s theorem relating formal groups of elliptic
curves to L-series and the modular parametrization. We use this congruence to show that
examples of elliptic curves with analytic and algebraic rank 1 propagate in quadratic twist
families.
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1. Introduction

An elliptic curve is a projective, nonsingular curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We will consider elliptic curves E over Q. Over rationals, we can reduce to a Weierstrass
equation of the form

E : y2 = x3 +Ax+B.

Recall that the rational points on E form a group E(Q). Mordell’s theorem states that this
group is finitely generated, i.e. E(Q) ∼= E(Q)tors × Zr, where r ≥ 0. We call r the rank of the
elliptic curve.

There is also an analytic rank associated to each elliptic curve. Let ap = p + 1 − |E(Fp)|,
where E(Fp) denotes the elliptic curve reduced mod p. Define

(1.1) Lp(E, s) =


(1− app

−s + p · p−2s) E has good reduction at p

1− p−s E has split multiplicative reduction at p

1 + ps E has nonsplit multiplicative reduction at v

1 E has additive reduction at v

.

Then, the L-series of the curve is given by the Euler product
∏

p Lp(E, s). We define the analytic
rank of the curve to be the order of the pole of the L-function at s = 1, i.e.

ran = ords=1 L(E, s).
1
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From its Euler product definition, L(E, s) can be viewed as a generating function of E
encoding information on the number of Fp (or mod p) points on E. In analogy with Dirichlet L-
series, L(E, s) is known to have a functional equation relating L(E, s) and ϵ·L(E, 2−s) for some
ϵ ∈ {±1}; this is a consequence of the modularity theorem of Wiles [22], Taylor-Wiles [21] and
Breuil-Conrad-Diamond-Taylor [3]. Thus, in the same philosophy of the Dirichlet class number
formula [4] for L(χ, 1) describing the unit group of the number field cut out by the Dirichlet
character χ, the Birch and Swinnerton-Dyer (BSD) conjecture predicts that the behavior of
L(E, s) at the central point s = 1 reveals information about the rank r of E(Q).

Conjecture 1.1 (BSD Conjecture). The Mordell-Weil rank and analytic rank are equal, i.e.
r = ran(E).

The original conjecture from Birch and Swinnerton-Dyer’s paper ([1]) was the following as-
ymptotic

f(P ) ∼ C(logP )r(E),

where P =
∏

p
p

#E(Fp)
and as P →∞.

Mazur’s torsion theorem [18, p. 242] tells us the possible torsion subgroups of E(Q), and that
the maximal order of a point is at most 12. Additionally, Nagell-Lutz [18, p. 240] tells us that
all torsion points must be integral, and that the y-coordinate of a torsion point must divide the
discriminant, so the torsion subgroup is computable by a finite case check. Therefore knowing
r “ineffectively” solves the Diophantine equation. It turns out that r is difficult but ran(E)
is much simpler to compute, so if this conjecture were true it would ineffectively solve elliptic
curves.

In practice however the only known ways to find r are in the r = 0, 1 case and involve
producing explicit rational points coming from Heegner points (see [9], [13, Section 3.6]). For
an imaginary quadratic field K/Q (called the Heegner field) satisfying the so-called Heegner
hypothesis with respect to E:

for every prime ℓ dividing the conductor of N , ℓ is split in K

the Heegner point is a specific point in E(K). When this point is nontorsion, then we can say
r = 0 or 1 (precisely, r = 1−ϵ

2 where ϵ is the sign appearing in the functional equation of L(E, s).
In our paper, we prove this conjecture over a wide class of elliptic curves by considering the

formal logarithm and the Heegner point.
Given an elliptic curve, we can construct the formal group by using the change of variables

z = −x
y , w = − 1

y , so that the point at infinity O ∈ E becomes (z, w) = (0, 0). We can then write

the neighborhood of the group about O as a formal group in z. From the formal group we can
then construct a differential form

ω = FX(0, T )−1dT

satisfying the equation
ω ◦ F (T, S) = ω(T ).

Integrating this form gives the formal logarithm, which is a power series in z that is also a
homomorphism from the formal group of the elliptic curve to the additive formal group:

logE : Ê → Ĝa.

The formal logarithm has the special property that its value at a point is nonzero if and only
if the point is nontorsion. Thus to show the Heegner point is nontorsion, it suffices to show its
formal logarithm is nonzero, which then (by the work of Gross-Zagier and Kolyvagin) implies
the curve has analytic rank 1 and thus satisfies the BSD conjecture.

We examine elliptic curves which have isomorphic mod pr Galois forms. In Section 2, we
show that mod pr Galois representations being isomorphic implies the stabilized modular forms
are congruent mod pr. In Sections 3 and 4 we show this congruence translates to the congruence
of formal logarithms. To show this, we use Honda’s theorem and the modular parametrization
from the modularity theorem to use the coordinate q on the modular curve. Plugging in Heegner
points, the stabilizations produce Euler-like factors in the congruence.
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One application of our congruence is the following:

Theorem 1.2. Let N be the conductor of E. Suppose E′ = Ed (the quadratic twist of E by d)

where (N, d) = 1. Let Lp(E, 1) be as in (1.1) and let L̃p(E, 1) be as in the statement of Theorem
4.6. Then

(1.2) L̃2(E, 1) ·

∏
ℓ|d

Lℓ(E, 1)

 · logÊ(PE) ≡ L̃2(E
d, 1) · logÊd(PEd) (mod 2).

