
Computing Truncated Metric Dimension of Trees

Paul Gutkovich, Zi Song Yeoh

December 8, 2022

Abstract

Let G = (V,E) be a simple, unweighted, connected graph. Let d(u, v)
denote the distance between vertices u, v. A resolving set of G is a subset
S of V such that knowing the distance from a vertex v to every vertex in
S uniquely identifies v. The metric dimension of G is defined as the size
of the smallest resolving set of G. We define the k-truncated resolving
set and k-truncated metric dimension of a graph similarly, but with the
notion of distance replaced with dk(u, v) := min(d(u, v), k + 1).

In this paper, we demonstrate that computing k-truncated dimension
of trees is NP-Hard for general k. We then present a polynomial-time
algorithm to compute k-truncated dimension of trees when k is a fixed
constant.

1 Introduction

For any set of three non-collinear points in the Euclidean plane, any point in
the plane can be determined by its distances to the points in the set. In general,
in d-dimensional space any set of d+1 linearly independent points allows us to
determine any point by only knowing distances to those points.

If the Euclidean space is replaced by graphs, the problem becomes more
challenging. Our task is to find the smallest set of vertices in a graph such that
any point can be uniquely determined based on its distances to the vertices in
the set. The size of this smallest set is called the graph’s metric dimension. For
a positive integer k, we define k-truncated metric dimension, which is a similar
concept, with the exception that the usual distance metric is replaced by the
k-truncated distance metric. For two vertices u, v in a graph, their k-truncated
distance, denoted dk(u, v), is defined as min(d(u, v), k + 1).

A lot of previous work has been done on analyzing metric dimension (see
[10] for a survey on current results). In this paper, our main focus will be on
algorithms in computing truncated metric dimension of trees.

Computing metric dimension of trees is known to be easy (doable in linear-
time); see [3, 5, 11, 12] for example. In contrast, less is known about algo-
rithms for k-truncated metric dimension. It is also known that computing the
k-truncated metric dimension for a general graph is NP-complete [6]. For trees,

1

there exists a polynomial-time algorithm to compute the 1-truncated metric di-
mension (also known as adjacency dimension) of a tree based on dynamic pro-
gramming [1]. We show that for general values of k, there is no polynomial-time
algorithm for computing k-truncated metric dimension of trees unless P = NP.
In contrast, we show that for any constant k, there is a polynomial-time algo-
rithm for computing k-truncated metric dimension of trees.

In Section 2, we provide basic definitions and notations that will be used
throughout the paper. In Section 3, we prove that computing k-truncated metric
dimension is NP-hard for general values of k. In Section 4, we show that if k is a
fixed constant, there is a polynomial-time algorithm for computing k-truncated
dimension of trees.

2 Preliminary Definitions and Notations

Throughout this paper, we let G = (V,E) be a simple, undirected, connected
graph, and n = |V |. For any two vertices u, v ∈ V , define the graph distance
d(u, v) to be the number of edges in the shortest path between u and v. For a
positive integer k, we define the k-truncated distance dk(u, v) = min(d(u, v), k+
1). We make some preliminary definitions that will be used throughout the
paper.

Definition 2.1 (k-close, k-far, and k-dominated). For two vertices u, v ∈ V ,
we say that u is k-close to v if d(u, v) ≤ k, and u is k-far from v otherwise.
We say a vertex u is k-dominated by a set S ⊆ V if it is k-close to some vertex
v ∈ S.

Definition 2.2 (k-distinguishing vertex). We say a vertex w k-distinguishes
vertices u and v if dk(u,w) ̸= dk(v, w). We call w a k-distinguishing vertex of
(u, v).

Definition 2.3 (k-truncated (dominating) resolving set). A subset S ⊆ V is
called a k-truncated resolving set of G if for any u, v ∈ V , there exists some ver-
tex x ∈ S that k-distinguishes u and v. We also define a k-truncated dominating
resolving set of G to be a set S′ that satisfies the following conditions:

• S′ is a k-truncated resolving set of T .

• Every element of V is k-dominated by S′.

Definition 2.4 (k-truncated metric dimension). We define the k-truncated
metric dimension of G as the size of the smallest k-truncated resolving set of
G. The k-truncated metric dimension of a graph G is denoted as dimk(G).
We define the minimum k-truncated dominating resolving set of G to be the
smallest k-truncated dominating resolving set of G.

2

3 NP-Hardness of Computing Truncated Met-
ric Dimension on Trees

Given that computing metric dimension of general graphs is hard, it is no sur-
prise that computing k-truncated metric dimensions in general graphs is also
hard. It has been shown that computing the k-truncated metric dimension for
a general graph is NP-hard [6].

In this section, we will show that computing k-truncated metric dimension
of general trees is NP-hard for general values of k.

Theorem 3.1. Unless P = NP, for any constant c > 0, there is no algorithm
that computes k-truncated metric dimension on trees in O(nc) time for all k ≤ n.

Throughout this section, let fk(T) denote the size of the smallest k-truncated
dominating resolving set of T . For technical reasons, it would be easier to
deal with fk(T). The two quantities fk(T) and dimk(T) (the truncated metric
dimension of T) differ by at most 1.

