THE GEOMETRY AND LIMITS OF YOUNG PARTITION FLOW POLYTOPES

ADVAY GOEL AND ZOE WELLNER

AgstracT. In 2017, Mészaros, Simpson, and Wellner demonstrated that certain flow polytopes
resulting from Young tableaux are easily decomposed into simplices, and others have a natural
relation to the well-known Tesler and CRY polytopes. Within a family of polytopes determined
by a single tableaux shape, they introduced the limiting polytope. The limiting polytope is a
useful notion since it is easy to decompose into a product of simplices. In this work, we use
geometric decomposition to further examine the limiting process within each family of poly-
topes. Our main results analyze the family of hooks, and we demonstrate an algorithm to get

geometric decompositions.
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1. INTRODUCTION

Flow polytopes are extremely important for combinatorial optimization due to their relation to max-
imum matching and minimum cost problems (e.g. see Chapter 13 of [9]). By better understanding the
characteristics of these structures, such as their geometry and volume, we gain more insight in solving
these optimizations. Additionally, in recent works, flow polytopes have also been shown to have con-
nections to representation theory [1], diagonal harmonics [7], geometric and algebraic combinatorics due
to connections with Schubert polynomials [5], toric geometry [4], and more, making polytope theory an
extremely rich area of study.

In 2008, Baldoni and Vergne [1] proved the following general formula for volumes of flow polytopes in

terms of the Kostant Partition Function:
Theorem 1.1 (|1], Theorem 38). Let a = (a1,as,...an, — Y iy a;), satisfying a; > 0 fori € [n]. Then,
for a graph G on vertex set [n + 1] with N edges, we have the following:

n 5

a :
vol Fa(a) =Y (N —n)t- [ O.—?),Kaf(il — 1 iy =15, i — 1)
Bl

i j=1
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and
ay +t? a2+t§ an+tG . G - G . G
Kg(a) = ") Ke(in — € i — 1S, iy — ¢
c(a) ;( i iy i g iy — 7 ,ig — t5 in—t3)
where both sums are over all weak compositions i = (i1,42,...,in) of N —n with n parts. G’ is the

restriction of G onto [n], and tS for i € [n], stands for the outdegree of vertex i in G minus 1.

The factorials and binomials suggest a very combinatorial interpretation of the above formula — it
seems as if the volume of a flow polytope counts some other object. However, no such interpretation
has been found, which is why utilizing this formula is extremely cumbersome. Moreover, past methods
for calculating volumes have included constant term identities and multivariate Laurent series; neither
of them preserves the hypothesized combinatorial background of the formula. In addition, the Baldoni-
Vergne formula does not reflect the actual structure of a flow polytope as the scaled sum of products of
simplices.

Furthermore, in 2000, Chan, Robbins, and Yuen [2] discovered the polytope named for them (the CRY
Polytope) and conjectured that the volume could be found by a product of consecutive Catalan numbers.

Shortly after, Zeilberger [11] proved the CRY conjecture using the Morris constant term identity.
Theorem 1.2 ([11]). The Morris Constant Term can be written as

a—1+b+(n—1+7)5I(5
(a+j5)T(b+55)I(E0 +1)

n—1

I

M (a,b,c) = [] F(
=0

Corollary 1.3. By setting a = b = ¢ = 1, the volume of CRY ;41 is given by M,(1,1,1) = H?;ll C;

where C; is the ith Catalan number.

However, with how prominent the Catalan numbers are in combinatorics with various counting iden-
tities (see [10, Ex. 6.19] for examples), finding a more combinatorial proof of the CRY volume has been
an area of study since then. Polytope theory has only gotten richer and more studied in the years since
with works such as from Mészaros and Morales [6], who made significant progress in examining these
polytopes combinatorially.