Proof. Recall that E[2] ∼= Ed[2], and Lℓ(E
d, 1) = 1 for ℓ | d. Then, applying 4.5 to E,Ed gives

the theorem. □

Remark 1.3. This is a generalization of [13, Theorem 1.16], which handles the 2 split in K (i.e.
DK ≡ 1 mod 8) case (where DK < 0 is the fundamental discriminant of the Heegner imaginary
quadratic field K).

We can use this theorem to show that the formal logarithm of Heegner points are nonzero by
showing that both sides are congruent to 1 mod 2. By the work of Kolyvagin [12] and Gross-
Zagier [10] this is enough to show that the curve has rank 0 or 1 and satisfies BSD.

2. Galois representations and modular forms of elliptic curves

Let E/Q : y2 = x3 + Ax + B be an elliptic curve. In this section, we will recall some
crucial facts on the Galois representations attached to E as well as properties of the modular
form attached to E. Recall E[pn] ∼= (Z/pn)⊕2. Let TpE = lim←−n

E[pn] ∼= Z⊕2
p be the p-adic

Galois representation of E. This means that GQ = Gal(Q/Q) acting on TpE gives a group
homomorphism

ρE : GQ → Aut(TpE) ∼= GL2(Zp).

The point [+]E is given by polynomials in (x, y) over Q, and GQ commutes with polynomial
over Q operations, so σ(P1[+]EP2) = σ(P1)[+]Eσ(P2) for all σ ∈ GQ, where [+]E is the group
law of E (i.e. the action is linear, so ρE is linear). Note that

ρE,r := ρE mod pr : GQ → Aut(E[pr]) ∼= GL2(Z/pr).
Let N be the conductor of E throughout. Let

fE(q) =

∞∑
n=1

anq
n ∈ Z JqK ,

where for a prime ℓ,

(2.1) aℓr =


1 + ℓr −#Ẽ(Fℓr) ℓ ∤ N
1 ℓ||N, split multiplicative reduction

(−1)r ℓ||N nonsplit multiplicative reduction

0 ℓ2|N

.

Let n =
∏s

i=1 ℓ
ei
i denote the prime factorization of n, an =

∏s
i=1 aℓeii

. When we wish to

emphasize the dependence of an on the elliptic curve E, we will write an(E) instead of an.

Definition 2.1. We define the N -stabilization of the modular form fE attached E (by [22],
[21], and [3]) to be

f
(N)
E (q) =

∞∑
n=1,(n,N)=1

anq
n.

Definition 2.2. For any f =
∑∞

n=1 bnq
n ∈ ZJqK, define the “ℓ-depletion operator” as

f (ℓ)(q) :=

∞∑
n=1,(ℓ,n)=1

bnq
n,
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which in the case of elliptic curves is

f(q)− bℓf(q
ℓ) + ℓf(qℓ

2
),

and let f (ℓt)(q) = f (ℓ)(q) for any t ≥ 1.

Proposition 2.3. If
∏s

i=1 ℓi is the squarefree radical of N , then

f
(N)
E (q) =

((
. . .
(
f
(ℓ1)
E

)(ℓ2)
. . .

)(ℓs−1)
)(ℓs)

(q).

Proof. This follows from Definition 2.1 above and Equation 2.3) below. □

Definition 2.4. Let ℓ be a good prime of E (i.e. ℓ ∤ N), and let αℓ, βℓ be the roots of the
characteristic polynomial of Frobℓ

T 2 − aℓT + ℓ.

Also define

f
(ℓ+)
E (q) = fE(q)− αℓfE(q

ℓ), f
(ℓ−)
E (q) = fE(q)− βℓfE(q

ℓ).

Recall the definition of semisimplification V ss of a representation V : Taking a Jordan-Holder
series

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

where each Vi is a subrepresentation and Vi/Vi−1 is simple then

V ss =
n⊕

i=1

Vi/Vi−1.

Theorem 2.5. Let E,E′ be two elliptic curves over Q with conductors N,N ′ and let r ∈ Z≥0

such that

(2.2) ρssE,r
∼= ρssE′,r ⇐⇒ f

(NN ′)
E (q) ≡ f

(NN ′)
E′ (q) (mod prZJqK).

The key for the proof is first to reduce to the following statement.

Proposition 2.6. For all primes ℓ ∤ NN ′,

f
(NN ′)
E (q) ≡ f

(NN ′)
E′ (q) (mod prZJqK) ⇐⇒ aℓ(E) ≡ aℓ(E

′) (mod pr)

Proof. The left hand side implies the right hand side because if the functions are congruent the
coefficients must be the same. The converse is harder. We use the following fact.

Let N,N ′ be the conductors of E,E′. For ℓ ∤ NN ′ (“good ℓ”), we have

(2.3) aℓr = aℓ · aℓr−1 − ℓaℓr−2 .