Lemma 3.2. For any tree T and positive integer k, we have dimk(T) ≤ fk(T) ≤
dimk(T) + 1.

Proof. Since every k-truncated dominating resolving set of T is automatically a
k-resolving set of T , we get dimk(T) ≤ fk(T). Let R be a minimal k-truncated
resolving set of T . We have two cases.

• Case 1: There exists a vertex a ∈ V (T) such that d(a, x) > k for
all x ∈ R.

In this case, at most one such vertex a can exist, because if two such
vertices a and b exist, then dk(a, x) = dk(b, x) = k + 1 for all x ∈ R,
contradicting the definition of R. Thus, if we define M = R ∪ {a}, then
M will be a k-truncated dominating resolving set. Hence, fk(T) ≤ |M | =
dimk(T) + 1.

• Case 2: For all vertices a ∈ V (T), there exists some x ∈ R such
that d(a, x) ≤ k.
In this case, R satisfies both conditions for a k-truncated dominating re-
solving set, so fk(T) ≤ |R| = dimk(T).

In both cases, we get fk(T) ≤ dimk(T) + 1.

In order to prove NP-hardness, we reduce our problem to 3-dimensional
matching, which is known to be NP-hard.

Definition 3.3 (3-Dimensional Matching). Let m be a positive integer and let
X,Y, Z be pairwise disjoint sets of integers with size m. Let U be a subset of
X×Y ×Z. Every element in U is of the form (xi, yi, zi), where xi ∈ X, yi ∈ Y ,
zi ∈ Z. The 3-dimensional matching problem is the problem of computing the
largest W ⊆ U such that for any (xi, yi, zi), (xj , yj , zj) ∈ W , we have xi ̸=
xj , yi ̸= yj , zi ̸= zj .

3

We will require the following NP-hardness result.

Theorem 3.4. [9] Approximating 3-dimensional matching to a multiplicative
factor of 95

94 is NP-hard.

We now prove Theorem 3.1.

Proof of Theorem 3.1. We will prove this by reduction from the 3-dimensional
matching problem. Fix an instance of the 3-dimensional matching problem,
i.e. let m be a positive integer, and let X,Y, Z be pairwise disjoint subsets of
{1, 2, . . . ,m} with size n. Let U be a subset of X × Y × Z. Let M be the
maximum number of disjoint elements of U .

Let r = |U |, and let Si = {xi, yi, zi} be the ith element of U for i ∈
{1, 2, . . . , r}. We may assume without loss of generality r > 2 and r−M ≥ 2 (the
latter assumption can be made by appending an independent instance whose
answer is at least 2 less than the number of triples). Let k = 2m+ 2. Let T be
a tree with root u, with children u1, u2, . . . , ur. Let Ti be the subtree rooted at
ui. For every i ∈ {1, 2, . . . , r}, construct Ti as follows:

• Let wi,1, wi,2, . . . wi,2k be vertices such that wi,1 is the root of Ti (i.e.
wi,1 = ui) and wi,j is connected to wi,j+1 for all 1 ≤ j ≤ 2k − 1.
Let ai,1, ai,2, ai,3 be the distinct elements of Si. Create vertices xi,1,1,
xi,1,2, . . . , xi,1,ai,1+1 such that xi,1,1 is a child of wi,ai,1 and xi,1,j+1 is the
child of xi,1,j for all 1 ≤ j ≤ ai,1. Repeat this process for ai,2, ai,3. For
brevity, define gi,c := xi,c,ai,c+1 for c ∈ {1, 2, 3}.

After T is constructed, let R be a smallest k-truncated dominating resolving
set of T . For i ∈ {1, 2, . . . , r}, define pi := |Ti ∩ R|. Note that pi ≥ 1 for all
i, because there must be an element of R within distance k of wi,2k, implying
there must be an element of R in Ti.

Claim 3.5. We have |R| ≥ 2r −M .

Proof. Assume for contradiction that |R| < 2r −M , i.e. 2r − |R| > M . First,
note that

∑
i pi = |R| if u ̸∈ R and

∑
i pi = |R| − 1 if u ∈ R. Because pi ≥ 1

for all i, there must be at least 2r − |R| values of i such that pi = 1. From our
assumption, more than M values of i satisfy pi = 1. Without loss of generality,
assume that p1 = p2 = · · · = pM+1 = 1.