In 2017, Mészéaros, Simpson, and Wellner [8] focused on the polytopes related to partitions and
introduced the notion of a limiting polytope. The families of polytopes resulting from partitions show
an interesting connection between some of the more elusive polytopes, like the CRY polytope, and
the easier-to-compute ones, like the limiting polytopes. In this paper, we expand on these ideas by
examining volume formulas for various different partition shapes. In particular, we wish to outline a
way to gain information as to how the polytopes that fall in between the limiting polytope and the
harder-to-understand polytopes work and what the limiting process means combinatorially.

By studying the inequalities representing a flow polytope, we develop an algorithm (see Section 3.3)
to compute a volume formula for any flow polytope in a way that preserves the simplex structure of
the shapes [3]. Given any polytope, we represent the volume as a sum of products of simplices, which
yields information about the geometric structure of the polytope and points to potential improvements
in our combinatorial understanding as well. We then apply this algorithm to specific classes of polytopes,
like those defined by a hook-shaped partition, to develop explicit volume formulas and study how the
simplices making up the polytope change as it gets closer to the limiting polytope.

2. SOME DEFINITIONS AND THE CONNECTION BETWEEN PARTITIONS AND POLYTOPES

Let G be a loopless directed acyclic connected graph on the vertex set [n + 1] with m edges. To each
edge (4,j) with ¢ < j, of G, associate the positive type A, root a(i,j) = e; — e; where e; and e; are
members of the standard basis of R”. Let Sg := {{a(e)}}ccr(q) be the multiset of roots corresponding
to the multiset of edges of G. Define Mg as the (n + 1) X m matrix whose columns are the vectors in
Sa.
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Definition 2.1 (Netflow vector). The netflow is an integer vector a = (ai,as,...,an, — > oy a;) €
Z"*+1 such that each a; > 0. An a-flow fz on G is a vector fg = (bk)kepm)> bk € R such that
Mgfe = a. In other words, for all 1 < i < n, we have the following equation:
Sobe)tai= > be)
e=(g,4)€E(G) e=(1,7)€E(G)

Definition 2.2 (Flow polytope). The flow polytope Fg(a) associated to a graph G on the vertex
set [n + 1] and the netflow a = (a1,a2,...an,— > 1, a;) is the set of all a-flows fg on G. Thus,
Fa(a) = {fc € RY, | Mcfc = a}. So, the flow polytope of G exists in R™ space.

Definition 2.3 (Kostant partition fucntion). The Kostant Partition Function K evaluated at
the vector b € Z"*! gives the number of representations of a vector into nonnegative integer linear
combinations of positive roots. In context to the flow polytope Fg(b), it provides the number of lattice
points and is defined as follows:

Ka(b) =#1 (f(e))ecr)| Y. fle)ale) =aand f(e) € Zxg

e€E(G)
It also has generating function
Z Kg(b)z§'z5? as:H_Zl:’ = H (1 —:cia:j_l)il
bezZn+1 (1,7)€E(G)
Definition 2.4 (Partition). A partition X\ of an integer n» > 0 is a monotonic increasing sequence
A= (A1, A2, ..., Ap) of integers A; > 0 satisfying >, ;.. Ay = n. Each ); is called a part of A and its
length (denoted ¢())) is equal to the number of parts.

Definition 2.5 (Family of polytopes). For each A, we define the family of flow polytopes F(y a). Given
a partition A, let Y be its corresponding left-justified Young Diagram. Pick an integer n satisfying
n—1i > \; for all i € [¢(N\)]. Then, we can place Y in the upper triangle of an n x n matrix M, with
the top edges of Y flush with the top edges of M and likewise for the right edges. Let Y’ be the set of
entries (4,7) of M that lie inside of Y, and define G(\,n) as the directed graph:

GOn) = (In+1],{(i,n+1) i € [} UY").

Definition 2.6 (Limiting polytope). For a partition A and netflow a € ZZ, the limiting polytope of
the family F(, ,), denoted as f(li)\ma), is the polytope Fgxe(n)+A1)-

We highlight the geometric difference between limiting and non-limiting polytopes in Figure 1 by focusing
on the family F((3 2 1),a- Note that the family F, »_1,.. 1),(1,....1,—n) contains the Tesler polytope and the
family Fp,, —1,....11,(1,0,0,...,—1) contains the CRY polytope. Thus these families generalize the well-known
polytopes that are a huge focus of study.