This recursion follows from the Weil conjectures for elliptic curves over Fℓ. From this recursion
it is clear that

aℓ(E) ≡ aℓ(E
′) (mod pr) =⇒ aℓk(E) ≡ aℓk(E

′) (mod pr)

for all good primes ℓ, so then all of the coefficients of the stabilized modular forms are congruent
as desired. □

We now need another key result, which is the essential link between ρE and fE(q). Suppose
E is an elliptic curve over any field of characteristic prime to p. For every r ∈ Z≥0, we have an
alternating bilinear pairing

⟨·, ·⟩ : E[pr]× E[pr]→ µpr ,

satisfying the following “Galois equivariance property”: for all σ ∈ GQ = Gal(Q/Q), we have

⟨σ(P ), σ(Q)⟩ = σ(⟨P,Q⟩).
Moreover, the Weil pairing is nondegenerate: suppose P ∈ E[pr]. Then

⟨P,Q⟩ = 0, ∀Q ∈ E[pr] =⇒ P = [0],

where [0] ∈ E[pr] is the identity element.
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Note if ρ : G→ GL2(Z/pr) is our representation, then

⟨σ(P ), σ(Q)⟩ = ⟨ρ(σ)(P ), ρ(σ)(Q)⟩ = ⟨P,Q⟩det(ρ(σ)).

Proposition 2.7. Recall the GQ-representation ρE,r. Then for all ℓ not dividing the conductor
of E,

det(ρE(Frobℓ)) = ℓ.

Proof. Take e1, e2 to be a basis of E[pr] ∼= (Z/pr)⊕2. We then have

⟨e1, e2⟩det(ρE(σ)) = ⟨σ(e1), σ(e2)⟩ = σ(⟨e1, e2⟩).

Plugging in σ = Frobℓ gives

⟨e1, e2⟩det(ρE(σ)) = ⟨e1, e2⟩ℓ.
Therefore ℓ = det(ρE(Frobℓ)).

□

We now cite the following results to establish Theorem 2.5.

Theorem 2.8 (Eichler-Shimura, [17]). For all ℓ ∤ NN ′, there are elements Frobℓ ∈ GQ (“Frobe-
nius at ℓ”) such that

Trace(ρE(Frobℓ)) = aℓ.

Theorem 2.9 (Brauer-Nesbitt Theorem, [2]). Let G be a group, let R be any ring, and let
ρ, ρ′ : G→ GLn(R) be two representations of G. Then

ρss ∼= ρ′ ss ⇐⇒ charρ(T ) = charρ′(T ).

Here

charρ : G→ R[T ]

is defined element-wise.

Proof of Theorem 2.5. For the =⇒ direction, recall that since ρ ∼= ρ′ we have Trace(ρ) =
Trace(ρ′). Now, we are done by Theorem 2.8 and Proposition 2.6.

For the ⇐= direction, by Theorem 2.8 and Proposition 2.7, we have

charρ(Frobℓ)(T ) = T 2 − Trace(Frobℓ)T + det(Frobℓ)

= T 2 − aℓ(E)T + ℓ ≡ T 2 − aℓ(E
′)T + ℓ (mod pr).

However, by the Chebotarev density theorem and the continuity of charρ, we have

charρ(g) ≡ charρ′(g) (mod pr) ∀g ∈ GQ.

So by Theorem 2.9, we are done. □

3. Congruences of modular forms

We have already seen what happens when the Galois representations of two elliptic curves
are congruent modulo pr. In general, Galois representations ρE,r are irreducible (i.e. have no
nontrivial subrepresentation). It is known that ρE,∞ is always irreducible. In this section, we
will further study consequences of congruences of modular forms, in particular what happens
when the Galois representation ρE : GQ → GL2(Zp) is reducible modulo pr, i.e. ρE,r is reducible.
Recall this means

ρE,r =

(
χ1 •
0 χ2

)
,

where

χi : GQ → (Z/pr)×

are Galois characters. (Characters on a Galois group.)
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Remark 3.1. Here the χi are characters on GQ, but we want to view them as Dirichlet characters

χi : (Z/Ni)
× → Q×

below. For this, note that

χi : GQ → (Z/pr)×,
so χi factors through a finite abelian quotient of GQ, i.e. GQ ↠ Gal(F/Q) for some finite
extension F/Q such that Gal(F/Q) is abelian. (In other words, F is an “abelian extension of
Q”.)

Recall that the Kronecker-Weber theorem gives that all abelian extensions F/Q are contained
in Q(µM ) for some M where µM denotes the group of Mth roots of unity.

In summary, we can view

χi : (Z/Ni)
× ∼= Gal(Q(µNi)/Q) ↠ Gal(F/Q)→ (Z/pr)×

for some minimal Ni (i.e. the minimal Ni such that F ⊂ Q(µNi)). Thus we can view χi as a
Dirichlet character of conductor Ni.

Under the projection

GQ ↠ Gal(Q(µNi)/Q) ∼= (Z/Ni)
×,

the element Frobℓ is sent to ℓ (mod Ni) (for (ℓ,Ni) = 1). Thus χi(Frobℓ) = χi(ℓ).

Definition 3.2. Define the mod pr Teichmüller character

ωr : GQ → (Z/pr)×

by

σ(ζ) = ζωr(σ) ∀ζ ∈ µpr .

Note that ωr is defined for every r, and the ωr satisfy the following compatibility for all
r ≤ r′ :

ωr ≡ ωr′ (mod pr).

The cyclotomic character χ : GQ → Z×
p is defined by

χ(σ) = (ω1(σ), ω2(σ), . . . , ωr(σ), ωr+1(σ), . . .) ∈ lim←−
r≥0

(Z/pr)× = Z×
p .

By Remark 3.1 applied to the character ωr, we have

ζωr(Frobℓ) = Frobℓ(ζ) = ζℓ,

and thus

(3.1) ωr(Frobℓ) = ωr(ℓ),

where the left-hand side is viewed as a Galois character, and the right-hand side as a Dirichlet
character.

Proposition 3.3. Let N be the conductor of E. We have N1N2 | N .