Consider some subtree Ti, where i ∈ {1, 2, . . . ,M + 1}. It has only one
marked vertex vi (a vertex that is inR), which must be within distance k of wi,2k.
This implies that vi ∈ {wi,k, wi,k+1, . . . , wi,2k}. For any possible vi, and for any
c ∈ {1, 2, 3}, we get d(vi, gi,c) ≥ d(wi,k, gi,c) = d(wi,k, wi,ai,c

) + d(wi,ai,c
, gi,c) =

(k − ai,c) + (ai,c + 1) = k + 1. This implies that vi is more than k away from
any gj,c for any j ∈ {1, 2, . . . , r} and any c ∈ {1, 2, 3}. This implies that for
any i ∈ {1, 2, . . . ,M + 1} and any c ∈ {1, 2, 3}, there must be some vertex
y ̸∈ T1 ∪ T2 ∪ · · · ∪ TM+1 such that y is within k of gi,c. Note that to find
this y, we only need to consider one vertex, which is the vertex closest to u in
{u}∪TM+2∪TM+3∪· · ·∪Tr. From now on, y will denote this vertex. Thus, we

4

have that if gi1,c1 and gi2,c2 , with i1, i2 ∈ {1, 2, . . . ,M + 1}, c1, c2 ∈ {1, 2, 3} are
k-distinguished by some vertex in R (i.e. the k-truncated distances from them
to the vertex are different), then they are k-distinguished by y. We show that
y cannot k-distinguish all pairs gi1,c1 and gi2,c2 .

Note that if y k-distinguishes some gi1,c1 and gi2,c2 , with i1, i2 ∈ {1, 2, . . . ,M+
1}, c1, c2 ∈ {1, 2, 3}, then u k-distinguishes them as well. So, we may assume
y = u.

Note that for some i ∈ {1, 2, . . . ,M + 1}, c ∈ {1, 2, 3}, we have d(u, gi,c) =
d(u,wi,ai,c

)+d(wi,ai,c
, xi,c,ai,c+1) = ai,c+ai,c+1 = 2ai,c+1. If u k-distinguishes

all pairs gi1,c1 , gi2,c2 , with i1, i2 ∈ {1, 2, . . . ,M + 1}, c1, c2 ∈ {1, 2, 3}, then
min(k + 1, 2ai,c + 1) is distinct for all i ∈ {1, 2, . . . ,M + 1}, c ∈ {1, 2, 3}. Since
k = 2m+2 > 2ai,c, all ai,c are distinct for all i ∈ {1, 2, . . . ,M +1}, c ∈ {1, 2, 3}.
However, this is equivalent to saying that S1, S2, . . . , SM+1 are all pairwise dis-
joint, which contradicts the maximality of M . This gives a contradiction, which
implies |R| ≥ 2r −M .

Claim 3.6. There exists a k-truncated dominating resolving set R of T with
size 2r −M .

Proof. Assume that the largest non-overlapping subset of U is S1, S2, . . . , SM .
Construct R by including bi := wi,k for all i ∈ {1, 2, . . . , r} (call these bottom
vertices) and ti := ui for all i ∈ {M + 1,M + 2, . . . , r} (call these top vertices).
We show that this set R works.

First, we show that all vertices are within distance k of some vertex in R.
Note that u is close to tr. Let v be any vertex in Ti. The only cases where v
is not close to bi are if v = gi,c for some c ∈ {1, 2, 3}. However, in this case we
have d(tr, gi,c) ≤ 2ai,c + 2 ≤ 2m+ 2 = k, meaning v is close to tr.

Now, we will show that all vertices of T are k-distinguished by some vertex
in R. For this, let q be some unknown vertex in T . Suppose all we know is the
value of dk(q, y) for all y ∈ R, and we want to uniquely determine q. We have
a few cases:

• Case 1: q is not k-close to any top vertex.

In this case, q must be within distance k of exactly one bottom vertex, bi.
The only possible value of q is wi,k+dk(q,bi).

• Case 2: q is k-close to some top vertex.

If q is k-close to only one top vertex, then let that top vertex be ti. Since
we assumed r −M ≥ 2, the only options for q are bi = wi,k and wi,k+1,
and q can therefore be determined by its distance to bi.

Now assume q is k-close to at least two top vertices. In this case, q must
be k-close to all top vertices.

If q is equidistant to all top vertices, then it must be in T1 ∪ T2 ∪ · · · ∪
TM ∪ {u}. If d(q, tr) = 1, then q = u. Assume d(q, tr) > 1.

If q is also k-close to some bottom vertex bi, then it is in Ti. Let w
′ be the

closest vertex of the form wi,j to q. We know that d(q, w′) = d(q, tr) +

5

d(q, bi)− k − 1, and d(u,w′) = d(u, q)− d(q, w′) = d(q, tr)− 1− d(q, w′).
From these two quantities we can find out what q is.

If q is not k-close to any bottom vertices, then it must be of the form gi,c
for some i ∈ {1, 2, . . . ,M}, and d(tr, q) = 2ai,c + 2 ≤ k. Because none
of the Si overlap for i ∈ {1, 2, . . . ,M}, q can be determined solely by its
distance from tr.

If q is not equidistant to all top vertices, then there is some i ∈ {M +
1,M + 2, . . . , r} such that d(q, ti), is minimized. This means q is in Ti.
Assume that q is k-close to bi. Then, let w′ be the closest vertex to q
of the form wi,j for some j. Then d(w′, q) = d(ti, q) + d(bi, q) − (k − 1),
and d(u,w′) = d(u, q)− d(q, w′) = d(q, tr) + 1− d(q, w′). From these two
quantities we can determine q.