From the 2017 Mészéaros, Simpson and Wellner [8], we get a volume formula of the following.

Theorem 2.7. The normalized volume of a limiting polytope is

Ag
lim ai
vl 7l = | 22 NI 3
ic[e(N)] i€e(N)]

In more recent work, Mészaros and Morales show in [6] that with compounded reduction trees (CRTs),

a general combinatorial breakdown for all flow polytopes exists.

Theorem 2.8 ([6], Lemma 3.4). Let G be a graph on the vertex set [n + 1] with positive integer netflow
a=(ai,...,an,— Y 1y a;) and an integer i € [n+ 1] such that vertez i has both incoming and outgoing
edges in G. Then,

.FG(G,) = U fG(Ti)(a).

TeTz,u(i}y,0;
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FIGURE 1. The diagram provides two examples of how to convert a Young diagram into
a digraph. Each filled-in block in the Young diagram corresponds with the edge on the
digraph sharing the same color. The top row features the left-justified Young diagram of
A= (3,2,1), the diagram in a 4 x 4 matrix and the corresponding graph on five vertices.
We call vertex 5 the sink because every vertex connects to it. The bottom row has the
left-justified Young diagram of A = (3,2,1) in a 6 x 6 matrix and its corresponding graph
on seven vertices. This is the limiting polytope of the family F((3 2 1),a). Geometrically,
the Young diagram fits entirely in the top-right quadrant. In the digraph, this means no
edge has both an incoming and outgoing edge (excluding edges going to the sink, which
are the dashed edges).

Theorem 2.8 implies that a flow polytope can be expressed as the union of the leaves of its CRT. To
build upon this idea further, we characterize the graphs that appear as leaves.

Definition 2.9. Let m = (mq,...m,) be a tuple of positive integers. Then, G(m) is the graph on
[n + 1] with m; edges (i,n + 1).
Theorem 2.10 (Mészaros-Morales [6]). Given G(m) on the vertex set [n + 1] with m = (mq,...my,) a
tuple of positive integers, a = (ay,...an) € Z%, the normalized volume of F(m)(a) is

n m;—1

vol(Fa(my (@) = (#E(G(m)) —n)! - H =

i
i (’I’I’Lz - 1)'
We can see that the volume formulas found in these two papers agree.

Theorem 2.11. The process of compounded subdivision above is consistent with the partition-based

volume formula when applied to limiting polytopes.
The proof of Theorem 2.11 will appear after the following related lemmas.

Theorem 2.12 (Mészaros-Morales [6]). Given the flow polytope Fa(a) with G a graph on the vertex set
[n+ 1] and a; > 0 for i € [n], the leaves of any compounded reduction tree Rg rooted at G are of the
form G(m) with m; =1 if and only if a; = 0 and Y, m; = #E(G).
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Lemma 2.13. After completing compounded subdivision on the digraph, G, of any limiting digraph,
there is just 1 leaf.

Proof. By definition of the limiting polytope, if we consider G’ to be the restriction of G onto [n], then
no vertex in G’ has both an incoming and outgoing edge.

In G, since each vertex has an edge connecting it to the sink, a vertex with at least one incoming
edge has exactly 1 outgoing edge. So, each vertex in G can be classified as having either only outgoing
edges (in which case we cannot do compounded subdivision on it) or some number of incoming edges
and exactly 1 outgoing edge.