Reducible also means

(3.2) ρssE,r = χ1 ⊕ χ2,

is a direct sum of characters. We will see that analogously to Theorem 2.5, this “essentially”
implies

fE(q) ≡ Eχ1,χ2
2 (mod prZJqK)

where Eχ1,χ2
2 is some Eisenstein series.

Remark 3.4. fE(q) can be thought of as the generating function of the representation ρE by
(2.1). Similarly, Eχ1,χ2

2 can be thought of as the generating function of the representation
χ1 ⊕ χ2. Essentially, we are showing that congruences of representations imply congruences of
their associated generating functions.

Proposition 3.5. We have that

χ1χ2 ≡ ωr (mod pr).
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Proof. Note that in the setting of this section (i.e. ρssE,r = χ1 ⊕ χ2), det(ρE,r) = χ1χ2.
Recall

ρE,r : GQ → GL2(Z/pr).

From the Weil pairing, det(ρE,r) = ωr. Let us give some details: Recall E[pr] = (Z/pr)⊕2.
Fix a (Z/pr)-basis e1, e2 of E[pr], without loss of . Write ζ = ⟨e1, e2⟩ ∈ µpr . (One can check
that ζ has to be primitive, since the Weil pairing is surjective.) For all σ ∈ GQ, we have

⟨ρE,r(σ)(e1), ρE,r(σ)(e2)⟩ = ⟨σ(e1), σ(e2)⟩ = σ(⟨e1, e2⟩)

where the first equality follows from the definition of ρE,r and the second follows from the Galois
equivariance property of the Weil pairing ⟨·, ·⟩ : E[pr]×E[pr]→ µpr . But the right-hand side is

σ(⟨e1, e2⟩) = σ(ζ) = ζωr(σ).

Now using the bilinearity of the Weil pairing, the left-hand side of the above displayed equation
is equal to ζdet(ρE,r(σ). Write

ρE,r(σ) =

(
a b
c d

)
∈ GL2(Z/pr).

Then

ρE,r(σ)(e1) = ae1 + ce2, ρE,r(σ)(e2) = be1 + de2.

So

⟨ρE,r(σ)(e1), ρE,r(σ)(e2)⟩ = ⟨ae1 + ce2, be1 + de2⟩ = ⟨e1, e2⟩ad−bc = ζdet(ρE,r(σ)).

So we get the determinant identity involving ωr.
Now equating the two identities, we get the proposition. □

Definition 3.6. Define a differential operator acting on q-series θ = qd
dq = q · d

dq , i.e.

θ

( ∞∑
n=0

cnq
n

)
=
∑
n=0

ncnq
n.

Note that θ kills the constant term.

Corollary 3.7. For all j ≥ 1, we have

θjf
(Np)
E (q) ≡ θj(E

χ1,χ
−1
1

2 )(Np)(q) (mod pr).

If moreover b0 ≡ 0 (mod pr), then the above congruence holds for j = 0 as well.

Definition 3.8 (p-adic uniform topology). Suppose F/Qp is a finite extension and R = F JqK
is the the usual power series ring. Then we define a metric on R as follows: given f =∑∞

n=0 anq
n, g(q) =

∑∞
n=0 bnq

n

|f(q)− g(q)| = sup
n
|an − bn|p

where | · |p is the p-adic absolute value on F . The topology on R induced by this metric is
called the p-adic uniform topology (because convergence in this topology is the p-adic notion of
“uniform convergence”, i.e. uniform coefficient-wise convergence).

If OF /Zp is the valuation ring of F (i.e. the elements with |x|p ≤ 1), then p = {|x|p < 1} is
a prime ideal which contains p. Then

OF /p = Fpn

for some integer n ≥ 1. This is called the residue field.

Proposition 3.9. For any finite extension F/Qp, the residue field OF /p is finite.
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Proof. Zp is compact with respect to the p-adic topology. If OF /Zp is finite, then as a Zp-
module, OF is isomorphic (and homeomorphic, i.e. the isomorphism and its inverse are both
continuous) to Z⊕n

p for some n ≥ 1. This latter space is a compact by Tychonoff’s theorem, so
OF is compact with respect to its p-adic topology.

Choose a set of representatives S in OF of OF /p. Then {a+ p}a∈S is an open cover of OF .
So by compactness, there is a finite subcover, i.e. a finite subset S0 ⊂ S such that {a+ p}a∈S0

covers OF . This means that S0 (mod p) = OF /p, which implies the latter is finite. □

Fermat’s little theorem for Fp involves the order #Fpn = pn − 1; this is divisible by numbers
other than p and p− 1 in general.

Any field k has a ring homomorphism Z→ k. This has some kernel I, which gives an injection
Z/I ↪→ k. Since k is a field, then Z/I is a field, then I is a prime ideal, and so is either (0) or (p)
for some prime p. If the former, we say k has characteristic 0, and if the latter, characteristic p.

(The exponent below in the limit would be pm(pn − 1) instead as m→∞.)

Proposition 3.10. Given a q-series F (q) =
∑∞

n=0 cnq
n ∈ ZpJqK with coefficients in some finite

extension F/Qp, if the order of the residue field OF is pn then (in the p-adic uniform topology)

lim
m→∞

θp
m(pn−1)(F (q)) = F (p)(q).

Here F (p) is p-stabilization as in Proposition 2.3.

Proof. Note that

θp
m(pn−1)(F (q)) =

∞∑
i=0

ip
m(pn−1)ciq

i =

∞∑
i=0

(ip
n−1)p

m
ciq

i.