Finally, if q is not k-close to bi, then q = gi,c for some c ∈ {1, 2, 3}. Thus,
q can be determined from d(q, ti).

This shows that R is a k-truncated dominating resolving set of T . Thus,
there exists a k-truncated dominating resolving set of size 2r −M .

Together with Lemma 3.2, we see that the k-truncated metric dimension of
T is in the range [2r −M − 1, 2r −M].

Now, assume that we can compute the minimum k-resolving set of T in
O(nc) time. By Lemma 3.2, this means that we can approximate the minimum
truncated dominating resolving set to within an additive factor of 1, which
means that we approximated the 3-Dimensional Matching problem for U within
an additive factor of 1. However, this contradicts Theorem 3.4. Thus, computing
k-truncated metric dimension on trees is NP-Hard, as desired.

4 Polynomial-Time Algorithm to Compute
k-truncated Metric Dimension for Constant k

There exists a polynomial-time algorithm to compute the 1-truncated metric di-
mension (also known as adjacency dimension) of a rooted tree based on dynamic
programming [1]. We generalize this result to any arbitrary constant k.

Fix a positive integer k. In this section, we present an algorithm to compute
the k-truncated metric dimension of a tree that runs in time polynomial in n, the
number of vertices of the tree. For the sake of simplicity, we present a slightly
unoptimized version of our algorithm, which runs in O(n2). It is possible to
improve our algorithm to O(n), but this is not the main focus on the paper.

First, we show an algorithm that computes the smallest k-truncated dom-
inating resolving set of a tree T . We then show how this algorithm can be
slightly modified to compute the k-truncated metric dimension of T .

6

4.1 Computing the smallest k-truncated dominating re-
solving set

We present a dynamic programming algorithm to compute the size of the small-
est k-truncated dominating resolving set for any fixed constant k.

Let T be a rooted tree with n vertices and let k be a positive integer. Label
the vertices in the tree with integers 1, 2, . . . , n. For any vertex u of T , let
ch(u) denote the number of children u has, and let Tu denote the subtree of T
rooted at u. For a vertex u and positive integer m ≤ ch(u), define cm(u) to
be the child of u with the mth smallest label. For any u ∈ V (T) and positive
integer m ≤ ch(u), we define Tu,m = {u} ∪ Tc1(u) ∪ Tc2(u) ∪ · · · ∪ Tcm(u). We
define a function f(u,C,D,E, l,m) as the size of the smallest set S satisfying
the following properties:

• S is a subset of T ′, where T ′ := Tu,m.

• If v is any vertex outside of T ′ with d(u, v) = l, then S ∪ {v} is a k-
truncated dominating resolving set of T ′. If l is null, then S is a k-
truncated dominating resolving set of T ′. Note that if l > k, it cannot
k-distinguish or be k-close to elements of T ′, so we will only allow l to be
an integer between 1 and k or null.

• The set {d(u, z) | z ∈ S, d(u, z) ≤ 2k} is equal to C.

• The set {d(u, y) | y ∈ T ′, d(u, y) ≤ 2k : ∀z ∈ S, d(y, z) > k} is equal to
D.

• Call an x ∈ V (T ′) \ S good if it satisfies the following conditions:

– d(x, u) ≤ 2k.

– there exists z ∈ S where d(x, z) ≤ k.

– d(x, z)− d(u, z) is equal for all z ∈ S with d(x, z) ≤ k.

We start with an empty set E. For each good x, we add the tuple
(d(x, u), d(x, z)− d(u, z), d(u, z′)) to E, where z ∈ S and d(x, z) ≤ k, and
z′ ∈ S is a vertex with minimal d(u, z′) under the condition d(x, z′) > k.
If such z′ does not exist, let d(u, z′) = null.

We define g(u,C,D,E, l) := f(u,C,D,E, l, ch(u)). Note that the size of the
smallest k-truncated dominating resolving set of T is just the minimum of
g(root, C,D,E, null) over all valid C,D,E.

We will now show a recursive algorithm to compute f . Originally, set
f(u,C,D,E, l,m) to null for all valid tuples of u,C,D,E, l,m. The rest of
the proof is a long casework to describe all the necessary state transitions.

Base Case. If u is a leaf, the only possible values for f(u,C,D,E, l,m) are
0, 1, corresponding to the sets ∅, {u}. Because u has no children, we only allow
m = 0. The valid combinations of C,D,E, l that give f(u,C,D,E, l,m) = 0
are C = ∅, D = {0}, E = ∅, l ̸= null. The valid combinations of C,D,E, l that
give f(u,C,D,E, l,m) = 1 are C = {0}, D = ∅, E = ∅, l = null.

7

Recursive Step: Adding a Parent. From now on, we assume that u is not
a leaf. Suppose m = 1. Let v = c1(u) and let C,D,E, l be such that g(v, C,D, l)
is not null. Let S be the corresponding set of marked vertices. Let l′ be the
distance from u to the closest marked vertex outside {u} ∪ Tv.

We have the following observations:

• If l = 1, then u is marked, and l′ can take any value.