Let v be a vertex in G with n > 0 incoming edges and 1 outgoing edge. When doing compounded
l+r—2
-1
in the left ordered set and r elements in the right ordered set because that is how many bipartite non-

subdivision on it, the number of branches in the CRT is given by ) where there are £ elements

crossing trees can be formed. By definition of the compounded subdivision process, r is simply the set
of outgoing edges, which we know to be 1. Thus, v has exactly 1 branch. Since, at each step, there is
exactly 1 branch, the entire CRT has only 1 leaf. O

Lemma 2.14. For 1 <1i < n, whenever a; > 0,
where G(m) is the singular leaf of G’s CRT. Moreover, in general, > m; = > X, + n.

Proof. The second part of the claim is immediate. If compounded subdivision is done on G, then by
Theorem 2.12, >~ m; = #E(G). However, the number of edges in G also equals Y. ; \; + n. The sum
of the parts of the tuple corresponds to edges not involving the sink, and there is 1 edge going to the
sink for each i € [n].

For the first part of the claim, note that in G, the outdegree of vertex 4 is simply A, + 1 as we have
A} edges that do not go to the sink and 1 edge that goes to the sink. We will show that the outdegree
remains constant throughout the CRT process for a; > 0. Suppose there is edge e = (i, j).

e If subdivision happens on 4, then j = n + 1. If a; > 0, then e is preserved, so the outdegree of i
does not change.
e If subdivision happens on j, then there exists edge ¢’ = (j,n + 1). By subdivision process, e and

e’ will be replaced by (i,n 4+ 1). Even then, the outdegree of i stays the same.

So, whenever a; > 0, the outdegree of the ith vertex, A; + 1, remains constant. Moreover, we showed
that any edge e will end up taking the form (i,n + 1). However, m; is defined by the number of edges of
the form (é,n + 1). Since all outgoing edges of i take this form, m; = outdeg(i) = A, + 1.

O

We now prove Theorem 2.11.

Proof. Let G be the digraph associated to the limiting polytope of a partition A, and let n = £(\) + Aq.
Make )\ the tuple formed by adding 0’'s to A until the length of A\ is n. By Lemma 2.13, since G has
only 1 leaf, Theorem 2.8 implies that Fg(a) = Fg,.(a) where Gr is the leaf of the CRT.

By Theorem 2.10,

vol Fep(a) = (#E(Gr) —n) - [| (nim__w

i=1
From Lemma 2.14, #E(Gp) —n = Y. ;m; —n = Y. X, and for all i with a; > 0, we have

m; —1 = X\, — 1. Thus, we obtain the following:

n amifl

Volfg(a):volfGT(a):(#E(GT)—n)~Hm: _Z by !-‘H ¢

i=1
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FIGURE 2. The Digraph G((3,1, 1),4) with solid edges from the Young shape and dashed
edges for the sink edges.

Note that a; > 0 by definition, and when a; = 0, the entire volume becomes 0 (according to both
formulas), so they match there as well. We can switch from X to A because for each additional 0 we

m;—1

added to A to form )\, m; must equal 1 at which point h = 1, so it becomes irrelevant to the

volume.

3. GEOMETRIC DECOMPOSITION FROM A POLYTOPE

In this section, we explain how to convert any flow polytope into a set of inequalities. Then, we break
down each volume computation into a generalized algorithm dependent on the entries of the netflow
vector.

3.1. An algebraic interpretation of the digraph. Consider the digraph of a flow polytope as first
defined in Definition 2.5. As an example, we will work with G((3,1,1),4), which is shown in Figure 2.
For notation purposes, we will call the edge going from vertex i to vertex j, z;;. By definition of the flow
polytope, the total flow coming into a vertex must equal the flow leaving. For example, the only flow
coming into vertex 1 comes from the netflow vector itself, which has value a;. The edges x12, 13, T14, T15

carry flow out of the vertex, meaning we must have

T12 + T13 + T14 + Z15 = Q1.

For vertex 2, there is incoming flow from both the netflow, asy, as well as the edge x12. Flow leaves the

vertex through the edges r24 and xs5, meaning
To4 + To5 = a2 + T12.
Similarly, we get the following equations for vertex 3 and vertex 4:
T34 + T35 = a3 + T13

T45 = A4 + T14.