Clearly, if p | i, then limm→∞(ip
n−1)p

m
= 0. If p ∤ i, then by Lagrange’s theorem applied

to the multiplicative group of OF we have ip
n−1 ≡ 1 (mod p). Then the lifting the exponent

lemma tells us that (ip
n−1)p

m ≡ 1 (mod pm) so we have that limm→∞(ip
n−1)p

m
= 1.

Therefore

lim
m→∞

θp
m(pn−1)(F (q)) =

∑
i≥0,p∤i

cnq
n = F (p)(q).

□

Recall q = exp(2πiτ) where τ is coordinate on the upper half plane H+ = {Im(τ) > 0}.
q = exp(2πiRe(τ)) · exp(−2π Im(τ)) =⇒ |q| = exp(−2π Im(τ)). Thus H+ = {|q| < 1}. Note
that τ =∞ ⇐⇒ q = 0, so q can be viewed as the “coordinate at ∞”.

We will show q can be taken as a natural coordinate on the formal Ê (over Zp) of E. Recall
that H+ has a left action by SL2(R), and Γ0(N) ⊂ SL2(Z) given by matrices with bottom
left entry congruent to 0 mod N . Let Y0(N)(C) = Γ0(N)\H+, and there is way to add finitely
points (“compactify”), including the point at infinity ∞, to get X0(N)(C).

Recall Shimura’s theorem ([17]): there is an algebraic curveX0(N) overQ such thatX0(N)(C)
is equal to the set in the previous paragraph.

Recall the modularity theorem due to Wiles ([22]), Taylor-Wiles ([21]) and Breuil-Conrad-
Diamond-Taylor ([3]): there is a nonconstant (and thus surjective) morphism of algebraic curves
over Q

(3.3) πE : X0(N) ↠ E

mapping ∞ to the point at infinity ∞E on E (which is the identity element in the group law).
Assume now that p ∤ N , so that E has good reduction at p and thus a minimal good integral

model E+ at p. Moreover, X0(N) has a model X0(N)+ over Zp due to Morita ([14]). From the
Néron mapping property, (3.3) extends to a map of algebraic curves over Zp

(3.4) πE : X0(N)+ → E+.

LetX0(N)∞ denote the formal completion ofX0(N)+ at the point at infinity∞ ∈ X0(N)+(Fp).
Recall coordinate q from the Tate curve Gm/qZ over ZpJqK can be viewed as a coordinate on
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X0(N)∞. Let Ê denote the formal group of E+/ZZp. Then (3.4) gives a map of formal neigh-
borhoods

(3.5) πE : X0(N)∞ → Ê

where Ê is the usual formal group. If this map is an isomorphism, then the coordinate q on the
left-hand side gives a coordinate on the right-hand side Ê. We will in fact show that (3.5) is an
isomorphism in Theorem 4.1.

4. Congruences of formal logarithms

In this section, we will use the results of the previous sections in order to prove our main
theorem (Theorem 4.6) on congruences between formal logarithms of Heegner points. Once
again let N be the conductor of the elliptic curve E. By the modularity theorem ([22], [21],
[3]), we have a nonconstant morphism of curves πE : X0(N) → E over Q. Here X0(N) is the
canonical model of the modular curve attached to the congruence subgroup

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Then E has a “Néron model” E+ over Z[1/N ]; this means E+ satisfies

E+ ×Spec(Z[1/N ]) Spec(Q) = E.

Also, X0(N) has a model X0(N)+ over Z[1/N ] by theorems on representability of moduli
problems. Then analogously,

X0(N)+ ×Spec(Z[1/N ]) Spec(Q) = X0(N).

By smoothness over Zp, the morphism πE : X0(N)→ E extends to a morphism

π+
E : X0(N)+ → E+,

in other words, the polynomials defining πE which a priori had coefficients in Q, actually have
coefficients in Z[1/N ].

Now assume p ∤ N (p is “good reduction for E”). Then the p-adic completion of Z[1/N ] is
lim←−n

Z[1/N ]/pn = lim←−n
Z/pn = Zp. So p-adically completing π+

E (i.e. extending scalars along

Z[1/N ] ⊂ Zp), we get a nonconstant morphism

π+
E,p : X0(N)+p → E+

p ,

where X0(N)+p is the p-adic completion of X0(N)+, E+
p is the p-adic completion of E+.

Additionally the point at infinity ∞ ∈ X0(N) is mapped to the point at infinity in E by πE .
(Recall the point at infinity in E is the identity element in the group law of E.)

By taking the formal completion at ∞ on both sides of π+
E,p : X0(N)+p → E+

p , then we get a
map

(4.1) π+
E : (X0(N)+p )∞ → Ê+

p

where the right-hand side is the usual p-adic formal group of E, and (X0(N)+p )∞ is the “formal
completion at ∞”, which is a formal scheme of dimension 1 (we can think of it informally as an
infinitesimal neighborhood of ∞). In fact, one can show

(X0(N)+p )∞
∼= Spf(ZpJqK)

where q is the same q appearing in q-expansions of modular forms. We we will “push forward”
this coordinate q to E along (4.1).

