
Consensus under a Dynamic Synchronous Model

Kunal Kapoor and Jun Wan

January 3, 2022

1 Introduction

This paper deals with the problem of Byzantine Agreement. Byzantine Agree-
ment is a core problem in the area of distributed computing as it deals with
how multiple users in a network handle information. Specifically, the problem
deals with how users can come to agreement about information being passed
through a network given the potential of corrupted users that have the goal of
disrupting consensus and tricking honest users. The basic setup of this problem
goes as follows: There are n total nodes, or users, one of which is a designated
sender node which outputs a bit b from set {0, 1} to all the nodes. The goal
of the protocol is to ensure that despite corrupt users acting in ways to disrupt
consensus, there are two properties maintained:

• Consistency, which requires that all honest nodes must output the same
bit (even when the sender is corrupt).

• Validity, which requires that all honest nodes output the sender’s input
bit if the sender is honest.

The variant of this problem that the paper focuses on is called “Sleepy Consen-
sus”. Traditional versions of this problem focus on the binary between honest
users and corrupt users. However, the sleepy variant adds in a third kind of
user, namely the “sleepy” user. A sleepy user is a user that is not active within
the network and thus is unable to communicate with other users. This type of
user is analogous to when in real world setups, a computer goes offline or a user
stops participating in the network [1]. The main issue this presents to previ-
ous Byzantine Broadcast protocols is the violation of previous assumptions that
were foundational to proofs of correctness for various sub-algorithms in past
protocols.

Our results demonstrate that it is possible to achieve consensus under variations
of the traditional problem. This paper explores the dynamic model which fea-
ture different assumptions about the abilities of the users and the information
given to all users before the protocol.

1

2 Preliminaries

2.1 Problem Definition

There are n nodes in a network labeled from 1 to n. There are three possible
states for these nodes: honest, corrupt, and sleepy. Going forward, the num-
ber of honest nodes will be represented by h, the number of corrupt nodes will
be represented by f , and the number of sleepy nodes will be represented by s.
Communication in this network is synchronous which means a message sent by
an honest node in round r is received by the recipient node before/at the begin-
ning of round r+1. There is a designated sender in the protocol that outputs a
bit b to all nodes and by the end of the protocol the goal is for all honest nodes
to have outputted the same bit, therefore achieving consensus. The protocol
presented in this paper does not assume that nodes know the value of n or h
beforehand but does assume there is a constant value of c which represents the
minimum ratio of honest nodes to the total amount of nodes.

In this paper we deal with the dynamic model of the sleepy Byzantine Broadcast
problem. This model features unique assumptions about starting information
and properties of sleepy users that will be explained in a later section.

2.2 Technical Roadmap

The paper relies on key intuition established by Wan, Xiao Shi, and Devadas [2].

Section 3 features a change to the Trust Graph post processing algorithm and
distrust messages. The lack of information about n, h, and sleepy nodes forces
the creation of a different method to ensure the functionality of the Trust Graph.

Section 4 features a modification to the TrustCast protocol. The existence of
sleepy nodes forces a change in the protocol to ensure it satisfies necessary cor-
rectness conditions.

Section 5 and 6 feature changes with respect to the model examined to the
Byzantine Broadcast protocol which uses the building blocks established in Sec-
tions 3 and 4 to bootstrap consensus.

The largest contribution is the novel approach to adapting the post processing
algorithm TrustCast protocol to the dynamic model. Afterwards, the high level
intuition surrounding the actual consensus protocol is similar to the work in [2]
and the relevant modifications are made rather than re-explaining the unchanged
portions of the original protocol.

2

2.3 Dynamic Model

The Dynamic Model assumes that no user knows the value of n or h and only
know a constant c such that h ∗ c > n, meaning we have a consistent minimum
ratio of honest nodes to total nodes. This model has sleepy users who have
potential to wake up and rejoin the system but when sleepy, are completely
disconnected and have no capacity to send messages. When woken up, users
will receive all previous communication history (messages sent when they were
not in the protocol).

2.4 Adversary

There exists an Adversary which controls the actions of all corrupt nodes and
in the second variation, has the ability to adapt and turn certain honest nodes
asleep as well as wake them up. In both variations of the problem, the adversary
has the ability to turn honest nodes corrupt as long as the ratio k remains a
minimum. When a node is asleep, the adversary can not send messages from it
but can view the messages it would have sent before putting it asleep.

2.5 Modeling Setup

Important note: This section was taken directly from source 2 in the works
cited. We believe that it provides useful information about the setup but was
not in the bounds of our research.