In general, we form these equations in a similar manner: for each vertex, the total flow leaving must

equal the total flow coming in.

3.2. Turning the equations into solvable inequalities. These equations fully define the flow poly-
tope, so by finding all possible solutions to the system, we get the flow polytope. To solve these equations,
first notice that we can turn each equation into an inequality, using the fact that every edge must have

nonnegative flow. For example, in
ZT12 + 213 + T14a + T15 = a1,

as long as x12 + 13 + 14 < a1, we get a working solution as x5 is automatically defined as aq — (212 +

213 + 14). Using similar logic, we get the following system of inequalities to solve:
ZTi2 + 213+ 214 < a1

Tog < ag + X12

T34 < a3 + T13.
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Note that we do not have to worry about x45 = a4 + x14 as the equation implies that x45 is fixed by a4
and z14, and since a4 is given and we already solve for z14 in the first inequality, that solution determines

T45.

Remark 3.1. We refer to inequalities of the form x15 + x13 + 214 < a1, where there is just one term on
the right side of the inequality as type A. We refer to inequalities of the form zo4 < as + z12, where

there are 2 or more terms on the right side of the inequality as type B.

In the past two sections, we have worked through some illuminating examples of how this process
works in some specific cases. In the next section, we discuss how the process works in general and

present the method to get the volume formula.

3.3. An algorithm for the volume computation of any flow polytope. Here, we provide pseu-
docode for a general algorithm that can be used to solve for the volume of a flow polytope. Then, we go

into the details of how the algorithm works.

Algorithm 3.1. Input: Flow Polytope F.

(1) Create the set of n inequalities as shown in Section 3.2.
(2) Take inequality n and create a list of all m cases that it has.
(3) For i going from 1 to m, consider case j of inequality n.
(a) If case j is a Type A inequality: add the simplex it represents to the value.
(b) Else:
(i) If case j is a Type B base case: update the volume accordingly.
(ii) See what bijections case j creates and how it affects the other inequalities.
(c) Create a new flow polytope f’ that is f with inequality n removed and other inequalities
changed based on the bijections from case j.
(d) Print output.

Output: Current volume and function with input f’.

Theorem 3.2. The algorithm 3.1 will properly decompose the inequalities to output the correct geometric

volume of the relevant flow polytope.

Proof. We start with the inequality:

k¢ p+n
E Tij < a; + E Lo~
j=k+1 m=p+1

It can be split into n + 1 cases, where case 1 is given by

k+¢
Z T < a;
j=k+1
and case o > 1 is
pta—2 k+¢ p+a—1
a; + Z Tmi < Z Ty < a; + Z Toni-
m=p+1 j=k+1 m=p+1

Case 1 is a Type A inequality and requires no further breakdown. Assuming no cases from other Type
B inequalities in the polytope affect Zfiﬁ 41 Zij, the solution set is simply an f-simplex scaled by a;: it
¢

has volume a.

The other cases require further breakdown through recursion. In general, assume we have the inequal-

ity

a+8 ke g+B+1
a; + E Tmi < E Ty < a; + E Ty
m=q+1 Jj=k+1 m=q+1

It is solved using the following method:
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(1) Break the inequality into ¢ more cases. For case v € [¢], consider

k+L—y p+8 k+l—y+1 k+¢ q+p+1
g iy < a; + E Tmi < E Zij < E i < a; + E T+
J=k+1 m=q+1 j=k+1 Jj=k+1 m=q+1

p+B8
m=q-+1

method makes every case disjoint, ensuring no possibilities are missed nor double counted.

By using these cases, we consider all possibilities for what range a; + > Zpm; lies in. This

(2) Split each inequality

k+L— p+B
E Ty < a;+ g T
j=k+1 m=q+1

into further cases. It is the same form of inequality that we originally started with. So, we must
again break this inequality down into its several cases using the process outlined above, creating

a recursive cycle.