Theorem 4.1. For any E with good reduction at p, the map (4.1) is an isomorphism of formal
schemes over Spf(ZpJqK).
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Proof. Let fE be the normalized newform of level N and weight 2 attached to E by modularity
([22], [21], [3]), and let fE(q) =

∑∞
n=1 anq

n be its q-expansion. Let ωE = f(q)dqq be the 1-form

attached to fE . It suffices to show that the ramification index of π+
E at the point at infinity

∞ ∈ X0(N)+(Zp) is 1, which is equivalent to showing that ωE does not vanish at ∞. However,

we have ωE = fE(q)
dq
q =

(
q + a2q

2 + · · ·
) dq

q = (1 + a2q + · · · ) dq. Since q takes the value 0 at

∞, we see that ωE(∞) = dq(∞); since dq is a generator of the sheaf of differentials at ∞ we
have dq(∞) ̸= 0, which gives the desired nonvanishing.

□

The consequence is that the coordinate q on the LHS of (4.1) induces a coordinate on the

RHS. In other words, we get a coordinate q on the p-adic formal group Ê+
p . We can apply

Honda’s theorem with respect to this coordinate.
Recall given two elliptic curves E,E′ over Q with good reduction at p, and isomorphic Galois

representations E[pr] ∼= E′[pr], we proved f
(NN ′)
E (q) ≡ f

(NN ′)
E′ (q) (mod pr). Recall θ = qd/dq.

This implies

θj(f
(NN ′)
E (q)) ≡ θj(f

(NN ′)
E′ (q)) (mod pr)

for every j ∈ Z≥0. (Here, θj is the j-fold composition of θ.) Letting j = −1 + pm(p − 1) and
taking the limit m→∞, then the above congruence tends to a congruence∑

n=1,(n,pNN ′)=1

an
n
qn ≡

∑
n=1,(n,pNN ′)=1

bn
n
qn (mod pr),

where fE(q) =
∑∞

n=1 anq
n, fE′(q) =

∑∞
n=1 bnq

n.

We know from above that q can be used as a coordinate on Ê+
p . What does Honda’s theorem

say: It says that (modulo certain assumptions on E)
∑∞

n=1 anq
n is the logarithm of some formal

group isomorphic to Ê+
p . In other words, rewriting Ê+

p in terms of the coordinate q, the formal

logarithm logÊ+
p
is
∑∞

n=1 anq
n.

Note that Theorem 4.1 gives an isomorphism of formal schemes

(X0(N)+p )∞
∼= Ê+

p , (X0(N
′)+p )∞

∼= Ê′+
p .

However, there is a modular curve X0(NN ′), and we can check that there are natural maps

(4.2) X0(NN ′)+ → X0(N)+, X0(NN ′)+ → X0(N
′)+

over Z[1/NN ′].

Lemma 4.2. The induced maps of formal schemes (X0(NN ′)+p )∞ → (X0(N)+p )∞ and

(X0(NN ′)+p )∞ → (X0(N
′)+p )∞ over Zp are isomorphisms.

Proof. From the modular interpretations of X0(N)+, X0(N
′) and X0(NN ′)+, we have that

X0(NN ′)+ → X0(N)+ and X0(NN ′)+ → X0(N
′)+ are finite étale maps of curves over Zp. Now

the statements immediately follow from the fact that the residue fields of X0(N)+, X0(N
′)+

and X0(NN ′)+ at ∞ are all Fp.
□

As a consequence of Theorem 4.1 and Lemma 4.2, we get an isomorphism of formal schemes
over Zp

Ê+
p
∼= Ê′+

p .

For simplicity now, let logE := logÊ+
p
. From the above discussion, we have

Theorem 4.3. We have the following congruence of functions on Ê+
p
∼= Ê′+

p

(4.3) log
(pNN ′)
E (q) ≡ log

(pNN ′)
E′ (q) (mod pr).
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Proof. Given two curves E,E′ with isomorphic Galois representations, we have that their sta-
bilized modular forms are congruent by Equation 2.2. Thus, we can apply Proposition 2.15 to
get that ∑

n≥1,(n,pNN ′)=1

an
n
qn ≡

∑
n≥1,(n,pNN ′)=1

bn
n
qn (mod pr),

where the coordinate q is from X0(N)+p . Because of 4.1, we can parameterize the group Ê+
p

using this coordinate. Write both sides in terms of
∑∞

n=1
an
n qn and

∑∞
n=1

bn
n qn (meaning we

can also make a change of variables q 7→ qℓ
i
for various ℓ, etc.).

Now, in the context of Honda’s Theorem 5: E, our elliptic curve over Q, gives us two formal
groups: F = F (x, y) from Ê and G some formal group defined by L(E, s). Honda says that G
really is a formal group (nontrivial), and there is an isomorphism: by definition

ξ : F
∼−→ G, ξ ∈ ZSJqK, F (ξ(x), ξ(y)) = ξ(G(x, y))

which has an inverse ξ−1 ∈ ZJtK such that

G(ξ−1(x), ξ−1(y)) = ξ−1(F (x, y)).

Let F ′, G′ be the corresponding objects for E′ in place of E above.
In our setting, logF = logÊ , so we have

(4.4)
∞∑
n=1

an
n
qn = logG = logF ◦ξ = logÊ ◦ξ

in QJqK.

Corollary 4.4. We have the following formula in terms of logÊ ◦ξ(q) = logG. Define log
(pNN ′)

Ê
by

log
(pNN ′)

Ê
◦ξ(q) = log

(pNN ′)
G ,

or equivalently,

log
(pNN ′)

Ê
= log

(pNN ′)
G ◦ξ−1.

Then

log
(pNN ′)

Ê
≡ log

(pNN ′)

Ê′ (mod pr).