We will allow setup assumptions as well as standard cryptography. Our protocol
makes use of a public-key infrastructure and digital signatures, and for simplicity
in this paper we assume that the signature scheme is ideal. We adopt a standard
idealized signature model, i.e., imagine that there is a trusted functionality that
keeps track of all messages nodes have signed and answers verification queries
by looking up this trusted table. Under such an idealized signature model, no
signature forgery is possible. When we replace the ideal signature with a real-
world instantiation that satisfies the standard notion of “unforgeability under
chosen-message attack”, all of our theorems and lemmas will follow account-
ing for an additive, negligibly small failure probability due to the failure of the
signature scheme — this approach has been commonly adopted in prior works
too and is well-known to be cryptographically sound (even against adaptive
adversaries). For other cryptographic primitives we adopt, e.g., verifiable ran-
dom functions, we do not assume idealized primitives since the computationally
sound reasoning for these primitives is known to have subtleties.

3

3 Trust Graph

3.1 Overview

The Trust Graph is the crux of the protocol. The Trust Graph, as its name
suggests, is a graph mapping out the relationships between all the users. Specif-
ically, an edge between two users signifies mutual trust whereas a lack of an edge
between two users signifies distrust. Throughout the protocol, each user’s trust
graph changes as it processes new information. In order to use the trust graph,
the diameter of the trust graph is directly tied to the round complexity of the
protocol. This is because the longer the diameter of the trust graph, the more
rounds that need to occur to ensure that messages from all nodes are being
received.

At the beginning of the protocol, each node’s trust graph is a complete graph
as there has been no reason to distrust another node. As the protocol goes on
and nodes start to distrust each other, they communicate distrust via a distrust
message. A distrust message is passed on to other neighbors in the trust graph
and users remove the edge between the two nodes that distrust each other as
they receive the message. It is important to note that a distrust message about
the mutual trust between two nodes can only be issued by one of the two nodes
in question or else corrupt nodes can manipulate the distrust message to dis-
connect two honest nodes.

To accommodate sleepy nodes, if node k receives no message from node j, it will
not remove node j unless in the next round it receives a message from one of
its neighbors that was originally sent to the neighbor by node j in the previous
round. This has the effect of ensuring if a node is put to sleep, it will not be
removed from the trust graph.

As the nodes start to distrust each other, the complete trust graph with an
initial diameter of 1 starts to increase. This can quickly lead to graphs which
have large diameters. In order to deal with this problem, we need to employ
a post-processing algorithm. The purpose of the post-processing algorithm is
to change the trust graph in a way such that the diameter decreases without
removing edges between honest nodes.

It is also important to note we define Sk has the set of all nodes that are a
distance of k away from the node who’s trust graph is being examined. In this
paper, any Sk is called a layer.

3.2 Post Processing Algorithm

In this section we explain the post-processing algorithm and show proof that it
keeps the diameter within bounds of O(nh) and never removes an edge between
2 honest nodes.

4

The post processing algorithm works as follows: Find the lowest sum of the
number of nodes in any two consecutive layers and remove edges between those
two layers. In other words, find k such that |Sk| + |Sk+1| is minimal and re-
move all edges between Sk and Sk+1. This operation has the visual effect of
completely cutting the graph at a layer. This process is then repeated a certain
number of times until there the diameter is guaranteed to be within bounds of
n
h . This algorithm will be called the “Minimum Layer Sum Removal Opera-
tion”. Each time a node uses this algorithm it must show some sort of proof to
its neighbors in order to convince them to remove the same edges. The proof it
shows comes in the form of displaying its trust graph to other users and “hello”
messages which will be explained more in depth later.

It is important to note that this algorithm offers an improvement over previous
post processing algorithms. Previous algorithms tended to remove all edges be-
tween nodes who’s shared neighbors were less in quantity than h which is an
unviable strategy as the user doesn’t know the exact value h beforehand.

The proof of correctness will be broken down into 2 parts:
(1) Prove that the Minimum Sum Layer Removal keeps diameter within the
bounds of n

h .
(2) Prove that the Minimum Sum Layer Removal never removes edges between
honest nodes.

Theorem 1 Minimum Sum Layer Removal keeps diameter within bounds of n
h .

We know the minimum sum layer removal operation always decreases the diam-
eter of the trust graph as it removes all edges between two layers thus making
the graph discard a fraction of its layers. The protocol uses this operation
continuously until it reaches a value below the maximum possible value of 2n

h
such that if the operation were to be applied one less time, the value would go
above 2n

h . The maximum possible value of 2n
h can be computed by nodes as

they are given the fact the ratio of h to n is at least some constant c. This
means the ratio from n to h, i.e. n

h , is at most 1/c and thus the max value
of 2n

h is 2
c . The protocol applies the operation such that the diameter becomes

less than 2
c which ensures the diameter is bounded by the maximum value of 2n

h .