• If 2 ≤ l ≤ k, then l′ = l − 1.

• If l = null, then l′ is either null or k.

All we need to check is if S, along with the vertex corresponding to l′, k-
locates and k-dominates u. If l = 1, then u is forced to be marked, giving
f(u,C ′, D′, E′, l′, 1) = |S| + 1. Assume instead that 1 < l′ ≤ k. We know that
u is k-dominated by S because l′ ≤ k. Also, u is the closest vertex to the vertex
corresponding to l′, so it is automatically k-distinguished from all vertices of Tv,
giving f(u,C ′, D′, E′, l′, 1) = |S|, where C ′, D′, E′ are the values of the C,D,E
parameters corresponding to Tv∪{u} and set S. Now assume that l = l′ = null.
For any x ∈ V (Tv), we want to check if S k-distinguishes u and x.

If there exist two distinct z1, z2 ∈ S such that z1, z2 are k-close to x and
d(x, z1) − d(v, z1) ̸= d(x, z2) − d(v, z2), then we claim that one of z1, z2 distin-
guishes (x, u). To see this, note that

d(x, z1) = d(u, z1) =⇒ d(x, z1)− d(v, z1) = 1

=⇒ d(x, z2)− d(v, z2) ̸= 1

=⇒ d(x, z2) ̸= d(u, z2),

which implies that if z1 does not distinguish x, u, then z2 does.
Now, suppose such z1, z2 do not exist. Note that l′ = null implies x must

be good, i.e. (d(x, v), d(x, z)− d(v, z), d(v, z′)) ∈ E for some z, z′ ∈ S (where z′

might not exist). If x, u are distinguished by some z ∈ S that is k-close to x, then
we have d(x, z) ̸= d(u, z) ⇐⇒ d(x, z)− d(v, z) ̸= 1. If x, u are distinguished by
some other z′ ∈ S then it is necessary and sufficient for d(v, z′) ≤ k − 1. Thus,
x, u are distinguished by S if and only if d(x, z)−d(v, z) ̸= 1 or d(v, z′) ≤ k− 1.
By checking if this is true for all elements of E, we can determine whether
S is a k-truncated dominating resolving set of Tv ∪ {u}. If all x, u pairs are
distinguished, then f(u,C ′, D′, E′, l′, 1) = |S|.

Recursive Step: Merging a child subtree. Now assume m > 1. Let
v = cm(u), T ′ = Tu,m, T1 = Tu,m−1 and T2 = Tv. Pick valid C1, D1, E1, l1 such
that f(u,C1, D1, E1, l1,m − 1) is not null (call the set it corresponds to S1),
and valid C2, D2, E2, l2 such that g(v, C2, D2, E2, l2) is not null (call the set it
corresponds to S2). Let u1, u2 be vertices outside of T1, T2 respectively such
that d(u, u1) = l1, d(v, u2) = l2. Firstly, we want to check if S1, S2, l1, l2 are
compatible. We have a few cases.

8

• Case 1: u1 ∈ S2 and u2 ∈ S1.
For this to be true, we need to check that l1 − 1 = min(C2) and l2 − 1 =
min(C1). In this case, we can let l′, the distance to the closest marked
vertex to u outside of T ′, to be any integer between max(l1, l2 − 1) and
k + 1, or null.

• Case 2: u1 ∈ S2 and u2 ̸∈ T ′.
For this, we need to check that l1 − 1 = min(C2), that l2 ≤ 1 + min(C1),
and that l1 ≤ l2 − 1. In this case, l′ = l2 − 1.

• Case 3: u2 ∈ S1 and u1 ̸∈ T ′.
For this, we need to check that l2 − 1 = min(C1), l1 ≤ 1 + min(C2), and
l2 ≤ l1 + 1. In this case, l′ = l1.

• Case 4: u1, u2 ̸∈ T ′.
Here, we must have u1 = u2. For this case, we need to check that l1+1 =
l2, l1 ≤ 1 + min(C2), and l2 ≤ 1 + min(C1). In this case, l′ = l1.

• Case 5: l1 = null and l2 ̸= null.
We require that min(C2) + 1 > k. Either u2 ∈ S1, which requires l2 =
min(C1) + 1 and allows for l′ to be any integer between l2 − 1 and k or
null, or u2 ̸∈ T , which requires l2 ≤ min(C1) + 1 and gives l′ = l2 − 1.

• Case 6: l1 ̸= null and l2 = null.
We require that min(C1) + 1 > k. Either u1 ∈ S2, which requires l1 =
min(C2) + 1 and allows for l′ to be any integer between l1 and k or null,
or u1 ̸∈ T ′, which requires l1 ≤ min(C2) + 1 and gives l′ = l1.

• Case 7: l1 = l2 = null.
In this case, we require min(C1) + 1,min(C2) + 1 > k. We must have
l′ = null.

Only when one of the above cases is true, we can proceed with the l′ deter-
mined by that case. Now, we want to check if S′ := S1 ∪ S2 ∪ {u1, u2} forms
a k-truncated dominating resolving set of Tu,m. It suffices to check that for all
x ∈ V (T1), y ∈ V (T2), there is some z in S′ that k-distinguishes x and y. We
have a few cases.