Proof. From the isomorphism E[pr] ∼= E′[pr], we have an ≡ bn (mod pr) for all (n, pNN ′) = 1,
which formally implies

log
(pNN ′)
G (q) ≡ log

(pNN ′)
G′ (q) (mod prZpJqK).

By (4.4) and the formulas for stabilization, we have log
(pNN ′)
F = log

(pNN ′)
G , and thus

log
(pNN ′)
F (ξ(q)) ≡ log

(pNN ′)
F ′ (ξ(q)) (mod prZJqK).

□

□

Let bn = an
n . Note that bn is also multiplicative since an, n are. From 2.3 then

bℓr =
aℓr

ℓr
=

aℓ
ℓ
· aℓr−1

ℓr−1
− aℓr−2

ℓr−2 · ℓ
= bℓ · bℓr−1 −

bℓr−2

ℓ
.
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We then see that

logE(q)−
aℓ
ℓ
logE(q

ℓ) +
1

ℓ
logE(q

ℓ2) =
∞∑
i=1

bn

(
qn − qnℓ +

1

ℓ
qnℓ

2

)
=
∑

i≥1,ℓ∤i

biq
i + biℓq

iℓ − bibℓq
iℓ +

∑
i≥1

(
biℓ2 − bℓbiℓ +

bi
ℓ

)
qiℓ2

=
∑

i≥1,l∤i

biq
i +
∑
i≥1

0 · qiℓ2 = log
(ℓ)
E (q).

Notice that if q is a Heegner point of conductor 1 ([13, Sections 3.4 and 3.6]), and ℓ splits in K,
then logE(q

ℓ) = logE(q), so we get

log
(ℓ)
E (q) = logE(q) ·

(
1− aℓ

ℓ
+

1

ℓ

)
.

If q is a Heegner point of conductor p or p2 ([9]), then a similar calculation as in loc. cit. implies

log
(p)
E (q) = log(q) · L̃p(E, 1).

Definition 4.5. Recall the definition of the Euler factor of L(E, 1) at ℓ:

Lℓ(E, 1) :=


1− aℓ(E)/ℓ+ 1/ℓ ℓ ∤ N
1− 1/ℓ ℓ||N, ℓ split multiplicative reduction

1 + 1/ℓ ℓ||N, ℓ nonsplit multiplicative reduction

1 ℓ2|N

.

Define a modified Euler factor at p

L̃p(E, 1) :=


Lp(E, 1) p split in K

1− ap(E)2 p−1
p2(p+1)

− 1
p2

p inert in K

1− ap(E)p−1
p2
− 1

p2
p ramified in K

.

Theorem 4.6. Let E,E′ be elliptic curves over Q with conductors N,N ′. Suppose E[pr] ∼=
E′[pr]. Letting P be the Heegner point of conductor 1 when p is split in K, conductor p2 when
p is inert in K and conductor p when p is ramified in K ([9]), we have
(4.5)L̃p(E, 1)

∏
ℓ|NN ′/M

Lℓ(E, 1)

·logÊ(PE) ≡ ±

L̃p(E, 1)
∏

ℓ|NN ′/M

Lℓ(E
′, 1)

·logÊ′(PE′) (mod pr)

where

M =
∏

ℓ|NN ′,aℓ(E)≡aℓ(E)′ mod pr

ℓordℓ(NN ′).

Remark 4.7. Here, PE = πE(y) where y is the H/K trace of the Heegner point on the modular

curve X0(N) defined over the Hilbert class field H of K = Q(
√
D) (D < 0), and πE : X0(N)→

E is the modular parametrization.

Remark 4.8. Note that P does not necessarily lie in the analytic radius of convergence for logÊ ,
and so logÊ(P ) is not necessarily p-adically integral. However, logÊ([p·Lp(E, 1)]E(P )) converges
if

p ∤ N.

This is because (from Silverman)

p · Lp(E, 1) = 1 + p− ap(E) = #E(Fp),

and also from Silverman, we have

[E(Qp) : Ê(pZp)] = #E(Fp).
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This last fact follows from the reduction modulo p exact sequence

0→ Ê(pZp)→ E(Qp)
red−−→ E(Fp)→ 0.

We always know that P ∈ E(Qp), so

[p · Lp(E, 1)]E(P ) ∈ Ê(pZp),

and thus logÊ([p · Lp(E, 1)]E(P )) ∈ pOCp makes sense. In the p split in K case of (4.5),

we are thus comparing two elements of OCp :
1
p logÊ([p · Lp(E, 1)]E(P )) · · · and 1

p logÊ′([p ·
Lp(E

′, 1)]E′(P )) · · · . When p is inert or ramified in K, similar reasoning combined with (2.3)
also shows that both sides of (4.5) are elements of OCp .

Remark 4.9. Here is a nice observation for computationally verifying Theorem 1.2. Recall that
p = 2 in this setting. By Honda’s theorem, we can substitute logÊ(q) for

∑∞
n=1

an
n qn. Now

note that if q ∈ 2 · OC2 (which will be the case when we plug in q = −x/y where (x, y) are the
coordinates of [2 · L2(E, 1)]E(P ) where P is the Heegner point), then

1

2

∞∑
n=1

an(E)

n
qn ≡ a1(E)

2
q +

a2(E)

22
q2 =

1

2
q +

a2(E)

4
q2 (mod 2OC2).

The same is true for Ed.

Remark 4.10. The sign ± in (4.5) appears because there is some sign ambiguity in defining the
Heegner point on a given elliptic curve. In particular, the sign might be different for E and E′.