Theorem 2 Minimum Sum Layer Removal never removes edges between honest
nodes.

We will prove by contradiction. Assume a corrupt node attempts to remove
edges via the minimum sum layer removal process such that it removes edges
between 2 honest nodes. This means the min layer sum would be at least h.
This is because if there are honest nodes in both of the layers they must be
connected to all of the other honest nodes because there is no point in time

5

in which they have previously distrusted each other. We know that when we
apply the operation, the diameter is greater than the maximum possible value
of 2n

h otherwise we wouldn’t need to apply the post-processing algorithm. The
average sum of any two layers is less than h which means the minimum sum
of two layers must also be less than h which proves we can never remove edges
between honest nodes. Even with sleepy nodes, we have a guarantee on the ratio
c and h as we never remove the sleepy nodes from the trust graph, ensuring they
do not impact the calculations.

4 Trust Cast Protocol

4.1 Overview

The TrustCast protocol is a key building block for the eventual Byzantine Broad-
cast protocol.

The TrustCast protocol uses a designated sender s to send a message which
gets passed along various trust graphs for d rounds. At the end of the d rounds,
each user outputs the message they received if the sender is still viewed as online
in the user’s trust graph or mark the sender as dishonest or potentially sleepy
and if applicable, remove the sender from their trust graph. It is important
to note that the TrustCast protocol doesn’t guarantee consistency as certain
honest users may output different messages than others due to the ability for
a corrupt sender to send varied messages. However, if the sender is honest, all
honest nodes should output the same message m.

To better understand the protocol we consider 2 cases. First, if s is a direct
neighbor of some node u. We know that since they are neighbors they trust
each other and that u is expecting to receive a message in the first round. If
u doesn’t receive a message, it knows s is either sleepy or corrupt. Given u
can’t outright say s is corrupt, it would mark s as potentially sleepy and send
out a corresponding message similar to a Distrust message indicating that. If
in the next round u gets information s was not sleepy, it would then distrust s
and send out the corresponding distrust message. The second case is if s is a
distance r away from u in u’s trust graph. In this case, we know that after r
rounds, u expects to receive a message from s. If u doesn’t receive a message
from s after r rounds, it knows that all nodes a distance of r − 1 or less are
sleepy or corrupt. This is because if one of those nodes was honest and online,
u would have received a valid message by round r. Given this, our goal is to
prove the following:

• At the end of the TrustCast protocol, any honest node either receives a
message from s or removes s from its trust graph or marks s as potentially
sleepy.

• In the TrustCast protocol, we never remove edges between two honest

6

nodes in any honest node’s trust graph.

4.2 Proof of Correctness

Theorem 3 At the end of the TrustCast protocol, any honest node either re-
ceives a message from s or removes s from its trust graph or marks s as poten-
tially sleepy.

Using the intuition above about action taken against nodes a distance of less
than r from s in round r when u hasn’t received a message, we can formulate
a proof. Specifically, setting r to d + 1 tells us that if we haven’t received a
message by round d+1, s is a distance of at least d+1 from u or that s is sleepy
or corrupt which the distrust and sleepy messages other nodes in the trust graph
would have passed on. We know the former must be incorrect as the trust graph
must have a diameter of at most d proven in section 3.2 which means s must
be removed from the trust graph or the second case is true meaning that s is
sleepy.

Theorem 4 In the TrustCast protocol, we never remove edges between two hon-
est nodes in any honest node’s trust graph.

We know that the only case in which distrust messages are sent are ones in which
a node doesn’t propagate a message but is proven to be online and therefore
not sleepy. However, honest nodes that are online always propagate messages
to each other which means that the conditions for a distrust message to be sent
by another honest node will never occur therefore meaning edges between two
honest nodes in the trust graph can never be removed.

5 Dynamic Model

5.1 Overview

Applying the post processing algorithm and TrustCast protocol to create a full
consensus protocol relies on 3 separate phases. The three phases are described
as follows [2]:

• Propose: the leader uses the TrustCast protocol to share the freshest
commit evidence it has seen.

• Vote: each node uses the TrustCast protocol to relay the leader’s proposal
it receives in the propose phase. At the end of the vote phase, each node
checks whether it can construct a commit evidence.

• Commit: nodes use the TrustCast protocol to share their commit evidence
(if any exists).

To accomodate for previous changes, the phases need to be modified. Before
that happens, we need to deal with the fact that users don’t have a common
value of n to use.