• Case 1: some z1 ∈ S1 is k-close to x, and some z2 ∈ S2 is k-close
to y
In this case, we claim that x and y are k-distinguished by one of z1, z2. As-
sume for contradiction this is not true. Then d(x, z1) = d(y, z1), d(x, z2) =

9

d(y, z2). Let a = lca(x, z1), b = lca(y, z2). Then

0 = d(x, z1)− d(y, z1)

= d(x, a)− d(y, a)

= (d(x, z2)− d(a, z2))− d(y, a)

= d(y, z2)− d(a, z2)− d(y, a)

= d(y, b)− d(a, b)− d(y, a)

= d(y, b)− d(a, b)− (d(y, b) + d(a, b))

= −2d(a, b) < 0,

a contradiction, as desired.

• Case 2: x is not k-close to any element of S1 and y is not k-close
to any element of S2

First, we need to check if either x is k-close to some element of S2 or y
is k-close to some element of S1. Thus, we must check if either d(x, u) +
min(C2) + 1 or d(y, v) + min(C1) + 1 are less than k + 1. Note that
d(x, u) ∈ D1, d(y, v) ∈ D2. If neither of these conditions are true, then we
need to check if x and y are distinguished by a vertex outside T ′; i.e. they
are distinguished by the vertex corresponding to l′. For this, we need to
check that min(k + 1, d(x, u) + l′) ̸= min(k + 1, d(y, v) + l′ + 1). If this
condition is not satisfied, then S′ does not k-distinguish (x, y). Otherwise,
S′ does distinguish (x, y).

• Case 3: x is k-close to some element of S1, y is not k-close to any
element of S2

Note that d(v, y) ∈ D2. If there exist two z1, z2 ∈ S1 that are k-close to x
such that d(x, z1)−d(u, z1) ̸= d(x, z2)−d(u, z2), then we claim that either
z1 or z2 k-distinguished x and y. To show this, assume that z1 does not
k-distinguish x and y. Then

d(x, z1) = d(y, z1) =⇒ d(x, z1)− d(u, z1) = d(u, y)

=⇒ d(x, z2)− d(u, z2) ̸= d(u, y)

=⇒ d(x, z2) ̸= d(z2, y),

which means z2 distinguishes x, y.

From now on, assume that such z1, z2 do not exist. This means that
d(x, z)−d(u, z) is constant for all z ∈ S1 that are k-close to x. This means
that E1 contains the tuple (d(u, x), d(x, z)−d(u, z), d(u, z′)), where z is an
arbitrary element of S1 that is k-close to x, while z′ is the closest vertex
to u of all elements of S1 that are not k-close to x. We will now check if
x, y are distinguished. We have a few cases:

– Subcase 3.1: x, y are distinguished by an element of S2

We just need to check if x is k-close to an element of S2. For this,
we just need to see if d(x, u) + min(C2) + 1 ≤ k.

10

– Subcase 3.2: x, y are distinguished by an element of S1

For any z ∈ S1 that is k-close to x, we have d(x, z) ̸= d(y, z) ⇐⇒
d(x, z)−d(u, z) ̸= d(u, y), so it suffices to check that d(x, z)−d(u, z) ̸=
d(u, y) = 1 + d(v, y). For any z′ ∈ S1 not k-close to x, we need to
check that the closest such z′ to u is k-close to y, i.e. we need to
ensure that d(u, z′) + d(v, y) + 1 ≤ k.

– Subcase 3.3: x, y are distinguished by a marked vertex out-
side of T ′, i.e. by the vertex corresponding to l′

For x, y to be distinguished, we require d(x, u) + l′ ̸= d(y, v) + l′ +
1, which is equivalent to d(x, u) ̸= d(y, v) + 1 and min(d(x, u) +
l′, d(y, v) + l′ + 1) ≤ k.

Vertices x and y are distinguished if and only if at least one of these cases
is true.

• Case 4: y is k-close to some element of S2, x is not k-close to any
element of S1

This case is analogous to Case 3.

We must ensure that, for any x ∈ V (T1), y ∈ V (T2), one of the above cases
is true. We will now show an algorithm that does all of these checks in
O(A(k)) time, where A is some function that has only k as a variable (i.e.
is independent of n). The algorithm will consist of the following steps:

– Check that for every d1 ∈ D1, d2 ∈ D2, we have min(k+1, d1 + l′) ̸=
min(k + 1, d2 + l′ + 1). This checks all scenarios of Case 2.

– For every tuple (d(u, x), d(x, z) − d(u, z), d(u, z′)) ∈ E1 and every
d2 ∈ D2, check that at least one of the following is true:

∗ See if d(x, u) + min(C2) + 1 ≤ k. This checks Case 3 Subcase 1.

∗ See if d(x, z) − d(u, z) ̸= 1 + d2 or d(u, z′) + d2 + 1 ≤ k. This
checks Case 3 Subcase 2.