Remark 4.11. A heuristic for the identity (4.5) is that “log” is a p-adic substitute for the BSD
L-value L(E, 1). ρE ∼= ρE′ (mod pr) (this means E[pr] ∼= E′[pr] as a Gal(Q)-module), then
we expect L(E, 1) ≡ L(E′, 1), because the Euler factors away from pNN ′ are congruent. I.e.,
pretend that L(E, 1) is a product of Euler factors

(
1− aℓ(E)ℓ−s + ℓ1−2s

)
(the Euler factor of

L(E, s) at ℓ if ℓ ∤ N). If ℓ||N , then the Euler factor is 1 ∓ ℓ−s for split/nonsplit multiplicative
reduction, and is 1 if ℓ2|N i.e. additive reduction. Recall ρE ≡ ρE′ (mod pr) implies aℓ(E) :=
TraceρE (Frobℓ) ≡ TraceρE′ (Frobℓ) =: aℓ(E

′) (mod pr) if ℓ ∤ pNN ′. This congruence implies
that the Euler factors of L(E, 1) and L(E′, 1) at ℓ are congruent. However, the Euler product
formula does not hold at s = 1.

Modularity (Wiles, Taylor-Wiles, et al.): Given E/Q, the generating function fE(q) is actu-
ally a modular form (holomorphic function on H+ = {Im(τ) > 0} with a Γ0(N)-transformation
property) of weight 2 and L(E, s) = L(fE , s).

Here, “(pNN ′)” is the stabilization operator we defined in Definition 2.1. Note: the actual
logE does not quite appear in the above Theorem. But when we plug in certain special points
(“Heegner points”) y into the above congruence, we will get a relation like

log
(pNN ′)
E (y) = (some “Euler-like factor”) · logE(y).

Another caveat is that in order to plug in y, we need y to belong to Ê+
p and Ê′+

p , which
by [18, Chapter VII] means that y (mod p) = 0. This might not always happen with Heegner
points. Heegner points in general always belong to E(Qp). Recall however, that if E has good
reduction at p, we have an exact sequence ([18, Chapter VII])

0→ Ê+
p (Cp)→ E(Cp)

red−−→ Ẽ(Fp)→ 0,

where Ẽ is E (mod p), third arrow is reduction map.

Remark 4.12. Note that by the above exact sequence, multiplying anything in E(Cp) by

[#Ẽ(Fp)]E (in the group law on E) results in something in Ê+
p (Cp). So precomposing both

sides of (4.3) with [#Ẽ(Fp)]E , we do get a congruence of functions E(Cp).
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5. Appendix: Chebotarev density

For a finite Galois group G, we give G the discrete topology (every element is an open set).
Recall that for almost all ℓ (i.e. those primes which are unramified), the Frobenius element

Frobℓ ∈ G (more precisely, a conjugacy class) is well-defined. We have the following extremely
important theorem.

Theorem 5.1 (Chebotarev). Let X ⊂ G be a conjugation-invariant subset. Then the density
of primes ℓ such that Frobℓ ∈ X is equal to #X/#G.

Corollary 5.2. {Frobℓ}ℓ ⊂ G is dense.

Proof. From the fact that {Frobℓ}ℓ is conjugation-invariant, which along with the Chebotarev
density theorem implies that every element of G is Frobℓ for some ℓ, we can deduce that {Frobℓ}ℓ
is dense. □

6. Example of Thereom 1.2

We consider the elliptic curve

E = 37a2 : y2 + y = x3 − x.

The curve is rank one, with conductor N = 37. The field

K = Q(
√
−7)

satisfies the Heegner hypothesis.
This gives a Heegner point of P = (0, 0) with |E(F2)| = 5 and 5P = (1/4,−5/8) giving

t = −x(5P )
y(5P ) = 2

5 .

Consider a quadratic twist by d = 53. We use the following code to compute the left-hand
side of 1.3:

1 y = E.heegner_point(D)

2 p1 = y.point_exact () * E.base_extend(GF(2)).cardinality ()

3 z = -p1[0]/p1[1]

4 L_2 = (E.reduction (2).cardinality ())/2

5 Ll = 1

6 for l in range(1, d+1):

7 if ZZ(l).is_prime () and d%l == 0:

8 Ll *= (E.reduction(l).cardinality ())/l

9 logMod2 = 0

10 modular_form = E.anlist (10)

11 for i in range(1, 9):

12 logMod2 += modular_form[i] * z**i/ (i)

13 print(L_2 *Ll * logMod2)

This returns that

L2(E, 1) ·
∏
l|d

Lℓ(E, 1) · logÊ(PE) ≡ 1 (mod 2).

For the right hand side, we can compute

1 Ed = EllipticCurve (’37a1 ’).quadratic_twist (53)

2 D = -7

3 y = Ed.heegner_point(D)

4 p1 = y.point_exact (150) * Ed.base_extend(GF(2)).cardinality ()

5 z = -p1[0]/p1[1]

6 L_2 = (Ed.reduction (2).cardinality ())/2

7 logMod2 = 0

8 modular_form = Ed.anlist (10)

9 for i in range(1, 9):

10 logMod2 += modular_form[i] * z**i/ (i)

11 print(L_2 * logMod2 % 2)
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As expected, both sides are congruent to 1 (mod 2), so we conclude that PE and PEd are both
nontorsion, and thus E,Ed both have analytic and arithmtic rank 1.
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