Eventually, the recursion reaches a base case, which is when ¢ = 1 (or when § = 0). Once this

happens, there is no more recursion left to do since the LHS is 0, implying the following term vanishes:

k+0—~ p+B
Z Zij < a; + Z T
j=k+1 m=q+1
This is the Type B base case. O

This process can be formally written in code, and we have a proof of concept written in Java, although
ideally, this would be formatted to be compatible with other volume computation software. We have

included the information on where to find this code [3].

4. RESULTS FOR SPECIFIC YOUNG SHAPES

To begin our specific detailed looks at geometric breakdowns, we start with rectangles, polytopes whose
partition has a Young Tableaux in the shape of a rectangle. In other words, we have A = (q, a,a,...,a)
for some a. For example, Figure 3 displays the Young Tableaux and digraph for the rectangle A = (3, 3)
with n = 5.

1 2 3 4 5

*

*
T W N =

FIGURE 3. From left to right: the left-justified Young diagram of A = (3, 3), the diagram

in a 5 x 5 matrix, and the corresponding graph on six vertices.

The case of rectangles, though, is not as telling about the limiting process due to the following lemma.
Lemma 4.1. A flow polytope with a corresponding rectangle partition is always limiting.

Proof. Let A = (a,a,--- ,a) where there are b a’s. From [8], a flow polytope Fg(x n(a) is limiting for all
n > A + £()). However, for Fg (s n)(a) to be a valid flow polytope, we need n to be large enough such
that the Young Tableaux of A fits in the top right half of the n x n square. Since A = (a,a,...,a), this
implies that the bottom left corner of A’s Young Tableaux, which is an a x b rectangle, is in the top right
half of the n x n square. In order for this to happen, we must have n > a + b.

However, Fg(xn)(a) is limiting when n > Ay + £()). In the case of a rectangle, Ay = a and £(\) = b,
which means the flow polytope is limiting for all n > a + b.
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At that point, since rectangles are always limiting, their volumes are given by Theorem 2.7:

Ai a
Volf(li\ma = Z Ai ]! H C;\i_' = (a-b)! H %.

i€[e(N)] icfe(n)] Y ie[e(N)]

However, we can also derive this formula using geometric decomposition, as shown below.

Theorem 4.2. Let A = (a,a,--- ,a) where {(A\) =b. Then,
7

a;
vol Fooam (@) = (a-b)! [] -
i€le(N)]

for alln>a+b.
Proof. From Lemma 3.1 of [8], vol F(x ny(a) is constant for n > a + b, since F is limiting at n = a + b.

So, showing the equation holds for n = a + b suffices.

We proceed with geometric decomposition. Vertex 1 has incoming flow a; and outgoing flow through
its a edges (excluding the one going to the sink), 2144 for i € [1,a]. So, we have:

a
Z ZT1(btd) < Q1.
=1

Similarly, for j = 2 to j = b, vertex j only has incoming flow from the netflow but has a outgoing edges,

T b4y for i € [1,a]. So, we have

a
Z Ty < ay
i=1

for j from 1 to b. For vertices x for k = b+ 1 to a + b, note that x; only has one outgoing edge: to the
sink. So, all incoming flow simply leaves through the sink-bound edge, meaning there is no inequality to
solve. So, by solving the inequalities of the form

a
Z Ty < ay
i=1

for j from 1 to b, we solve the decomposition. Note that all b inequalities are independent of each other as
there are no common variables. Moreover, the solution set for each inequality is simply an a-dimensional
simplex with side length a;. The volume of such simplices are Z—], for j € [1,b]. Thus, since the overall

volume is given by the product of all these simplices, we have:

The final step is normalizing the volume. Since A; = a and £(\) = b, dim F(¢ ,)(a) = a + b. Thus,

b oqa
VOIJ:(Gn)( HLTJ

Jj=1

Remark 4.3. The above argument can also be generalized to prove Theorem 2.7 as a whole.
In the case of hook Young shapes, we see the following:
Definition 4.4 (Hook). A flow polytope Fg(x n)(@) is a hook if its partition A is of the form (n,1,1,---1).