7

5.2 Dealing with n being dynamic

The first problem to solve is to figure out the value of n used for the protocol
as it is necessary for both the Trust Graph and TrustCast portions to function
correctly. To get a good estimate of n we run the TrustCast protocol for the
first d rounds. We know h

n > c so 2n
h is upper bounded by 2

c which means we
have an upper bound of d to use. We know after d rounds every potential online
user has had the ability to send a message. If a corrupt user decides not to send
a message to some honest users but does send a message to other honest users,
the honest users that weren’t sent a direct message by the corrupt user will still
figure out about its existence through the honest users who did receive a direct
message from the corrupt user in question. This proves any user known to one
of the honest users will be known to all of them.

5.3 Propose Phase

The propose phase can remain the same given it uses the adapted TrustCast
protocol described in section 4. Let’s call the set of users online and honest in
round r Or. We know if the leader Le is in Or for r in [0, d] the proof in the
paper is applicable. Thus we have to consider two cases to adapt to the sleepy
model.
1) Le is sleepy before it is selected as leader. If Le is sleepy before it is selected as
a leader, the TrustCast protocol ensures it will not be removed from the trust
graph which is proven in section 8. It will not send a message so essentially
nothing will be proposed and thus this is not a situation which could disprove
correctness of the propose phase proof.
2) Le becomes sleepy in some round after it is selected as leader. In this case,
Le was in Or where r is the round when it was selected leader so we know it
was able to TrustCast the propose message correctly. Based off this, the current
TrustCast protocol ensures Le will remain in the trust graph so all honest users
will receive the message.

5.4 Vote Phase

The key modification to the vote phase is changing the condition for how many
valid vote messages are needed to commit. With the addition of sleepy nodes,
the idea that a user can receive a vote message from every node that remains
in its trust graph is no longer true as there are users that are honest but sleepy
meaning they can’t send a vote message but shouldn’t be removed from the
trust graph.
It is important to note that we can’t treat sleepy users as corrupt users as
that would result in their removal from the trust graph which would become
problematic as they could later come back on online and be completely isolated
from other honest nodes. A strategic Adversary could selectively disconnect
each individual honest node from the others which would make it impossible to
attain consensus.

8

The solution is to use the ratio c to create a weaker condition for accepting a
group of vote messages. We know that (1− c) ∗ n+1 is the amount of votes we
need on a certain bit to accept it as (1−c)∗n+1 represents f+1. However, the
ratio c is between online honest nodes and all nodes which includes sleepy nodes
which means that insofar as we don’t remove sleepy nodes from the trust graph,
it could be impossible to ever receive f + 1 votes because a large majority of n
are sleepy and wouldn’t be able to vote at all. Instead, we can note that if we
disregard any node marked as “potentially sleepy” by the TrustCast protocol,
we can still get a value of f + 1 that is attainable. We know if we disregard
nodes marked as “potentially sleepy” the ratio between online honest nodes
and total online nodes is also at least c. This is because every node marked as
potentially sleepy is either a corrupt node or a sleepy node which doesn’t change
the number of online honest nodes but does decrease the value of total online
nodes. We can then set f + 1 equal to (1 − c) ∗ k + 1 where k represents the
number of total online nodes. This can then be equated with the original vote
phase as we know all k users have the potential to send vote messages and we
have an achievable condition for committing on a certain bit b.

5.5 Commit Phase

The commit phase is essentially the same except we substitute the calculated
value of f + 1 from the Vote Phase as the condition for committing on a bit.

6 Conclusion and Future Work

In this paper, we have been able to adapt traditional Byzantine Broadcast
protocols to a dynamic model. So far, we have done this via modifying the
important building blocks as the consensus protocol as well as the protocol
itself. It will be interesting to see in future work if our results can hold when
applied to models with different conditions, such as those which allow users to
leave and rejoin the system arbitrarily or have weaker guarantees on starting
information.

7 Acknowledgements

I would like to thank my research mentor, Jun Wan, who has guided me through
this project as well as suggested the initial topic. I am also thankful for the MIT
PRIMES program for giving me this research opportunity.

8 Works Cited

[1] Pass, Rafael Shi, Elaine. (2017). The Sleepy Model of Consensus. 380-409.
10.1007/978-3-319-70697-9 14.

9

[2] Wan J., Xiao H., Shi E., Devadas S. (2020) Expected Constant Round Byzan-
tine Broadcast Under Dishonest Majority. In: Pass R., Pietrzak K. (eds) Theory
of Cryptography. TCC 2020. Lecture Notes in Computer Science, vol 12550.
Springer, Cham. https://doi.org/10.1007/978-3-030-64375-1 14

10