∗ See if d(x, u) ̸= d2+1 and min(d(x, u)+ l′, d2+ l′+1) ≤ k. This
checks Case 3 Subcase 3.

This checks all scenarios of Case 3.

– For every tuple (d(v, y), d(y, z) − d(v, z), d(v, z′)) ∈ E2 and every
d1 ∈ D1, check that at least one of the following is true:

∗ See if d(y, v) + min(C1) + 1 ≤ k. This checks Case 4 Subcase 1.

∗ See if d(y, z) − d(v, z) ̸= 1 + d1 or d(v, z′) + d1 + 1 ≤ k. This
checks Case 4 Subcase 2.

∗ See if d(y, v) ̸= d1 − 1 and min(d(y, v) + l′ +1, d1 + l′) ≤ k. This
checks Case 4 Subcase 3.

This checks all scenarios of Case 3.

Note that the time to complete each step depends only on k and not on n, and
by completing the steps we check all scenarios of the cases described above. If

11

during the algorithm, one of the scenarios does not satisfy the conditions, we
know that S′, along with the vertex corresponding to l′ is not a valid k-truncated
dominating resolving set of T ′. If all scenarios pass their conditions, then we
get a valid k-truncated dominating resolving set for T ′.

Now, we will show how to get parameters C,D,E for T ′, S′ from parameters
C1, D1, E1, C2, D2, E2. We have that

C = C1 ∪ {c+ 1 | c ∈ C2, c ≤ 2k − 1}

D = {d | d ∈ D1, d+min(C2) + 1 > k}

∪ {d+ 1 | d ∈ D2, d ≤ 2k − 1, d+min(C1) + 1 > k}.

Consider x, z1, z
′ such that (d(x, u), d(x, z1) − d(u, z1), d(u, z

′)) ∈ E1. If x is
not k-close to any elements of S2 (i.e. d(u, x) + min(C2) + 1 > k), then E
should include (d(x, u), d(x, z1) − d(u, z1),min(d(u, z′),min(C2) + 1)). Assume
instead that x is k-close to z2 ∈ S2. Let c be the smallest element of C2

such that d(u, x) + 1 + c > k. We have d(x, z2) − d(u, z2) = d(u, x). Thus
E must include (d(x, u), d(x, z1) − d(u, z1),min(d(u, z′), c + 1)) if and only if
d(u, x) ̸= d(x, z1)− d(u, z1).

Similar reasoning holds for tuples in E2. Let (d(y, v), d(y, z1)−d(v, z1), d(v, z
′))

be an arbitrary element of E2. If y is not k-close to any element of C1 (i.e.
d(y, v) + 1 +min(C1) > k), then E should include
(d(y, v), d(y, z1) − d(v, z1),min(d(v, z′),min(C1))). Assume instead that y is
k-close to some z2 ∈ S1. Let c be the smallest element of C1 such that
d(u, x) + 1 + c > k. We have d(y, z2) − d(v, z2) = d(y, v). Thus, E includes
(d(y, v), d(y, z1) − d(v, z1),min(d(y, z′), c)) if and only if d(y, z1) − d(v, z1) =
d(y, v). Thus, we can get C,D,E from C1, D1, E1, C2, D2, E2 in time that de-
pends only on k.

If none of the scenarios in the algorithm fail their checks, and if we have that
f(u,C,D,E, l,m) is null or larger than |S′|, then we set it to |S′|. By running
through all valid combinations of C1, D1, E1, l1, C2, D2, E2, l2, and all valid l′

(the number of which is a function of only k), we will find the smallest possible
value of f(u,C,D,E, l,m), as desired.

Note that because each recursive step has runtime depending only on n,
computing the size of the minimal k-truncated dominating resolving set of T ,
which is just the minimum of g(root, C,D,E, null) over all valid C,D,E, has
runtime that is linear in n for fixed k.

4.2 Computing k-truncated metric dimension

We will now show how to modify the algorithm in the previous section to com-
pute dimk(T), the k-truncated metric dimension of T . Note that the only
difference is that now a vertex is allowed to be k-far from all vertices in the
resolving set.

Let T be a tree and k be a positive integer. Let S be the smallest k-resolving
set of T . We know that either every element of V (T) is k-close to some element

12

of S, or exactly one element of V (T) is not k-close to any element of S. In the
first case, S is the minimum k-truncated dominating resolving set of T , meaning
it can be found with the algorithm in the previous section. Let the size of the
minimal k-truncated dominating resolving set of T be smdr. Now let r be an
arbitrary element of V (T), and assume that r is k-far from every element of
S. Root the tree T at r. We will now demonstrate how the algorithm from
Section 4 can be modified to give the minimal set S that resolves T , while every
element of S is k-far from r.

Let v1, v2, . . . , vp be the children of u. We compute g(vi, Ci, Di, Ei, null) for
all i ∈ {1, 2, . . . , p} and all valid Ci, Di, Ei, using the algorithm described in the
previous section. We want to ensure that u is k-far from all marked vertices,
which is why we require l = null, which implies that Di must be ∅. This means
we also require min(Ci) ≥ k.