We can use the inequalities to solve for the volume of all hooks. Before we do, though, we must define
the elementary symmetric sums.
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Definition 4.5 (bth elementary symmetric sum). Given variables x1,xo,---x,, the bth elementary
symmetric sum ep(z1, T2, ,Z,) (0 < b < n) is given by thmz’___ -, [T, a,, or in other words, the
sum of the products of all sets of b elements in {1, 22, -+ ,x,}. We define eg(x1,z2, - ,2,) = 1.

Theorem 4.6. Let A = (a,1,1,---1) where there are b 1’s and a > b. Then,

b
1 ati
Vol F(G,at+1) (@) = Z m%ﬂeb—j (az,as,...,aps1)
j=0 \TIN
and
b—x x+1
1 ati
Vol FiGatita) (@) = ) malﬂ I ciev—o—i(aur2, anys, .. avs1)
j=0 J): =2
for x > 0.

Proof. First, we will consider the case where n = a + 1 and then show how the volume changes as n
grows.

When n = a + 1, the corresponding digraph has n 4+ 1 = a + 2 vertices. Vertex 1 is connected by an
edge to every other vertex, vertices 2 through b 4+ 1 each have one edge going to vertex n and another
going to the sink, and vertices b + 2 through n only have an edge going to the sink. Thus, for the
inequalities, we must only consider vertices 1 through b + 1. Vertex 1 has incoming flow from a; while
vertices 2 through b 4 1 have incoming flow from the netflow as well as the edge x1; where i € [2,b+ 1].

This leads to the inequalities:

n
E T < aq
j=2

Tin < a; + T

where i € [2,b+ 1].

Notice that each inequality of the form x;, < a; + x1; is type B. We can consider them in two cases:
(1) zin < a4
(2) ai < @i < a; + 214

In case 1, the solution set is simply a scaled 1-dimensional simplex with volume a;. Moreover, the con-

straint 2?22 z1; < ap is left untouched.

For case 2, let a2, = z;, — a; > 0. Then, we simply need z}, < x1;. For that, consider the following
mapping:

ozl —yp

® T, = Yo+ Y1
where yg,y1 > 0. Note that this mapping satisfies a; < x;, < a; + x1;, but it also changes the constraint

Z;;z z1; < a;. We now have
Tzt xi3+ -+ Tig-1) Yo+ Y1 +H Ty - F 2T < an.

Essentially, we add one more variable to the inequality, making it represent a scaled (n 4 1)-dimensional
simplex instead of n-dimensional.

There are a total of b inequalities, and each of them can either follow case 1 or 2. If they all follow

case 1, then the volume is simply ﬁa?‘law:; -++apy1. This can be written in terms of elementary

symmetric sums as
1

(n—1)!

a?fleb(a%a& ey Qpy).
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If one of them follows case 2, then we need to sum over all possibilities:
b o il b+1
> H a;- [T as
i=1 j=it1
This sum iterates through all n — 1 possibilities for which inequality follows case 2 and then that corre-
sponding a; value is dropped from the volume. So, we have

ﬁa?(alcm ceap+a1G2 .. Ap—1App1 o+ 2G5 Apgr).

However, that sum is simply the elementary symmetric sum e,_1(ag,as - - - ap11). So, the volume for this

case is

1

Ea?eb—l(a% as---Qpy1)-

Similarly, if we have j inequalities satisfying case 2, then the volume changes in a similar manner:

1 14
oI emi(02,0n, o).
To get the total volume, we must sum through all possible values of j, ranging from 0 to b, yielding
’ 1
—1+j
ol PG (@) =3 gy e o o)
§=0

Substituting in n = a + 1, we get the desired claim.

Now, we examine what happens when n increases by 1. We start off with investigating vertex 1 and its
a edges. Assume that originally, vertex 1 connects with vertices (n —a + 1), (n — a + 2),...n. Then,
when we increase n by 1, all of the vertices get shifted, meaning vertex 1 now connects with vertices
(n—a+2),(n—a+3),...,(n+1). The key to notice is that there is no longer an edge connecting vertex
1 with vertex (n —a + 1).

Also recall that originally, vertex (n — a + ¢) had two cases:

(1) T(n—a+1)n < G(n—a+1)

(2) am—at1) < Tn—at)n < Gn—a+1) + T1(n—at1)
Now, because edge x1(,—q41) N0 longer exists, the second case is no longer valid. Thus, only 1 case exists:
Tin < a;. So, in order to go from vol Fq ) to vol (g n41), we must remove all instances where vertex
n —a + 1 follows case 2. Hence, we must completely remove the term representing the scenario when
each vertex n — a + 1 through n satisfies case 2. In all other cases, since vertex i automatically assumes
case 1, the degree of the symmetric polynomial sum essentially decreases by 1, as there is one less Case
2 inequality, and we multiply the term by a,_,+1 as that corresponds to the solution set of x;, < a;.

When this process of increasing n by 1 continues z times, we can only have a maximum of n — z Case

2 type B inequalities, as x of the type B inequalities are now forced to be Case 1. Thus, we get the

formula:
b—=zx r+1
a+j
vol }—(G a+1+9c) E H aiebfmfj(aaH»Q; Qi3 -0 Apt1)
(a + J)! .
7=0 =2
as claimed. O

Theorem 4.7. Let A = (a,1,...,1) where there areb 1’'s andb=a+c¢—1, ¢ > 0. Then,

c+1

a+j
H A;€p—j (ac+2; Act-3y -+ »ac+b+1)
=2

b
VO]J—"(G a+1) Z

Jj=0 a—i—]

and
b— c+z+1

a+]
vol f(G a+1+x) H A;€h—g— ](am+c+27 Aptc43 .- ,ac+b+1)
]:0 =2

R

for x > 0.
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Proof. The formed polytope is essentially the same as in Theorem 4.6. Vertex 1 is connected to a vertices
and b vertices have 2 edges: one to vertex n and the other to the n+1. However, when b =a+c—1 > a,
there are c vertices with 2 edges that do not also have an incoming edge from vertex 1. Thus, their only
incoming flow is from the netflow, meaning they must satisfy x;, < a; where i is one of the ¢ vertices.
Thus, we must include the Hf;l a; in the volume, as that represents these ¢ vertices. Otherwise, the
setup is the exact same.

The only exception is that the potential vertices, which are Case 2 type B must be shifted ¢ indices,
as the first ¢ vertices must be type A. Thus, the volume formula has e,—;(@ct2, Got3, - - - etpr1) instead

of ey_j(az,as,...,apr1). O
5. FUTURE DIRECTIONS

When considering the volume of polytopes of a partition family with Young diagram size n vs. (n—1),
we see that some of the terms collapse. It is not clear at what rate these terms vanish or exactly how
this corresponds. The reductions of these terms have some hope of providing the insights needed to
transform the volumes of the limiting polytopes, which have a more clear combinatorial meaning, to
the more complex polytopes such as the CRY and Tesler polytopes. It would be interesting to find a
combinatorial expression of the limiting process and how it affects the family of polytopes geometrically.
Perhaps considering a series of repeated gifts of candy, where the limit steps would have clear rules for
how the students give out candy, could be a setting in which the limit steps are analyzable. For example,
for the CRY polytope, one could do something like the following.

The nth child first gives all of their candy to the other (n — 1) children. Then the (n — 1)st child gives
all of their candy to the (n — 2) remaining children. The (n — 2)nd child gives all of their candy to the
(n — 3) remaining children. We continue in this fashion, and then the 3rd child gives all their candy to
the 2 remaining children. The 2nd child gives all of their candy to the 1 remaining child. At each step,
we can try to associate this to the geometric decomposition formulas and, thus, hopefully, get a clear

look at how things are changed when we take a limit step.
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