We now want to compute the smallest resolving set S of T , such that the only
vertex not k-dominated by S in T is r. Let Si be S ∩ Ti(r) for i ∈ {1, 2, . . . , p}.
We know that for all i, Si must be the set corresponding to g(vi, Ci, Di =
∅, Ei, li = null), for some valid Ci, Ei satisfying min(Ci) > k. Note that
because li = null, Si on its own must be a k-truncated dominating resolving
set of Ti(r). Let us define qi to be the smallest value of g(vi, Ci, Di = ∅, Ei, li =
null) over all valid Ci, Ei satisfying min(Ci) ≥ k. Then we must have that
|S| = q1 + q2 + · · ·+ qp.

Let smin be the minimal value of |S| over all r ∈ V (T). We must have that
dimk(T) = min(smdr, smin). This finishes the description of the algorithm.

5 Conclusion and Future Work

In this paper, we focused on computing the truncated metric dimension of trees.
We showed that computing k-truncated metric dimension of trees is NP-hard
for general k, but for any constant k it can be solved in polynomial time.

Many open questions remain regarding the computation of k-truncated met-
ric dimension.

• What is the best dependence on k we can get in an algorithm to compute
dimk(T), the k-truncated metric dimension of a tree T?

• It is known that for general graphs, the best approximation ratio for com-
puting metric dimension is Θ(log n) [4]. On the other hand, it is possible
to compute metric dimension of trees in linear time [3]. What is the best
approximation ratio we can obtain for k-truncated metric dimension of
trees?

• It is known that we cannot efficiently compute k-truncated metric dimen-
sion in general graphs (even when k is a small constant) [4]. However,
can we efficiently compute truncated metric dimension in other classes of
graphs for any constant k?

13

6 Acknowledgements

We thank Jesse Geneson for providing the project and discussions about prob-
lems related to truncated metric dimension. We also thank Felix Gotti and
Tanya Khovanova for reviewing the paper and providing many helpful com-
ments to improve its presentation. Finally, we are grateful for the MIT PRIMES
program for the opportunity to carry out this research.

References

[1] R.C. Tillquist, R.M. Frongillo, and M.E. Lladser, Truncated metric dimen-
sion for finite graphs (2021) https://arxiv.org/abs/2106.14314

[2] J. Geneson, E. Yi, The distance-k dimension of graphs (2021) https://

arxiv.org/abs/2106.08303

[3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability
in graphs and the metric dimension of a graph. Discrete Applied Math. 105
(2000) 99-113

[4] M. Hauptmann and R. Schmied and C. Viehmann, Approximation complex-
ity of Metric Dimension problem. Journal of Discrete Algorithms. 14 (2012)
214-222

[5] A. Rosenfeld, B. Raghavachari, S. Khuller, Landmarks in graphs. Discrete
Applied Mathematics. 70 (3) (1996) 217–229

[6] A. Estrada-Moreno, I.G. Yero, and J.A. Rodriguez-Velazquez, The k-metric
dimension of graphs: a general approach (2016) https://arxiv.org/pdf/
1605.06709.pdf

[7] B. Piotr, D. Bhaskar, K. Ming-Yang, Journal of Computer and System Sci-
ences. Tight approximability results for test set problems in bioinformatics.
71 (2) (2005) 145-162

[8] M. Chleb́ık, J. Chleb́ıková, Approximation hardness of dominating set prob-
lems in bounded degree graphs. Information and Computation. 206 (11)
(2008) 1264-1275

[9] M. Chleb́ık, J. Chleb́ıková, Complexity of approximating bounded variants
of optimization problems. Theoretical Computer Science. 354 (3) (2006)
320-338

[10] R.C. Tillquist, R.M. Frongillo, and M.E. Lladser, Getting the Lay of the
Land in Discrete Space: A Survey of Metric Dimension and its Applications
https://arxiv.org/abs/2104.07201

[11] S. Peter J., Leaves of trees. Proc. 6th Southeastern Conference on Com-
binatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca
Raton, Fla., 1975), Congressus Numerantium. 14 (1975) 549–559

14

https://arxiv.org/abs/2106.14314
https://arxiv.org/abs/2106.08303
https://arxiv.org/abs/2106.08303
https://arxiv.org/pdf/1605.06709.pdf
https://arxiv.org/pdf/1605.06709.pdf
https://arxiv.org/abs/2104.07201

[12] H. Frank, M. Robert A., On the metric dimension of a graph. Ars Combi-
natoria. 2 (1976) 191–195

[13] Garey, M. R.; Johnson, D. S. (1979), Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, ISBN 0-7167-
1045-5 A1.5: GT61, p. 204.

15

	Introduction
	Preliminary Definitions and Notations
	NP-Hardness of Computing Truncated Metric Dimension on Trees
	Polynomial-Time Algorithm to Compute k-truncated Metric Dimension for Constant k
	Computing the smallest k-truncated dominating resolving set
	Computing k-truncated metric dimension

	Conclusion and Future Work
	Acknowledgements

